Statistical Coaching. Thomas Forstner
|
|
|
- Erika Fertig
- vor 9 Jahren
- Abrufe
Transkript
1 Statistical Coaching Thomas Forstner
2 Diagnoseverfahren
3 Allgemein Vergleich: wahrer Befund mit Test (Diagnose) wahrer Befund muss bekannt sein (Goldstandard) 3
4 Analogie zur Testtheorie 4
5 Beurteilung von Diagnosestudien Mittels Klassifikationswahrscheinlichkeiten bzw. Prognosewahrscheinlichkeiten auf Basis bedingter Wahrscheinlichkeiten Sensitivität (Se): P(positive Diagnose krank) krank und eine positive Diagnose Spezifizität (Sp): P(negative Diagnose gesund) gesund und eine negative Diagnose Positiver Vorhersagewert (PPV): P(krank positive Diagnose) positive Diagnose und wirklich krank Negativer Vorhersagewert (NPV): P(gesund negative Diagnose) negative Diagnose und wirklich gesund Prävalenz: P(krank) Verbreitung der Krankheit in der Bevölkerung 5
6 Berechnung 6
7 Beispiel 7
8 Perfektes Diagnoseverfahren Sensitivität (Se): P(positive Diagnose krank) = 100% Spezifizität (Sp): P(negative Diagnose gesund) = 100% Positiver Vorhersagewert (PPV): P(krank positive Diagnose) = 100% Negativer Vorhersagewert (NPV): P(gesund negative Diagnose) = 100% 8
9 Zufalls -Diagnoseverfahren Sensitivität (Se) = P(Diagnose positiv) Spezifizität (Sp) = P(Diagnose negativ) Positiver Vorhersagewert (PPV) = Prävalenz Negativer Vorhersagewert (NPV) = 1- Prävalenz 9
10 Beurteilung von Diagnosestudien Likelihood Ratio+: Sensitivität / (1 Spezifität) Likelihood Ratio-: (1-Sensitivität) / Spezifität Likelihood-Ratio quantifiziert die Änderung der Chancen auf die Krankheit bei Kenntnis des positiven bzw. negativen Testergebnisses Bei einem perfekten Diagnoseverfahren ist LR+ = bzw. LR- = 0 Bei einem nutzlosen Zufalls-Diagnoseverfahren ist LR+ = LR- = 1 10
11 Vergleich von Diagnoseverfahren Ein Verfahren ist in allen Maßzahlen besser -> eindeutige Entscheidung Das Verfahren ist nur in einer Maßzahl (z.b.: Sensitivität besser) -> Entscheidung schwieriger Lösung: Ein Maß definieren, dass beide Maßzahlen (Sensitivität und Spezifizität) verwendet -> häufig werden die Kosten dafür verwendet 11
12 Kosten C Kosten des Tests CDp Kosten der Behandlung für eine erkrankte und positiv diagnostizierte Person CDn Kosten der Behandlung für eine erkrankte aber negativ diagnostizierte Person CGp Kosten (z.b.: unnötige Behandlungen) für eine gesunde aber positiv diagnostizierte Person Kosten = C + CDp * Se * Prävalenz + CDn * (1-Se) * Prävalenz + CGp * (1-Sp) * (1-Prävalenz) 12
13 Beispiel Man stellt sich die Frage ob ein Screening für eine bestimmte Krebsart rein von der Kostenseite her sinnvoll ist. Man nimmt eine Prävalenz von 0,8% an. Ein Screeningverfahren hat eine Sensitivität von 51% bzw. eine Spezifität von 98%. C Testkosten 40 $ / CDp Behandlungskosten erkrankte und positiv getestete Person 1730 $ / CDn teurere Behandlungskosten erkrankte aber negativ getetste Person $ / CGp Kosten für weitere Untersuchung für gesunde aber positiv getestete Personen 170$ Kosten bei Screening = *0,51*0, *0,49*0, *0,02*0,992 = 119 $ Kosten ohne Screening = Prävalenz * CDn = 0,008*17500 = 140 $ 13
14 ordinales bzw. metrische Testergebnisse Beispiel: Radiologin beurteilt Mammographien auf einer Skala zwischen 1 (normal) bis 5 (bösartig) Allgemein: 14
15 ordinales bzw. metrische Testergebnisse Wahl von verschiedenen Cut-Off-Werten ( Trennwerte zw. gesund und krank ) und Dichotomisierung des metrischen bzw. ordinalen Testergebnisse Bildung und Betrachtung der Sensitivität bzw. Spezifität für alle möglichen Cut-Off-Werte getrennt Grafische Darstellung aller möglichen Cut-Off-Werte mittels ROC-Kurven 15
16 ROC-Kurven ROC-Kurve: Methode zur Beschreibung der Güte eines Diagnoseverfahrens unter der Berücksichtigung von verschiedenen Cut-Off-Werten 16
17 ROC-Kurven Erstellung durch stückweise lineare Interpolation (Verbindung von Punktepaaren Sensitivität und 1-Spezifität jeweils abhängig vom Cut-Off-Wert, 1-Spezifität wird als False Positve Rate bezeichnet) Maximum-Likelihood-Methode: Mittels ML-Schätzung Bestimmung einer Kurve durch die Punktepaare Sensitivität und Spezifität (sehr rechenintensiv, in Praxis kaum verwendet) Beispiel: Patienten mit künstlichen Herzklappen. Ab einem Herzklappenabstand von 0,14 cm (Cut-Off-Wert) wird von einem Defekt ausgegangen. Es sollen verschiedenen Cut-Off-Werte verglichen werden. 17
18 Interpretation Quelle: Fletcher, Fletcher und Wagner, Klinische Epidemiologie 18
19 ROC-Kurven Sensitivität und Spezifität: Maßzahlen für die Güte eines Diagnoseverfahrens bei einem fixen Cut-Off-Wert an Gesucht: Maßzahl, welches die Güte eines Diagnoseverfahrens abhängig von verschiedenen Cut-Off-Werten angibt: Fläche unter der ROC-Kurve (Wertebereich zw. 0 und 1) 19
20 Fläche unter ROC Empirische ROC-Kurven: Mittels der Trapezregel: Parametrische ROC-Kurven: Mittels Integralrechnung: 20
21 Beispiel Mammographie an 58 Frauen. Wahrer Zustand mittels Biopsie bestätigt. Fläche unter der ROC-Kurve soll berechnet werde. 21
22 Interpretation der Fläche durchschnittlicher Wert der Sensitivität für alle möglichen Werte der Spezifität durchschnittlicher Wert der Spezifität für alle möglichen Werte der Sensitivität jene Wahrscheinlichkeit, dass bei zufälligen Auswahl je eines Objektes, auf das die Bedingung zutrifft, und eines Objektes, auf das die Bedingung nicht zutrifft, das Objekt mit der Bedingung mit einer höheren Wahrscheinlichkeit von einem Klassifikationsschema als positiv eingestuft wird. Kann das Klassifikationsschema keine Zuordnung treffen, ist die Wahrscheinlichkeit nicht höher als bei einer zufälligen Entscheidung. Beispiel: Man hat eine Grundgesamtheit von 100 Personen. 50 Personen sind an einer bestimmten Krankheit erkrankt, die anderen 50 sind gesund. Wählt man nun eine kranke und eine gesunde Person aus, wird ein medizinischer Test die kranke Person wahrscheinlicher als krank erkennen als die gesunde Person. 22
23 Varianz der Fläche Die Berechnung der Fläche unter der ROC-Kurve ist formal mit der Berechnung der Teststatistik des Mann-Whitney-U-Test verwandt. Dieser Zusammenhang kann zur Berechnung der Varianz ausgenützt werden. 23
24 Vergleich zweier ROC-Kurven Vergleichsmaß: Fläche unter der Kurve Hypothesen: Teststatistik: Teststatistik ist asymptotisch normalverteilt 24
25 Konfidenzintervalle Asymptot. Konfidenzintervall für eine ROC-Kurve: Basis Konfidenzintervalle für die jeweiligen Punktepaare Sensitivität und Spezifität: Asymptot. Konfidenzintervall für Fläche: 25
26 Beispiel Vergleichen Sie die ROC-Kurven der Mammographie-Befunde von jeweils 60 Frauen, die mit 2 verschiedenen Computertomographen erstellt wurden. Computertomograph A: Fläche = 0,847 (20 bösartig, 40 gutartig) Computertomograph B: Fläche = 0,747 (10 bösartig, 50 gutartig) Nullhypothese kann nicht abgelehnt werden p = 0,206 26
27 Optimaler Cut-Off-Wert Optimal ist hier definiert als maximale Sensitivität und maximale Spezifität Bestimmung mittels Youden-Index Youden-Index: Punkt welcher am weitesten von der 45 Grad Geraden entfernt ist 27
Medizinische Biometrie (L5)
Medizinische Biometrie (L5) Vorlesung V Der diagnostische Test Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie [email protected]
2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns
2. Statistische Methoden in der Diagnostik Elemente des Studiendesigns Diagnosestudien in der Medizin Klassifikation in krank - nicht krank basierend auf diagnostischem Test Beispiel: Diagnose von Brustkrebs
Epidemiologie / Biometrie
Wintersemester 2004 / 2005 Epidemiologie / Biometrie Robert Hochstrat 14. März 2005 Zusammenschrift der Übung zur Vorlesung aus dem WS 04/05 Rückfragen, Ergänzungen und Korrekturen an robert [email protected]
Diagnostische Verfahren
6. Diagnostische s Jede Registrierung oder Auswertung einer Information mit dem Ziel der Erkennung einer Erung oder eines speziellen Zustandes wird diagnostischer genannt. Beispiele Reaktion auf Ansprechen
Bewertung diagnostischer Tests
n g c gesund krank n k c Segreganz negativ positiv negativ positiv Relevanz Beertung diagnostischer Tests gesund krank c Annahme: Überlappende Populationen eine messbare Grösse (z.b Konzentration) vergrössert
Epidemiologie und HIV-Tests
26. November 2009 Cornelias HIV-Test Das ist Cornelia. Cornelia möchte Plasmaspenderin werden. Dafür braucht sie einen negativen Befund eines HIV-Tests. Deshalb geht sie ins Krankenhaus. Cornelias HIV-Test
Themenblock. Diagnose und Prognose. Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik. Themen im Block Diagnose und Prognose
Themenblock Diagnose und Prognose Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik Themen im Block Diagnose und Prognose Diagnose Prävalenz und prädiktive Werte Güte von diagnostischen
Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003
Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter
Klausur in "Biomathematik" WS 2007 / 2008 Montag, den 28. Januar 2008
Klausur in "Biomathematik" WS 2007 / 2008 Montag, den 28. Januar 2008 Name: Matrikelnummer: Unterschrift: Aufgabe 1: Bei einer klinischen Therapiestudie wird bei allen Patienten der Wert eines quantitativen
Täuschung und Manipulation mit Zahlen Teil 1
Täuschung und Manipulation mit Zahlen Teil 1 Kleines Statistikseminar zum kritischen Umgang mit Zahlen 23.3.2011 Dr. med. H.-J. Koubenec Mammasprechstunde im Immanuel Krankenhaus Berlin Folien: Mammographie-Screening.de
EbM-Splitter 10 Sensitivität und Spezifität: Auswirkung der Wahl des Trennpunktes
Sensitivität und Spezifität: Auswirkung der Wahl des Trennpunktes Seite - 1 - EbM-Splitter 10 Sensitivität und Spezifität: Auswirkung der Wahl des Trennpunktes Im vorigen EbM-Splitter [4] wurde auf die
Täuschung und Manipulation mit Zahlen
58. Ärztekongress Berlin/Charité 4.11.2010 Täuschung und Manipulation mit Zahlen Kleines Statistikseminar zum kritischen Umgang mit Zahlen Dr. med. H.-J. Koubenec Mammasprechstunde im Immanuel Krankenhaus
WIE SICHER IST DIE DIAGNOSE?
WIE SICHER IST DIE DIAGNOSE? ÜBER DEN UMGANG MIT UNSICHERHEIT IN DER MEDIZIN Mag. Andrea Fried Bundesgeschäftsführerin ARGE Selbsthilfe Österreich 2.10.2014 1 2.10.2014 2 Der Fluch der Statistik Medizinische
Biomathematik für Mediziner
Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur WS 2002/2003 Aufgabe 1: Man gehe davon aus,
Biomathematik für Mediziner
Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur SS 2003 Aufgabe 1: Welche der unten angegebenen
2. Übung Diagnostik. Ein erfundenes Beispiel (H.P.Beck-Bornholt und H.-H.Dubben)
Querschnittsbereich 1: Epidemiologie, Medizinische Biometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 2. Übung Diagnostik Universität Leipzig
Mammographie-Screening in der Diskussion um Nutzen und Schaden: Was glauben wir und was wissen wir über den Nutzen?
Urania Berlin 13.10. 2008 Mammographie-Screening in der Diskussion um Nutzen und Schaden: Was glauben wir und was wissen wir über den Nutzen? Dr. med. H.-J. Koubenec Mammasprechstunde im Immanuel Krankenhaus
Bedingte Wahrscheinlichkeit. Beispiel zur bedingten Wahrscheinlichkeit
Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die Wahrscheinlichkeiten für das Eintreten von Ereignissen durch das Eintreten anderer Ereignisse
Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001
Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 1. Sensitivität und Spezifität In einer medizinischen Ambulanz haben 30 % der Patienten eine akute Appendizitis. 80 % dieser Patienten haben
Macht des statistischen Tests (power)
Macht des statistischen Tests (power) Realer Treatment ja Ergebnis der Studie H 0 verworfen statistisch signifikant O.K. Macht H 0 beibehalten statistisch nicht signifikant -Fehler Effekt nein -Fehler
Bedingte Wahrscheinlichkeiten & Unabhängigkeit
Statistik 1 für SoziologInnen Bedingte Wahrscheinlichkeiten & Univ.Prof. Dr. Marcus Hudec Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die
Diagnostikstudien. Dr. Dirk Hasenclever IMISE, Leipzig.
Diagnostikstudien Dr. Dirk Hasenclever IMISE, Leipzig [email protected] Diagnostische Tests Krankheit ja Krankheit nein Test positiv TrueP FP Test negativ FN TrueN Test- Positive Test- Negative
Vorlesung - Medizinische Biometrie
Vorlesung - Medizinische Biometrie Stefan Wagenpfeil Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik Universität des Saarlandes, Homburg / Saar Vorlesung - Medizinische Biometrie
Medizinische Entscheidungstheorie. Stiftungslehrstuhl Health Economics
Stiftungslehrstuhl Health Economics SS 2011: Vorlesung mit Übungen: mittwochs 10-12 Uhr Dozent: Prof. Dr. Stefan Felder, Raum 340 Sprechstunde: Mo 10-12 Uhr Vorlesungsunterlagen unter Lehrstuhlseite: http://wwz.unibas.ch/abteilungen/home/abteilung/health/
Sensitivität und Spezifität (95% Konfidenzintervalle)
Prädiktive Werte als Gütemaÿe in Diagnosestudien: Anwendungsmöglichkeiten und Analysemethoden Katharina Lange Abteilung Medizinische Statistik Georg-August-Universität Göttingen Inhalt Beispiel: Diagnostische
Prinzipien der klinischen Epidemiologie
Prinzipien der klinischen Epidemiologie Der diagnostische Test Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie [email protected]
Statistik II. IV. Hypothesentests. Martin Huber
Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test
MaReCum Klausur in Biomathematik WS 2006 / 2007 Freitag, den 27. Oktober 2006
MaReCum Klausur in Biomathematik WS 2006 / 2007 Freitag, den 27. Oktober 2006 Name: Matrikelnummer: Unterschrift: Aufgabe 1 In einer kleinen Gemeinde in Baden-Württemberg traten vermehrt Fälle von Q-Fieber
Methodenlehre. Vorlesung 13. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg
Methodenlehre Vorlesung 13 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 19.05.15 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie
Bewertung diagnostischer Tests
n g c gesund krank n k c Segreganz negativ positiv negativ positiv Relevanz Beertung diagnostischer Tests gesund krank c Annahme: Überlappende Populationen eine messbare Grösse (z.b Konzentration) vergrössert
Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002
Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 1. Ein Chemiestudent hat ein Set von 10 Gefäßen vor sich stehen, von denen vier mit Salpetersäure Stoff A), vier mit Glyzerin Stoff
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte
1 Kontrollierte klinische Studien - eine Einführung Zur Notwendigkeit randomisierter Studien: Hochdosis- Chemotherapie beim Mammakarzinom...
Inhaltsverzeichnis EINLEITUNG 1 Kontrollierte klinische Studien - eine Einführung...1 1.1 Die Salk-Polio-Studie...3 1.2 Die Problematik historischer Vergleiche...5 1.3 Beobachtungsstudien und Registerdaten...8
Neuere Ansätze zur Auswahl von Prädiktionsmodellen. Von Veronika Huber
Neuere Ansätze zur Auswahl von Prädiktionsmodellen Von Veronika Huber Gliederung Anwendungsbereiche von Prädiktionsmodellen Traditionelle Methoden zur Prüfung der Wirksamkeit Neuere Ansätze zur Prüfung
Statistische Datenanalyse
Werner A. Stahel Statistische Datenanalyse Eine Einführung für Naturwissenschaftler 3., durchgesehene Auflage vieweg VII 1 Einleitung 1 1.1 Was ist Statistische Datenanalyse? 1 1.2 Ziele 6 1.3 Hinweise
3.3.1 Referenzwerte für Fruchtwasser-Schätzvolumina ( SSW)
50 3.3 Das Fruchtwasser-Schätzvolumen in der 21.-24.SSW und seine Bedeutung für das fetale Schätzgewicht in der 21.-24.SSW und für das Geburtsgewicht bei Geburt in der 36.-43.SSW 3.3.1 Referenzwerte für
Statistik-Klausur I E SS 2010
Statistik-Klausur I E SS 2010 Name: Vorname: Immatrikulationsnummer: Studiengang: Hiermit erkläre ich meine Prüfungsfähigkeit vor Beginn der Prüfung. Unterschrift: Dauer der Klausur: Erlaubte Hilfsmittel:
Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg
Methodenlehre Vorlesung 12 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft
Bedingte Wahrscheinlichkeiten & Unabhängigkeit
Statistik 1 für SoziologInnen Bedingte Wahrscheinlichkeiten & Univ.Prof. Dr. Marcus Hudec Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die
Institut für Biometrie und klinische Forschung. WiSe 2012/2013
Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive
Macht des statistischen Tests (power)
Macht des statistischen Tests (power) Realer Treatment ja Ergebnis der Studie H 0 verworfen statistisch signifikant O.K. Macht H 0 beibehalten statistisch nicht signifikant -Fehler Effekt nein -Fehler
Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1
Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,
Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19
Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist
Nutzen einer diagnostischen Tests in der Praxis: prädiktive Werte
EbM-Splitter 11 Nutzen einer diagnostischen Tests in der Praxis: prädiktive Werte In den beiden letzten EbM-Splittern [6, 7] wurden die Maßzahlen Sensitivität (Wahrscheinlichkeit, eine kranke Person als
Eine Einführung in R: Statistische Tests
Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 9. Dezember 2009 Bernd Klaus, Verena Zuber
Medizinische Psychologie. Bewertung wissenschaftlicher Ergebnisse, Evidenzbasierte Medizin, Anwendung statistischer Information
Medizinische Psychologie Bewertung wissenschaftlicher Ergebnisse, Evidenzbasierte Medizin, Anwendung statistischer Information Bewertung wissenschaftlicher Ergebnisse Replizierbarkeit (Wiederholbarkeit)
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Seminar Diagnostik L5
Seminar Diagnostik L5 Regenwahrscheinlichkeit Bezugsgröße festlegen! Beipackzettel Bezugsgröße festlegen! Brustkrebs-Screening Entscheidungsmöglichkeiten bei diagnostischen Tests Wahrer Zustand des Patienten
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Exakter Binomialtest als Beispiel
Prinzipien des statistischen Testens Entscheidungsfindung Exakter Binomialtest als Beispiel Statistische Tests Nullhypothese Alternativhypothese Fehlentscheidungen Ausgangspunkt: Forschungshypothese Beispiele:.
KLAUSUR IN BIOMATHEMATIK WS 2007/08 MONTAG, DEN 28. JANUAR 2008
KLAUSUR IN BIOMATHEMATIK WS 2007/08 MONTAG, DEN 28. JANUAR 2008 Name: Matrikelnummer: Unterschrift: Aufgabe 1: Welche der folgenden Aussagen ist falsch? A. Der Median ist weniger stark von Ausreißern beeinflusst
Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60
WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach
Einflußfaktoren auf die serologische Einzeltierdiagnostik der Paratuberkulose mittels ELISA
Einflußfaktoren auf die serologische Einzeltierdiagnostik der Paratuberkulose mittels ELISA Heike Köhler Bundesforschungsanstalt für Viruskrankheiten der Tiere, Standort Jena NRL Paratuberkulose Diagnostik
Wahrscheinlichkeitsrechnung und schließende Statistik
Karl Mosler Friedrich Schmid Wahrscheinlichkeitsrechnung und schließende Statistik Vierte, verbesserte Auflage Springer Inhaltsverzeichnis 0 Einführung 1 1 Zufalls Vorgänge und Wahrscheinlichkeiten 5 1.1
Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler
Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung
Grundkurs Statistik für Politologen und Soziologen
Grundkurs Statistik für Politologen und Soziologen Bearbeitet von Uwe W Gehring, Cornelia Weins 5., überarbeitete Auflage 2010. Buch. 345 S. Softcover ISBN 978 3 531 16269 0 Format (B x L): 14,8 x 21 cm
Statistik. Jan Müller
Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen
Bedingte Wahrscheinlichkeit
Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die Wahrscheinlichkeiten für das Eintreten von Ereignissen durch das Eintreten anderer Ereignisse
Diagnostisches Testen. Coniecturalem artem esse medicinam
Diagnostisches Testen Coniecturalem artem esse medicinam Würfelspiel A: ein fairer Würfel zeigt eine gerade Augenzahl B: ein fairer Würfel zeigt mindestens 4 Punkte A: B: A B: P(A=1/2 P(B=1/2 P(A B=2/6
Aussagenlogik, Mengenlehre, Wahrscheinlichkeit und Prüfstatistik sind eng miteinander verknüpft.
Aussagenlogik, Mengenlehre, Wahrscheinlichkeit und Prüfstatistik sind eng miteinander verknüpft. Schon immer wurde die Menschheit von Krankheiten bedroht und oft konnte eine Frühdiagnose mit nachfolgender
Statistische Tests (Signifikanztests)
Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)
Modul 141 Statistik. 1. Studienjahr 11. Sitzung Signifikanztests
Modul 141 Statistik 1. Studienjahr 11. Sitzung Signifikanztests Inhalt der 11. Sitzung 1. Parametrische Signifikanztests 2. Formulierung der Hypothesen 3. Einseitige oder zweiseitige Fragestellung 4. Signifikanzniveau
Institut für Biometrie und klinische Forschung. WiSe 2012/2013
Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie () WiSe /3 Univariate und bivariate Verfahren Univariate
Dr. Matthias Rudolf: M3 Multivariate Statistik Vorlesung LogRA. Folie Nr. 1
2.1 Beispiele 2.2 Odds Ratio 2.3 Modell der logistischen Regression 2.3.1 Modellgleichung 2.3.2 Voraussetzungen 2.4 Schätzungen, Tests und Modellgüte 2.4.1 Schätzung der logistischen Regressionskoeffizienten
Biomathematik für Mediziner, Klausur SS 2001 Seite 1
Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen
fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik
fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse
Südtiroler Akademie für Allgemeinmedizin. Seminar
Südtiroler Akademie für Allgemeinmedizin Seminar 16.10.2015 Diagnostische Entscheidungsfindung in der Allgemeinmedizin Andreas Sönnichsen Institut für Allgemeinmedizin und Familienmedizin Universität Witten/Herdecke
Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik Diagnose und Prognose WS 06/07 Übung 5
Informationsblatt zum Gestationsdiabetes (Schwangerschaftsdiabetes) Gruppe B Der Schwangerschafts- oder Gestationsdiabetes () ist eine spezielle Form der Zuckerkrankheit, die sich während einer Schwangerschaft
Retrospektives Studiendesign
Studiendesign Zielsetzungen, Studientypen Genau wie für die klassische Labordiagnostik muss auch für die Genexpressionsanalyse (und andere hochdimensionale Verfahren wie z.b. die Massenspektrometrie) vor
Mathematik EP - Stochastik VIERFELDERTAFEL UND BEDINGTE WKT.
Mathematik EP - Stochastik VIERFELDERTAFEL UND BEDINGTE WKT. HIV - SCHNELLTEST Die Immunschwächekrankheit AIDS wird durch das HI-Virus, welches 1993 entdeckt wurde, verursacht. Die Krankheit gilt bis heute
Statistische Überlegungen: Eine kleine Einführung in das 1 x 1
Statistische Überlegungen: Eine kleine Einführung in das 1 x 1 PD Dr. Thomas Friedl Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Ulm München, 23.11.2012 Inhaltsübersicht Allgemeine
Eine Einführung in R: Statistische Tests
Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/
Statistisches Testen
Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall
Biomathematik für Mediziner, Klausur SS 2000 Seite 1
Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Aufgabe 1: Bei der Diagnose einer bestimmten Krankheit mit einem speziellen Diagnoseverfahren werden Patienten, die tatsächlich an der Krankheit leiden,
Ablaufschema beim Testen
Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version
Hypothesentests mit SPSS. Beispiel für einen t-test
Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle
Nachklausur zur Vorlesung
Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 30. April 004 Priv.-Doz. Dr. D. Kadelka Nachklausur zur Vorlesung Statistik für Biologen Musterlösungen Aufgabe 1 Gemessen wurde bei
Sitzung 4: Übungsaufgaben für Statistik 1
1 Sitzung 4: Übungsaufgaben für Statistik 1 Aufgabe 1: In einem Leistungstest werden von den Teilnehmern folgende Werte erzielt: 42.3; 28.2; 30.5, 32.0, 33.0, 38.8. Geben Sie den Median, die Spannweite
DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr
2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X
Analyse von Querschnittsdaten. Signifikanztests I Basics
Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004
Einführung in die Statistik
Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten
Übung 4 im Fach "Biometrie / Q1"
Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.
Zusammenhänge zwischen metrischen Merkmalen
Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl
Grundbegriffe. Allgemein. Merkmale. Verschiedene Variablen
Biometrie 1 Grundbegriffe Allgemein Grundgesamtheit: Die Menge aller Objekte, auf die sich die Aussage einer Studie beziehen soll Stichprobe (=n): Der Teil der Grundgesamtheit, der befragt/ untersucht
8. Konfidenzintervalle und Hypothesentests
8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars
Tabelle 4 : Berechnete Konzeptionen pro Monat aus den Ausgangsdaten Lebendgeburten pro Monat am Beispiel der gesamten Kontrollen.
5 Ergebnisse 5.1 Analyse der Kontrollgruppe 5.1.1 Bestimmung des Konzeptionstermins Entsprechend dem unter 4.2.2 geschilderten Verfahren wurden aus den Ausgangsdaten, d.h. der Aufschlüsselung der Lebendgeburten
Biostatistik, Sommer 2017
1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes
Schließende Statistik
Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.
