Nernstsche Gleichung und Löslichkeitsprodukt

Größe: px
Ab Seite anzeigen:

Download "Nernstsche Gleichung und Löslichkeitsprodukt"

Transkript

1 Protokoll Nernstsche Gleichung und Löslichkeitsprodukt Richard Möhn Florian Noack Januar 2011 Inhaltsverzeichnis Vorbetrachtung 1 Durchführung 5 Auswertung 9 Vorbetrachtung Taucht man ein Metall in seine Metallsalzlösung, so gehen Ionen aus dem Gitter in Lösung. Es stellt sich ein Gleichgewicht ein: Me(s) Me + (aq)+e Die zurückbleibenden Elektronen bewirken eine negative Ladung der Metalloberfläche, wodurch sich polare Wassermoleküle und hydratisierte Metallionen anlagern. Die Grenzschicht Metalloberfläche/angelagerte Ionen nennt man elektrochemische Doppelschicht, die Lösung Elektrolyt, das in den Elektrolyten tauchende Metallstück Elektrode und die Kombination aus Elektrode und Elektrolyt Halbzelle. Das Bestreben, Ionen aus dem Gitter in die Lösung abzugeben, ist von Metall zu Metall unterschiedlich stark. Man kann das ausnutzen, indem man Halbzellen verschiedener Metalle so kombiniert, wie das Abbildung 1 zeigt. Dann gehen von der Elektrode mit dem größeren Bestreben, Metallionen abzugeben (Anode), Metallionen in Lösung. Die cb This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

2 8 10 V Abbildung 1: Galvanisches Element: 1 Halbzelle I, 2 Halbzelle II, 3 Metallelektrode I, 4 Metallelektrode II, 5 Metallsalzlösung I, 6 Metallsalzlösung II, 7 Stromschlüssel (Ionenleiter), 8 elektrischer Leiter, 9 Verbraucher, 10 Spannungsmessgerät verbleibenden Elektronen wandern durch den elektrischen Leiter zu der anderen Elektrode (Kathode), wo sie Metallionen aus der Lösung zu Metallatomen reduzieren, die sich an der Elektrode anlagern. Es resultieren ein Stromfluss und eine Spannung. Außerdem handelt es sich hier um eine Redoxreaktion, bei der Oxidation und Reduktion räumlich getrennt sind: Oxidation: Me(I) Me(I) + + e Reduktion: Me(II) + + e Me(II) Me(I)+Me(II) + Me(I) + + Me(II) Der Stromschlüssel ermöglicht dabei den Ladungsausgleich zwischen den Lösungen, ohne dass diese sich vermischen. Um das Bestreben der verschiedenen Elektroden, Metallionen in die Lösung abzugeben, quantitativ zu erfassen, kombiniert man sie jeweils mit einer speziellen Elektrode, der Standardwasserstoffelektrode und misst die Spannung. Die gemessene Spannung bezeichnet man als Standardpotential E der Halbzelle. Je kleiner das Standardpotential, desto größer das Bestreben, Elektronen abzugeben. 2

3 Aus den Standardpotentialen zweier Halbzellen kann man die Spannung berechnen, die aufträte, wenn man jene zu einem galvanischen Element kombinieren würde: U = E (Kathode) E (Anode) (1) Dabei ist E (Kathode) das Standardpotential der Halbzelle, in der Kationen reduziert werden, E (Anode) das Standardpotential der Halbzelle, in der Kationen durch Oxidation entstehen. Kombiniert man zum Beispiel eine Kupfer/Kupfer(II)-sulfat- und eine Zink/Zink(II)-sulfat-Halbzelle, so berechnet man: U = E (Cu 2+ /Cu) E (Zn/Zn 2+ ) (2) = 0,345 V ( 0,763 V) (3) = 1,108 V (4) Allerdings ist das Potential einer Halbzelle auch von der Konzentration der Salzlösung abhängig. Nach dem Prinzip von Le Chatelier steigt nämlich das Bestreben eines Metalls, Metallionen in die Lösung abzugeben, je kleiner die Konzentration der Metallionen in der Lösung ist; das Potential sinkt. Man kann also nicht immer mit den Standardpotentialen rechnen, die für eine Metallsalzkonzentration von 1 mol/l angegeben sind. Vielmehr benutzt man die Nernstsche Gleichung, um das Elektrodenpotential es ist auch von der Temperatur abhängig einer Halbzelle den Bedingungen entsprechend zu ermitteln: E = E + R T z F ln c(ox) c(red) (5) Dabei ist E das Standardpotential der Halbzelle, R die universelle Gaskonstante, F die Faraday-Konstante, T die Temperatur in Kelvin, z die Anzahl der Elektronenübergänge pro Formelumsatz, c(ox) die Konzentration des Oxidationsmittels und c(red) die Konzentration des Reduktionsmittels. Für Standardbedingungen gilt auch: E = E + 0,059 V z lg c(ox) c(red) (6) Daniell-Element Teilversuch 1 beschäftigt sich mit dem Daniell-Element. Es ist eines der am frühesten verwendeten galvanischen Elemente und besteht aus einer Cu 2+ /Cu- 3

4 und einer Zn/Zn 2+ -Halbzelle: Oxidation: Zn Zn e Reduktion: Cu e Cu Zn+Cu 2+ Zn 2+ + Cu Aus den Gleichungen 1 und 6 erhält man durch geeignetes Umformen eine Formel für die Spannung, die sich bei verschiedenen Konzentrationen der Metallsalzlösungen ergibt: U = E (Cu 2+ /Cu) E (Zn/Zn 2+ )+ 0,059 V 2 lg c(cu2+ ) c(zn 2+ ) (7) Konzentrationselement Die Konzentrationsabhängigkeit des Elektrodenpotentials ermöglicht auch, ein galvanisches Element durch Kombination zweier gleichartiger Halbzellen aufzubauen, indem man unterschiedlich konzentrierte Metallsalzlösungen verwendet. Die Spannung der in Teilversuch 2 zu untersuchenden galvanischen Zelle aus zwei Ag/Ag + -Halbzellen ergibt sich aus folgender Gleichung: U = 0,059 V lg c 1(Ag + ) c 2 (Ag + ) (8) Wie man sieht, ist die Spannung eines Konzentrationselements nicht mehr von den Standardpotentialen der Halbzellen abhängig. Konzentrationselemente werden auch verwendet, um die Löslichkeitsprodukte schwerlöslicher Salze auszurechnen. Dazu kombiniert man eine Halbzelle mit bekanntem Elektrodenpotential mit einer zweiten Halbzelle. Die Metallsalzlösung dieser zweiten Halbzelle ist mit Bodensatz gesättigt, sodass die Gleichgewichtskonzentrationen des Löslichkeitsproduktes herrschen. Dieses kann man dann mit der Nernstschen Gleichung aus der gemessenen Spannung berechnen. In Teilversuch 3 soll das Löslichkeitsprodukt von Silberchlorid ermittelt werden. Hierzu wird die Ag/AgCl-Halbzelle, deren Konzentration zu ermitteln ist, mit einer AgNO 3 /Ag- Halbzelle der Konzentration 0,01 mol/l kombiniert. Das Elektrodenpotential dieser Zelle beträgt: E(AgNO 3 /Ag) = E (AgNO 3 /Ag)+0,059 V lg c(ag+ ) 1 mol/l (9) = 0,80 V+0,059 V lg0,01 (10) = 0,682 V (11) 4

5 Für das gesamte Element gilt: U = E(AgNO 3 /Ag) E(AgCl/Ag) (12) E(AgCl/Ag) = E(AgNO 3 /Ag) U (13) Aus E(AgCl/Ag) kann man mit Gleichung 6 die Silberionenkonzentration ausrechnen: E(AgCl/Ag) = E (Ag + /Ag)+0,059 V lg c(ag+ ) 1 mol/l lg c(ag+ ) 1 mol/l = E(AgCl/Ag) E (Ag + /Ag) 0,059 V (14) (15) c(ag + ) = e E(AgCl/Ag) E (Ag + /Ag) 0,059 V mol/l (16) Das Löslichkeitsprodukt von Silberchlorid ergibt sich mit der Reaktionsgleichung AgCl Ag + +Cl zu K L = c(ag + ) c(cl ). (17) Da in Teilversuch 3 zusätzlich zu den Chlorid-Ionen aus dem Silberchlorid noch solche aus Kaliumchlorid zugegen sind, muss man korrigieren: K L = c(ag + ) (c(cl )+c(kcl)) (18) Außerdem gilt nach obiger Reaktionsgleichung c(cl ) = c(ag + ) und es folgt letztendlich die Gleichung für das Löslichkeitsprodukt von Silberchlorid: K L = c(ag + ) (c(ag + )+c(kcl)) (19) Durchführung Vor der Durchführung der jeweiligen Messungen werden die Kupfer- und die Silberelektrode gereinigt, indem man sie kurz in halbkonzentrierte Salpetersäure taucht und dann abwischt. Für die Zinkelektrode verwendet man halbkonzentrierte Salzsäure. 5

6 V Abbildung 2: Daniell-Element: 1 Becherglas mit Zink(II)-sulfat-Lösung, 2 Zink-Elektrode, 3 Tonzylinder mit Kupfer(II)-sulfat-Lösung, 4 Kupferelektrode, 5 Spannungsmessgerät Teilversuch 1: Daniell-Element Versuchsvorschrift Man füllt ein Becherglas etwa fingerbreit mit Zink(II)-sulfat-Lösung. Hinein stellt man einen Tonzylinder, der vorher mit destilliertem Wasser gespült und getränkt wurde, und befüllt diesen ebenfalls fingerbreit mit Kupfer(II)-sulfat-Lösung. In die Lösungen stellt man die jeweiligen Metallelektroden, die über das Spannungsmessgerät miteinander verbunden sind. (Versuchsaufbau siehe Abbildung 2.) Nun misst man die Zellspannung für verschiedene Elektrolytkonzentrationen, indem man die Metallsalzlösungen in geeigneter Folge austauscht. Chemikalien: Zink(II)-sulfat-Lösung 1 mol/l, 0,1 mol/l, 0,01 mol/l Kupfer(II)-sulfat-Lösung 1 mol/l, 0,1 mol/l, 0,01 mol/l Geräte: Kupferblech Zinkblech Becherglas Tonzylinder destilliertes Wasser Spannungsmessgerät 6

7 c(cuso 4 ) in mol/l Tabelle 1: Daniell-Element: Messwerte c(znso 4 ) in mol/l U in mv (errechnet) U in mv (gemessen) Abweichung des Messwerts in % 0,01 0, ,01 0, , ,1 0, ,1 0, , , , Kabel zwei Krokodilklemmen Messwerte Siehe Tabelle 1. Teilversuch 2: Konzentrationselement Versuchsvorschrift In zwei kleine Bechergläser wird jeweils sehr wenig Silbernitratlösung gefüllt. Die Lösungen werden über einen mit gesättigter Kaliumnitratlösung getränkten Filterpapierstreifen miteinander verbunden. Dann stellt man jeweils ein Silberblech hinein und verbindet diese Elektroden über ein Spannungsmessgerät. Nun misst man die Zellspannung für verschiedene Elektrolytkonzentrationen, indem man die Silbernitratlösungen in geeigneter Folge austauscht. Chemikalien: Silbernitratlösung 0,1 mol/l, 0,01 mol/l, 0,001 mol/l gesättigte Kaliumnitratlösung Geräte: zwei Silberbleche Filterpapierstreifen zwei kleine Bechergläser 7

8 c(agno 3 ) in mol/l Tabelle 2: Konzentrationselement: Messwerte U in mv (errechnet) U in mv (gemessen) Abweichung des Messwerts in % 0,1 0, ,1 0, ,1 0, ,01 0, ,01 0, destilliertes Wasser Spannungsmessgerät Kabel zwei Krokodilklemmen Messwerte Siehe Tabelle 2. Teilversuch 3: Löslichkeitsprodukt von Silberchlorid Versuchsvorschrift Zuerst stellt man Silberchlorid her, indem man Silbernitratlösung mit Salzsäure versetzt, den Niederschlag abzentrifugiert und wäscht. Den erhaltenen Stoff gibt man in ein kleines Becherglas und füllt wenig Kaliumchloridlösung dazu. In ein zweites Becherglas gibt man sehr wenig Silbernitratlösung. Die Lösungen werden über einen mit Kaliumnitratlösung getränkten Filterpapierstreifen miteinander verbunden. Dann stellt man jeweils ein Silberblech hinein und verbindet diese Elektroden über ein Spannungsmessgerät. Nachdem man das Silberchlorid in dem einen Becherglas aufgewirbelt hat, liest man die Zellspannung ab. Chemikalien: Silbernitratlösung 0,01 mol/l Kaliumchloridlösung 0,01 mol/l gesättigte Kaliumnitratlösung verdünnte Salzsäure Geräte: zwei Silberbleche 8

9 Filterpapierstreifen zwei kleine Bechergläser destilliertes Wasser Zentrifugenglas Glasstab Spannungsmessgerät Kabel zwei Krokodilklemmen Messwerte Die gemessene Zellspannung betrug 340 mv. Auswertung Teilversuch 1: Daniell-Element Für diesen Versuch hatten wir die Arbeit unter den Praktikumsgruppen aufgeteilt: Jeder bekam eine Konzentration für das Kupfer(II)-sulfat und führte die Messung nur für drei verschiedene Zinn(II)-sulfat-Konzentrationen durch. Das erklärt, warum die prozentualen Abweichungen der Messwerte von den errechneten Spannungen zwischen den Gruppen so stark schwanken: Man arbeitet unterschiedlich sorgfältig und Geräte, insbesondere Messgeräte, verursachen verschieden große Fehler. Es ist durchaus auch möglich, dass die Temperatur, die ja das Elektrodenpotential beeinflusst, zwischen den Arbeitsplätzen differiert. Aber die Arbeitsteilung erklärt nicht die Schwankungen innerhalb der Gruppen. Das Ansteigen der Abweichung, das man bei der Gruppe mit der 0,1-molaren Kupfer(II)- sulfat-lösung (wir) beobachtet, kann man damit begründen, dass die Lösungen immer wieder ausgetauscht werden, aber man beispielsweise der Tonzylinder nicht richtig reinigen kann, sodass noch Lösung einer anderen Konzentration daran haftet. Auch die erste Gruppe mit der 0,01-molaren Kupfer(II)-sulfat-Lösung könnte bei der ersten Messung noch ungeschickt gearbeitet haben und dann besser geworden sein. Oder die Schwankung ist auf die allgemeine Messungenauigkeit des Systems zurückzuführen. Sehr ungewöhnlich ist hingegen bei der dritten Gruppe, dass die Spannung mit der 0,01- molaren Zink(II)-sulfat-Lösung höher ist als die mit der 0,1-molaren. Möglicherweise hat man hier die Werte in der falschen Reihenfolge aufgeschrieben. Alles in allem ist es also zwar arbeits- und materialsparender, die Arbeit aufzuteilen. Hier sollte man aber davon absehen, um konsistente Messwerte zu erhalten. 9

10 Teilversuch 2: Konzentrationselement Bei diesem Versuch fällt zuerst die große prozentuale Abweichung der Messwerte vom errechneten Wert auf. Man muss aber beachten, dass die Spannungen viel kleiner sind als beispielsweise in Teilversuch 1 und daher geringe Unterschiede größere Auswirkungen haben. Dort lag beispielsweise der zweitkleinste absolute Fehler bei 13 mv und bewirkte nur ein Prozent bei der Abweichung. Dagegen schlagen hier 5 mv Differenz gleich mit neun Prozent zu Buche. Man müsste bei diesem Versuch also viel genauer arbeiten als beim vorigen. Das zeigt sich am allerersten Messwert: Wegen der gleichen Konzentrationen sollte eigentlich eine Spannung von 0 mv gemessen werden. Es genügt aber schon ein geringer Konzentrationsunterschied, um eine eigentlich verschwindend kleine Spannung von 6 mv zu erzeugen. Außerdem wurde die Salzbrücke immer wiederverwendet, obwohl sie Silberionen aufnehmen und in die nächste Lösung abgeben kann. Und schließlich sind die Messgeräte gar nicht hinreichend genau. Die Messwerte sind also, obwohl die prozentuale Abweichung zu den errechneten Werten groß ist, gar nicht so schlecht. Teilversuch 3: Löslichkeitsprodukt von Silberchlorid Aus der gemessenen Spannung von 340 mv resultiert nach den Gleichungen 11 und 13 ein Elektrodenpotential der Ag/AgCl-Halbzelle von: E(Ag/AgCl) = 682 mv 340 mv (20) = 342 mv (21) Damit ergibt sich nach Gleichung 16: c(ag mv 800 mv ) = e 59 mv mol/l (22) = 10 7,76 mol/l (23) = 1, mol/l (24) Daraus und aus der Kaliumchloridkonzentration von 0,01 mol/l lässt sich mit Gleichung 19 schließlich das Löslichkeitsprodukt von Silberchlorid berechnen: K L (AgCl) = 1, mol/l (1, mol/l+10 2 mol/l) (25) = 1, mol 2 /l 2 (26) 10

11 Es ist erstaunlich, wie genau das den tabellierten Wert von mol 2 /l 2 trifft. Schließlich waren der Versuchsaufbau primitiv und das Messgerät kein besonderes. Außerdem hatten wir die Salzbrücke vom vorherigen Versuch verwendet, nicht kontrolliert, ob das Silberchlorid neutral ist und das Salz ließ sich nur in Bröckchen aufwirbeln, da es in der Zentrifuge stark verdichtet worden war. Offensichtlich ist die Galvanometrie also ein sehr robustes Verfahren zur Bestimmung des Löslichkeitsproduktes. Literatur Die Standardpotentiale von Zn/Zn 2+ und Cu/Cu 2+ stammen aus dem Skript, das wir erhalten haben. Das Standardpotential von Ag/Ag + und das Löslichkeitsprodukt von Silberchlorid sind der Formelsammlung, PAETEC Verlag für Bildungsmedien, Berlin, 4. Aufl., 2004 entnommen. Kolophon Dieses Protokoll wurde mit L A TEX2ε unter Verwendung der Dokumentenklasse scrartcl von Markus Kohm erstellt. Der Satz der Summenformeln und Reaktionsgleichungen wurde durch die Pakete mhchem von Martin Hensel und chemexec von Clemens Niederberger stark erleichtert. Die Graphiken wurden mit dem Programm Xfig erstellt. 11

Das Potenzial einer Halbzelle lässt sich mittels der Nernstschen Gleichung berechnen. oder

Das Potenzial einer Halbzelle lässt sich mittels der Nernstschen Gleichung berechnen. oder Zusammenfassung Redoxreaktionen Oxidation entspricht einer Elektronenabgabe Reduktion entspricht einer Elektronenaufnahme Oxidation und Reduktion treten immer gemeinsam auf Oxidationszahlen sind ein Hilfsmittel

Mehr

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 7. Galvanische Elemente und die Nernstsche Gleichung Thema In diesem Versuch geht es um die direkte

Mehr

Elektrochemisches Gleichgewicht

Elektrochemisches Gleichgewicht Elektrochemisches Gleichgewicht - Me 2 - Me Me 2 - Me 2 - Me 2 Oxidation: Me Me z z e - Reduktion: Me z z e - Me ANODE Me 2 Me 2 Me 2 Me 2 Me Oxidation: Me Me z z e - Reduktion: Me z z e - Me KATHODE Instrumentelle

Mehr

Die ph-abhängigkeit des Redoxpotentials

Die ph-abhängigkeit des Redoxpotentials Die ph-abhängigkeit des Redoxpotentials Vortrag von Volker Engel im Rahmen der "Übungen im Vortragen mit Demonstrationen-AC" WS 99/00 Einstieg: Mit einem ph-messgerät wird der ph-wert von Leitungswasser

Mehr

Universität des Saarlandes - Fachrichtung Anorganische Chemie Chemisches Einführungspraktikum. Elektrochemie

Universität des Saarlandes - Fachrichtung Anorganische Chemie Chemisches Einführungspraktikum. Elektrochemie Universität des Saarlandes Fachrichtung Anorganische Chemie Chemisches Einführungspraktikum Elektrochemie Elektrochemie bezeichnet mehrere verschiedene Teilgebiete innerhalb der Chemie. Sie ist zum einen

Mehr

6.1 Elektrodenpotenzial und elektromotorische Kraft

6.1 Elektrodenpotenzial und elektromotorische Kraft 6.1 Elektrodenpotenzial und elektromotorische Kraft Zinkstab Kupferstab Cu 2+ Lösung Cu 2+ Lösung Zn + 2e Cu Cu 2+ + 2e Cu 2+ Eine Elektrode ist ein metallisch leitender Gegenstand, der zur Zu oder Ableitung

Mehr

Das Potenzial einer Halbzelle lässt sich mittels der Nernstschen Gleichung berechnen. oder

Das Potenzial einer Halbzelle lässt sich mittels der Nernstschen Gleichung berechnen. oder Zusammenfassung Redoxreaktionen Oxidation entspricht einer Elektronenabgabe Reduktion entspricht einer Elektronenaufnahme Oxidation und Reduktion treten immer gemeinsam auf Oxidationszahlen sind ein Hilfsmittel

Mehr

Grundlagen: Galvanische Zellen:

Grundlagen: Galvanische Zellen: E1 : Ionenprodukt des Wassers Grundlagen: Galvanische Zellen: Die Galvanische Zelle ist eine elektrochemische Zelle. In ihr laufen spontan elektrochemische Reaktionen unter Erzeugung von elektrischer Energie

Mehr

Versuchsprotokoll E15 Potentiometrische Titration einer Chlorid/Iodid-Lösung

Versuchsprotokoll E15 Potentiometrische Titration einer Chlorid/Iodid-Lösung Dieses Werk steht unter der Creative-Commons-Lizenz CC BY-NC 3.0 1 Physikalische Chemie I Versuchsprotokoll E15 Potentiometrische Titration einer Chlorid/Iodid-Lösung Inhaltsverzeichnis 1 Ziel 2 2 Grundlagen

Mehr

4. Redox- und Elektrochemie

4. Redox- und Elektrochemie 4. Redox und Elektrochemie 4. Redox und Elektrochemie 4.1 Oxidationszahlen Eine Oxidation ist ein Vorgang, wo ein Teilchen Elektronen abgibt. Eine Reduktion ist ein Vorgang, wo ein Teilchen ein Elektron

Mehr

Aufbau von Konzentrationsketten aus Kaliumchloridlösungen und Silber/Silberchloridelektroden (Artikelnr.: P )

Aufbau von Konzentrationsketten aus Kaliumchloridlösungen und Silber/Silberchloridelektroden (Artikelnr.: P ) Aufbau von Konzentrationsketten aus Kaliumchloridlösungen und Silber/Silberchloridelektroden (Artikelnr.: P7401400) Curriculare Themenzuordnung Fachgebiet: Chemie Bildungsstufe: Klasse 10-13 Lehrplanthema:

Mehr

Beispiele zur Anwendung der Nernst-Gleichung (II)

Beispiele zur Anwendung der Nernst-Gleichung (II) Chemie-Arbeitsblatt Klasse _ Name: Datum:.. Beispiele zur Anwendung der Nernst-Gleichung (II) 3 Aufgabe I: Gegeben sind die Standard-Elektrodenpotenziale für Cu/Cu : 0,35V, Au/Au : 1,4 V und Cl /Cl : 1,36

Mehr

Schulversuchspraktikum. Jans Manjali. Sommersemester. Klassenstufen 11 & 12. Löslichkeitsprodukt

Schulversuchspraktikum. Jans Manjali. Sommersemester. Klassenstufen 11 & 12. Löslichkeitsprodukt Schulversuchspraktikum Jans Manjali Sommersemester Klassenstufen 11 & 12 Löslichkeitsprodukt 1 Beschreibung des Themas und zugehörige Lernziele Auf einen Blick: In diesem Protokoll wird das Thema Löslichkeit

Mehr

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie.

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie. ELEKTROCHEMIE Elektrischer Strom: Fluß von elektrischer Ladung Elektrische Leitung: metallische (Elektronen) elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie Galvanische Zellen Elektrolyse Die

Mehr

2. Vergleiche die Werte, die bei Methode A bzw. B herauskommen, miteinander!

2. Vergleiche die Werte, die bei Methode A bzw. B herauskommen, miteinander! Chemie-Arbeitsblatt Klasse _ Name: Datum:.. Beispiele zur Anwendung der Nernst-Gleichung (II) Aufgabe I: Gegeben sind die Standard-Elektrodenpotenziale für Cu/Cu 2+ : +0,35V, Au/Au 3+ : +1,42 V und 2ClG/Cl

Mehr

8.+9. Tag: Säuren und Basen (II) / Redoxreaktionen (II)

8.+9. Tag: Säuren und Basen (II) / Redoxreaktionen (II) 8.+9. Tag: Säuren und Basen (II) / Redoxreaktionen (II) 1 8.+9. Tag: Säuren und Basen (II) / Redoxreaktionen (II) 1. Säuren und Basen II : Puffersysteme Zuweilen benötigt man Lösungen, die einen definierten

Mehr

VORANSICHT. Elektrochemie einfach verständlich Teil II: Galvanische Zellen. Hinweise zur Didaktik und Methodik. Kerstin Langer, Kiel

VORANSICHT. Elektrochemie einfach verständlich Teil II: Galvanische Zellen. Hinweise zur Didaktik und Methodik. Kerstin Langer, Kiel Elektrochemie einfach verständlich Teil II: Galvanische Zellen Kerstin Langer, Kiel Niveau: Dauer: Sek. II 9 Unterrichtsstunden (Minimalplan: 6 Unterrichtsstunden) Kompetenzen: Die Schüler* nutzen ein

Mehr

Reduktion und Oxidation. Oxidationszahlen (OZ)

Reduktion und Oxidation. Oxidationszahlen (OZ) Redox-Reaktionen Reduktion und Oxidation Oxidationszahlen (OZ) REDOX Reaktionen / - Gleichungen Das elektrochemische Potential Die Spannungsreihe der Chemischen Elemente Die Nernstsche Gleichung Definitionen

Mehr

EinFaCh 1. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 1: Redoxreaktionen und Elektrochemie.

EinFaCh 1. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 1: Redoxreaktionen und Elektrochemie. Studienvorbereitung Chemie EinFaCh 1 Einstieg in Freibergs anschauliches Chemiewissen Teil 1: Redoxreaktionen und Elektrochemie www.tu-freiberg.de http://tu-freiberg.de/fakultaet2/einfach Was ist eine

Mehr

Redoxreaktionen. Elektrochemische Spannungsreihe

Redoxreaktionen. Elektrochemische Spannungsreihe Elektrochemische Spannungsreihe Eine galvanische Zelle bestehend aus einer Normal-Wasserstoffelektrode und einer anderen Halbzelle erzeugen eine Spannung, die, in 1-molarer Lösung gemessen, als Normal-

Mehr

GALVANISCHE ELEMENTE, BATTERIEN UND BRENNSTOFFZELLEN

GALVANISCHE ELEMENTE, BATTERIEN UND BRENNSTOFFZELLEN 10. Einheit: GALVANISCHE ELEMENTE, BATTERIEN UND BRENNSTOFFZELLEN Sebastian Spinnen, Ingrid Reisewitz-Swertz 1 von 17 ZIELE DER HEUTIGEN EINHEIT Am Ende der Einheit Galvanische Elemente, Batterien und

Mehr

Standard-Reduktionspotentiale (ph = 0, T = 298 K, p = 1 bar, Ionenstärke = 1 mol/l)

Standard-Reduktionspotentiale (ph = 0, T = 298 K, p = 1 bar, Ionenstärke = 1 mol/l) Analytische Chemie 2 Kapitel 7: Redox-Gleichgewichte Halbzellenreaktionen und Standardpotentiale: Halbzellreaktion: Oxidation bzw. Reduktionsgleichung Stöchiometrische Gleichung der Redoxreaktion ist die

Mehr

Seminar zum Quantitativen Anorganischen Praktikum WS 2011/12

Seminar zum Quantitativen Anorganischen Praktikum WS 2011/12 Seminar zum Quantitativen Anorganischen Praktikum WS 211/12 Teil des Moduls MN-C-AlC Dr. Matthias Brühmann Dr. Christian Rustige Inhalt Montag, 9.1.212, 8-1 Uhr, HS III Allgemeine Einführung in die Quantitative

Mehr

Universität des Saarlandes - Fachrichtung Anorganische Chemie C h e m i s c h e s E i n f ü h r u n g s p r a k t i k u m.

Universität des Saarlandes - Fachrichtung Anorganische Chemie C h e m i s c h e s E i n f ü h r u n g s p r a k t i k u m. Universität des Saarlandes - Fachrichtung Anorganische Chemie C h e m i s c h e s E i n f ü h r u n g s p r a k t i k u m Elektrochemie Elektrochemie bezeichnet mehrere verschiedene Teilgebiete innerhalb

Mehr

Versuch 1. 1/48 Konzentrationsabhängigkeit des Elektrodenpotenzials

Versuch 1. 1/48 Konzentrationsabhängigkeit des Elektrodenpotenzials 1/48 Konzentrationsabhängigkeit des Elektrodenpotenzials Versuch 1 Wir stellen je 100 ml der folgenden Lösungen her: a) Silbernitrat AgNO3 (c = 0,1 mol/l) b) Kaliumnitrat KNO3 (c = 0,1 mol/l) 2/48 Konzentrationsabhängigkeit

Mehr

VORANSICHT II/E. Elektrochemie einfach verständlich. Teil II: Galvanische Zellen. Hinweise zur Didaktik und Methodik. Kerstin Langer, Kiel

VORANSICHT II/E. Elektrochemie einfach verständlich. Teil II: Galvanische Zellen. Hinweise zur Didaktik und Methodik. Kerstin Langer, Kiel 1 von 22 Elektrochemie einfach verständlich Teil II: Galvanische Zellen Kerstin Langer, Kiel Niveau: Dauer: Sek. II 9 Unterrichtsstunden (Minimalplan: 6 Unterrichtsstunden) Kompetenzen: Die Schüler* nutzen

Mehr

Versuch EM: Elektromotorische

Versuch EM: Elektromotorische Versuch EM: Elektromotorische Kraft Seite 1 Einleitung Der Begriff Elektromotorische Kraft (EMK), auch als Urspannung bezeichnet, beschreibt trotz seiner Bezeichnung keine Kraft im physikalischen Sinn,

Mehr

E5: Faraday-Konstante

E5: Faraday-Konstante E5: Faraday-Konstante Theoretische Grundlagen: Elektrischer Strom ist ein Fluss von elektrischer Ladung; in Metallen sind Elektronen die Ladungsträger, in Elektrolyten übernehmen Ionen diese Aufgabe. Befinden

Mehr

Modul: Allgemeine Chemie

Modul: Allgemeine Chemie Modul: Allgemeine Chemie 8. Wichtige Reaktionstypen Säure Base Reaktionen Konzepte, Gleichgewichtskonstanten Säure-Base Titrationen; Indikatoren Pufferlösungen Redoxreaktionen Oxidationszahlen, Redoxgleichungen

Mehr

Was ist Elektrochemie? Elektrochemie. Elektrochemie ist die Lehre von der Beziehung

Was ist Elektrochemie? Elektrochemie. Elektrochemie ist die Lehre von der Beziehung Was ist Elektrochemie? Elektrochemie Elektrochemie ist die Lehre von der Beziehung zwischen elektrischen und chemischen Prozessen. 131 Stromleitung in einem Metall Wir haben gelernt, dass die Stromleitung

Mehr

Das Galvanische Element

Das Galvanische Element (C) 2014 - SchulLV 1 von 10 Das Galvanische Element In diesem Skript werden wir lernen, das theoretische Wissen, das du im Bezug auf die Elektrochemie kennen gelernt hast, anzuwenden. Wir werden uns hier

Mehr

Redoxgleichungen: Massenerhaltung Elektronenaufnahme/ -abgabe Halbreaktion: Getrennter Prozess (Reduktion, Oxidation getrennt anschauen)

Redoxgleichungen: Massenerhaltung Elektronenaufnahme/ -abgabe Halbreaktion: Getrennter Prozess (Reduktion, Oxidation getrennt anschauen) AChe 2 Kapitel 20: Elektrochemie Oxidationszahlen: Ladung des Atomes wenn es als Ion vorliegen würde. Oxidation: OX-Zahl steigt, Reduktion: OX-Zahl sinkt. Redoxgleichungen: Massenerhaltung Elektronenaufnahme/

Mehr

Elektrizität. = C J m. Das Coulomb Potential φ ist dabei:

Elektrizität. = C J m. Das Coulomb Potential φ ist dabei: Elektrizität Die Coulombsche potentielle Energie V einer Ladung q im Abstand r von einer anderen Ladung q ist die Arbeit, die aufgewendet werden muss um die zwei Ladungen aus dem Unendlichen auf den Abstand

Mehr

Prinzip: Arbeitskreis Bestimmung des Chlorid -, Bromid - und Iodid - Gehaltes E 04 Kappenberg einer Lösung Seite 1 / 5. Versuchsaufbau: Materialliste:

Prinzip: Arbeitskreis Bestimmung des Chlorid -, Bromid - und Iodid - Gehaltes E 04 Kappenberg einer Lösung Seite 1 / 5. Versuchsaufbau: Materialliste: Kappenberg einer Lösung Seite 1 / 5 Prinzip: Die Halogenidlösung wird mit Silbernitratlösung titriert. Die Titration wird dabei potentiometrisch verfolgt. Es kommt zur Bildung schwerlöslicher Silberhalogenide,

Mehr

Standardelektrodenpotentiale und mittlere Aktivitätskoeffizienten

Standardelektrodenpotentiale und mittlere Aktivitätskoeffizienten Versuch PCA E 1 Standardelektrodenpotentiale und mittlere Aktivitätskoeffizienten Aufgabenstellung 1. Durch Messung der Zellspannung der galvanischen Zelle Ag/AgCl/HCl/H 2 /Pt sind zu bestimmen: a) das

Mehr

Protokoll zu. Versuch 17: Elektrochemische Zellen

Protokoll zu. Versuch 17: Elektrochemische Zellen Physikalisch-Chemisches Praktikum 1 26.04.2004 Daniel Meyer / Abdullah Atamer Protokoll zu Versuch 17: Elektrochemische Zellen 1. Versuchsziel Es sollen die EMK verschiedener Zellen mit Elektroden 1. Art

Mehr

Stefan Reißmann ANORGANISCH-CHEMISCHES TUTORIUM WS 2000/2001

Stefan Reißmann ANORGANISCH-CHEMISCHES TUTORIUM WS 2000/2001 7. ELEKTROCHEMIE Im Prinzip sind alle chemischen Reaktionen elektrischer Natur, denn an allen chemischen Bindungen sind Elektronen beteiligt. Unter Elektrochemie versteht man jedoch vorrangig die Lehre

Mehr

Redoxreaktionen. Mg + ½ O 2. MgO. 3 Mg + N 2 Mg 3 N 2. Mg ½ O + 2 e O 2. 3 Mg 3 Mg e

Redoxreaktionen. Mg + ½ O 2. MgO. 3 Mg + N 2 Mg 3 N 2. Mg ½ O + 2 e O 2. 3 Mg 3 Mg e Redoxreaktionen Mg + ½ O 2 MgO 3 Mg + N 2 Mg 3 N 2 2 Mg ½ O + 2 e 2+ Mg + 2 e O 2 3 Mg 3 Mg 2+ + 6 e N + 6 e 2 N 3 2 1 Redoxreaktionen 2 Oxidation und Reduktion Eine Oxidation ist ein Elektronenverlust

Mehr

Herstellung einer vereinfachten Standard- Wasserstoffelektrode und Messung einiger Standardpotenziale (Artikelnr.: P )

Herstellung einer vereinfachten Standard- Wasserstoffelektrode und Messung einiger Standardpotenziale (Artikelnr.: P ) Lehrer-/Dozentenblatt Herstellung einer vereinfachten Standard- Wasserstoffelektrode und Messung einiger Standardpotenziale (Artikelnr.: P7400800) Curriculare Themenzuordnung Fachgebiet: Chemie Bildungsstufe:

Mehr

E3 Aktivitätskoeffizient

E3 Aktivitätskoeffizient Physikalisch-Chemische Praktika E3 Aktivitätskoeffizient Stichworte zur Vorbereitung: Den Kontext der folgenden Stichworte sollten Sie zur Vorbesprechung und während der Durchführung des Praktikumstermins

Mehr

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum Tobias Schabel Datum des Praktikumstags: 16.11.2005 Matthias Ernst Protokoll-Datum: 22.11.2005 Gruppe A-11 7. Versuch: EM - Messung elektromotorischer Kräfte Assistent: G. Heusel Aufgabenstellung 1. Die

Mehr

Was ist wichtig für die siebte Kursarbeit?

Was ist wichtig für die siebte Kursarbeit? Was ist wichtig für die siebte Kursarbeit? Redoxreaktion: Oxidation (Elektronen-Donator) und Reduktion (Elektronen-Akzeptor) korrespondierende Redoxpaare. Prinzip der Lösungstension, Betrachtung der Halbzellenreaktion

Mehr

Hausarbeit. Das Fällungs- und Löslichkeitsgleichgewicht. über. von Marie Sander

Hausarbeit. Das Fällungs- und Löslichkeitsgleichgewicht. über. von Marie Sander Hausarbeit über Das Fällungs- und Löslichkeitsgleichgewicht von Marie Sander Inhaltsverzeichnis 1. Einstieg in das Thema 2. Einflüsse auf das Löslichkeitsgleichgewicht - Das Prinzip von Le Chatelier 3.

Mehr

Chemie Zusammenfassung JII.2 #1

Chemie Zusammenfassung JII.2 #1 Chemie Zusammenfassung JII.2 #1 Oxidation/Reduktion/Oxidationsmittel/Reduktionsmittel/Redoxpaar In einer elektrochemischen Reaktion gehen Elektronen von einem Stoff zu einem anderen über. Wenn ein Stoff

Mehr

Galvanoplastik. Elektrochemie B. Lukas Woolley, Rafael Adamek, Peter Krack. 24 Februar ETH Zürich

Galvanoplastik. Elektrochemie B. Lukas Woolley, Rafael Adamek, Peter Krack. 24 Februar ETH Zürich Elektrochemie B Lukas Woolley Rafael Adamek Peter Krack ETH Zürich 24 Februar 2017 Programm 1 2 3 4 Garfield Elektrolysezelle + - e e Anode Kathode e Cu CuSO 4 Cu 2+ Cu 2+ e Programm 1 2 3 4 Zelltypen

Mehr

Vorkurs Chemie (NF) Redoxreaktionen, Spannungsreihe Ulrich Keßler

Vorkurs Chemie (NF) Redoxreaktionen, Spannungsreihe Ulrich Keßler Vorkurs Chemie (NF) Redoxreaktionen, Spannungsreihe Ulrich Keßler Redox im Alltag http://www.motorschrauber.com/ tips-und-tricks/rostkampf/ http://www.hfinster.de/stahlart2/ Tours-FireTour-C-260-6- 11.01.1993-de.html

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Elektrochemie - Merksätze und -regeln. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Elektrochemie - Merksätze und -regeln. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Elektrochemie - Merksätze und -regeln Das komplette Material finden Sie hier: Download bei School-Scout.de Seite 3 von 8 Tabelle:

Mehr

Galvanische Konzentrations- und Reaktions-Zellen

Galvanische Konzentrations- und Reaktions-Zellen 12 - Konzentrationszellen.4.216 Übungen in physikalischer Chemie für Studierende der Pharmazie Versuch Nr.: 12 Version 216 Kurzbezeichnung: Konzentrationszellen Galvanische Konzentrations- und Reaktions-Zellen

Mehr

MgO. Mg Mg e ½ O e O 2. 3 Mg 3 Mg e N e 2 N 3

MgO. Mg Mg e ½ O e O 2. 3 Mg 3 Mg e N e 2 N 3 Redox-Reaktionen Mg + ½ O 2 MgO 3 Mg + N 2 Mg 3 N 2 Mg Mg 2+ + 2 e ½ O 2 + 2 e O 2 3 Mg 3 Mg 2+ + 6 e N 2 + 6 e 2 N 3 Redox-Reaktionen Oxidation und Reduktion Eine Oxidation ist ein Elektronenverlust Na

Mehr

Praktikumsrelevante Themen

Praktikumsrelevante Themen Praktikumsrelevante Themen RedoxReaktionen Aufstellen von Redoxgleichungen Elektrochemie Quantitative Beschreibung von RedoxGleichgewichten Redoxtitrationen 1 Frühe Vorstellungen von Oxidation und Reduktion

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 4

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 4 Praktikum Physikalische Chemie I (C-2) Versuch Nr. 4 Bestimmung thermodynamischer Daten aus Zellpotentialmessungen des Systems / 2+ Praktikumsaufgaben 1. Bestimmung des Gleichgewichtszellpotentials bei

Mehr

zum Experimentalvortrag

zum Experimentalvortrag ersuchsanleitungen en Ve rs uc h sanl e itu ng zum Experimentalvortrag Elektrochemie auch eine Frage des Potenzial Regina Rüffler, Georg Job GDCh-Wissenschaftsforum Chemie 2011 Bremen, 5. September 2011

Mehr

Mohrsches Salz (NH 4 ) 2 6 H 2. Fe(SO 4

Mohrsches Salz (NH 4 ) 2 6 H 2. Fe(SO 4 Protokoll Mohrsches Salz (NH 4 6 H 2 O Richard Möhn Florian Noack Januar 2011 Inhaltsverzeichnis Vorbetrachtung 1 Durchführung 2 Auswertung 4 Literatur 5 Vorbetrachtung In der quantitativen Analytik wird

Mehr

Gefahrenstoffe. P: Zinknitrat-Hexahydrat-Lösung H: P:

Gefahrenstoffe. P: Zinknitrat-Hexahydrat-Lösung H: P: Redoxreihe Der Versuch führt den SuS vor Augen, dass sich nicht jedes Metall von jeder Metallsalz-Lösung oxidieren lässt, sondern dass es viel mehr eine experimentell zu ermittelnde Gesetzmäßigkeit dahintersteckt.

Mehr

Was ist Elektrochemie?

Was ist Elektrochemie? Was ist Elektrochemie? Eine elektrochemische Reaktion erfüllt folgende vier Eigenschaften: Sie findet an Phasengrenzen statt. Die einzelnen Phasen sind unterschiedlich geladen. (unterschiedliche elektrische

Mehr

Aufgabe 5 1 (L) Die folgende Redox-Reaktion läuft in der angegebenen Richtung spontan ab: Cr 2

Aufgabe 5 1 (L) Die folgende Redox-Reaktion läuft in der angegebenen Richtung spontan ab: Cr 2 Institut für Physikalische Chemie Lösungen zu den Übungen zur Vorlesung Physikalische Chemie II im WS 2015/2016 Prof. Dr. Eckhard Bartsch / Marcel Werner M.Sc. Aufgabenblatt 5 vom 27.11.15 Aufgabe 5 1

Mehr

Lernzettel für die 1. Chemiearbeit Galvanische Zellen-

Lernzettel für die 1. Chemiearbeit Galvanische Zellen- 1) Enthalpien Molare Standardbildungsenthalpie - Enthalpie bedeutet soviel wie Wärme - Die Bildungsenthalpie ist dabei also die Wärme die frei, oder benötigt wird, wenn ein Stoff gebildet wird. - Ein Stoff

Mehr

Elektrodenpotenziale und Galvanische Ketten

Elektrodenpotenziale und Galvanische Ketten Elektrodenpotenziale und Galvanische Ketten 1 Elektrodenpotenziale und Galvanische Ketten Die elektromotorische Kraft (EMK) verschiedener galvanischer Ketten soll gemessen werden, um die Gültigkeit der

Mehr

Elektrochemie: Spannung galvanischer Ketten

Elektrochemie: Spannung galvanischer Ketten Elektrochemie: Spannung galvanischer Ketten 1 Theorie Bei einer Redoxreaktion werden Elektronen von einer Spezies auf eine andere übertragen. Der Elektronendonor, der selbst oxidiert wird, wird Reduktionsmittel

Mehr

3 Mg 3 Mg e N e 2 N 3

3 Mg 3 Mg e N e 2 N 3 Redoxreaktionen Mg + ½ O 2 MgO 3 Mg + N 2 Mg 3 N 2 Mg Mg 2+ + 2 e ½ O 2 + 2 e O 2 3 Mg 3 Mg 2+ + 6 e N 2 + 6 e 2 N 3 1 Redoxreaktionen 2 Oxidation und Reduktion Eine Oxidation ist ein Elektronenverlust

Mehr

10.Teil Redoxreaktionen

10.Teil Redoxreaktionen Definitionen für Oxidationen und Reduktionen Oxidationszahl, Redoxgleichungen Galvanische Zellen, Redoxpotentiale Standard-Elektrodenpotentiale, Redoxreihe Nernst-Gleichung Leclanché-Batterie, andere Batterien

Mehr

1. Elektroanalytik-I (Elektrochemie)

1. Elektroanalytik-I (Elektrochemie) Instrumentelle Analytik SS 2008 1. Elektroanalytik-I (Elektrochemie) 1 1. Elektroanalytik-I 1. Begriffe/Methoden (allgem.) 1.1 Elektroden 1.2 Elektrodenreaktionen 1.3 Galvanische Zellen 2 1. Elektroanalytik-I

Mehr

Galvanische Zellen aus Nichtmetallen (Artikelnr.: P )

Galvanische Zellen aus Nichtmetallen (Artikelnr.: P ) Lehrer-/Dozentenblatt Galvanische Zellen aus Nichtmetallen (Artikelnr.: P7400900) Curriculare Themenzuordnung Fachgebiet: Chemie Bildungsstufe: Klasse 10-13 Lehrplanthema: Physikalische Chemie Unterthema:

Mehr

Übung 10 (Redox-Gleichgewichte und Elektrochemie)

Übung 10 (Redox-Gleichgewichte und Elektrochemie) Übung 10 (Redox-Gleichgewichte und Elektrochemie) Verwenden Sie neben den in der Aufgabenstellung gegebenen Potenzialen auch die Werte aus der Potenzial-Tabelle im Mortimer. 1. Ammoniak kann als Oxidationsmittel

Mehr

Messung der Leitfähigkeit wässriger Elektrolytlösungen

Messung der Leitfähigkeit wässriger Elektrolytlösungen Versuch Nr. 10: Messung der Leitfähigkeit wässriger Elektrolytlösungen 1. Ziel des Versuchs In diesem Versuch sollen die Leitfähigkeiten von verschiedenen Elektrolyten in verschiedenen Konzentrationen

Mehr

E3: Potentiometrische Titration

E3: Potentiometrische Titration Theoretische Grundlagen Als potentiometrische Titration bezeichnet man ein Analyseverfahren, bei dem durch Messung der Gleichgewichtsspannung einer galvanischen Kette auf die Menge des zu titrierenden

Mehr

Praktikumsprotokoll. Grundlagen der Chemie Teil II SS Praktikum vom

Praktikumsprotokoll. Grundlagen der Chemie Teil II SS Praktikum vom Grundlagen der Chemie Teil II SS 2002 Praktikumsprotokoll Praktikum vom 02.05.2002 Versuch 11: Herstellung einer Pufferlösung von definiertem ph Versuch 12: Sauer und alkalisch reagierende Salzlösungen

Mehr

Elektrochemische Thermodynamik. Wiederholung : Potentiale, Potentialbegriff

Elektrochemische Thermodynamik. Wiederholung : Potentiale, Potentialbegriff Elektrochemische Thermodynamik Wiederholung : Potentiale, Potentialbegriff Elektrische Potentiale in der EC Begriffe: Galvani-Potentialdifferenz, Galvani-Spannung: zwischen den inneren Potentialen zweier

Mehr

Grundpraktikum Physikalische Chemie

Grundpraktikum Physikalische Chemie Grundpraktikum Physikalische Chemie Versuch 09: Gleichgewichtselektrochemie überarbeitet: Tobias Staut, 2013.04 Inhaltsverzeichnis 1 Temperaturabhängigkeit der Zellspannung 5 1.1 Aufgabe......................................

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Strom aus Obst? Das komplette Material finden Sie hier: School-Scout.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Strom aus Obst? Das komplette Material finden Sie hier: School-Scout. Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Strom aus Obst? Das komplette Material finden Sie hier: School-Scout.de 2 von 18 6. Wir bauen eine Zitronenbatterie (Kl. 9/10) Chemische

Mehr

Arbeitskreis Kappenberg Bestimmung des Iodgehaltes mit Natriumthiosulfat- E 05

Arbeitskreis Kappenberg Bestimmung des Iodgehaltes mit Natriumthiosulfat- E 05 Arbeitskreis Kappenberg Bestimmung des Iodgehaltes mit Natriumthiosulfat- E 05 Computer im Chemieunterricht lösung und Bestimmung der MWG-Konstanten Potenziometrie Prinzip: Die Probe der Iodlösung wird

Mehr

6. Teilchen mit Ladung: Elektrochemie

6. Teilchen mit Ladung: Elektrochemie 6. Teilchen mit Ladung: Elektrochemie 6.1 Elektrostatische Wechselwirkung zwischen Ionen Die Kapazität eines Kondensators ist der Proportionalitätsfaktor von angelegter Spannung zur zugeführten Ladung

Mehr

Löslichkeitsprodukt und Ionenprodukt

Löslichkeitsprodukt und Ionenprodukt Schulversuchspraktikum Name: Christoph Biesemann Semester: Sommersemester 2012 Klassenstufe 11/12 Löslichkeitsprodukt und Ionenprodukt 1 Beschreibung des Themas und zugehörige Lernziele 2 Auf einen Blick:

Mehr

Vergleich Protochemische und Elektrochemische Spannungsreihe. Protochemische Spannungsreihe. Korrespondierende Säure-Base-Paare

Vergleich Protochemische und Elektrochemische Spannungsreihe. Protochemische Spannungsreihe. Korrespondierende Säure-Base-Paare 165 19 Redoxgleichgewichte (Elektronenübertragungsreaktionen) Vergleich Protochemische und Elektrochemische Spannungsreihe Protochemische Spannungsreihe Korrespondierende SäureBasePaare Säure korrespondierende

Mehr

Endlich eine praxistaugliche Wasserstoffelektrode

Endlich eine praxistaugliche Wasserstoffelektrode Endlich eine praxistaugliche Wasserstoffelektrode Dr. Tanja Kurzenknabe, Gaskatel GmbH Kassel Denise Böhm, Didaktik der Chemie, Universität Würzburg 12.04.2014, Kassel Entstehung von Potentialen - Selbstverkupferung

Mehr

3. Praktikumstag. Elektro- und Redoxchemie. Versuch 1.1: Qualitative Versuche zur Redoxchemie. Geräte: 2 Reagenzgläser

3. Praktikumstag. Elektro- und Redoxchemie. Versuch 1.1: Qualitative Versuche zur Redoxchemie. Geräte: 2 Reagenzgläser Elektro- und Redoxchemie Versuch 1.1: Qualitative Versuche zur Redoxchemie Geräte: 2 Reagenzgläser Chemikalien: Fe-Nagel, Zn-Granalie, CuSO 4 -Lösung, SnCl 2 -Lösung Versuchsdurchführung: 3. Praktikumstag

Mehr

KORROSION UND KORROSIONSSCHUTZ VON METALLEN

KORROSION UND KORROSIONSSCHUTZ VON METALLEN 11. Einheit: KORROSION UND KORROSIONSSCHUTZ VON METALLEN Sebastian Spinnen, Ingrid Reisewitz-Swertz 1 von 16 ZIELE DER HEUTIGEN EINHEIT Am Ende der Einheit Korrosion und Korrosionsschutz von Metallen..

Mehr

Rechnen mit der NERNSTschen Gleichung

Rechnen mit der NERNSTschen Gleichung Rechnen mit der NERNSTschen Gleichung Walther NERNST (1864 1941), war ein bedeutender Physiker und Chemiker mit zahlreichen bahnbrechenden Entdeckungen. Nach seiner Promotion bei F. KOHRAUSCH entwickelte

Mehr

Seminar zum Quantitativen Anorganischen Praktikum WS 2012/13

Seminar zum Quantitativen Anorganischen Praktikum WS 2012/13 Seminar zum Quantitativen Anorganischen Praktikum WS 2012/13 Teil des Moduls MN-C-AlC Dipl.-Chem. Corinna Hegemann Dipl.-Chem. Eva Rüttgers Inhalt Freitag, 11.01.2013, 8-10 Uhr, HS II Allgemeine Einführung

Mehr

3. Praktikumstag. Elektro- und Redoxchemie. Versuch 1.1: Qualitative Versuche zur Redoxchemie. Geräte: 2 Reagenzgläser

3. Praktikumstag. Elektro- und Redoxchemie. Versuch 1.1: Qualitative Versuche zur Redoxchemie. Geräte: 2 Reagenzgläser Elektro- und Redoxchemie Versuch 1.1: Qualitative Versuche zur Redoxchemie Geräte: 2 Reagenzgläser Chemikalien: Fe-Nagel, Zn-Granalie, CuSO 4 -Lösung, SnCl 2 -Lösung Versuchsdurchführung: 3. Praktikumstag

Mehr

Examensfragen zur Elektrochemie

Examensfragen zur Elektrochemie 1 Examensfragen zur Elektrochemie 1. Standardpotentiale a. Was versteht man unter Standardpotential? Standardpotential E 0 ist die Spannung eines Redoxpaars in Bezug auf die Standardwasserstoffelektrode

Mehr

IIE3. Modul Elektrizitätslehre II. Faraday-Konstante

IIE3. Modul Elektrizitätslehre II. Faraday-Konstante IIE3 Modul Elektrizitätslehre II Faraday-Konstante Bei diesem Versuch soll mit Hilfe eines Coulombmeters die FARADAY- Konstante bestimmt werden. Das Coulombmeter besteht aus drei Kupferelektroden die in

Mehr

Kapitel 16: Elektrochemie I. Kapitel 16: Elektrochemie I

Kapitel 16: Elektrochemie I. Kapitel 16: Elektrochemie I 1 Kapitel 16: Elektrochemie I Inhalt 2 Kapitel 16: Elektrochemie I...1 Inhalt...2 Die Redoxreihe (Spannungsreihe) der Metalle...3 a) Experimentelle Befunde:...3 Ist das Metall ein starkes Reduktionsmittel,

Mehr

Posten 1a. Was gilt immer. bei einer Oxidation?

Posten 1a. Was gilt immer. bei einer Oxidation? Posten 1a Was gilt immer bei einer Oxidation? a) Es werden Elektronen aufgenommen. (=> Posten 3c) b) Es wird mit Sauerstoff reagiert. (=> Posten 6b) c) Sie kann alleine in einer Reaktions- 9k) gleichungg

Mehr

Exponentialfunktionen, Eulersche Zahl, Logarithmen

Exponentialfunktionen, Eulersche Zahl, Logarithmen Exponentialfunktionen, Eulersche Zahl, Logarithmen Jörn Loviscach Versionsstand: 22. Oktober 2010, 23:29 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach

Mehr

Bestimmung des Iodgehaltes mit Natriumthio- sulfatlösung und Bestimmung der MWG Konstanten

Bestimmung des Iodgehaltes mit Natriumthio- sulfatlösung und Bestimmung der MWG Konstanten Prinzip Die Probe der Iodlösung wird mit Natriumthiosulfatlösung (c = 0, mol/l) titriert und potenziometrisch verfot. Es kommt zu einem Reaktionsgleichgewicht dessen Gleichgewichtskonstante es zu berechnen

Mehr

Die Rolle der Elektroden

Die Rolle der Elektroden Die Rolle der Elektroden Die meisten chemischen Reaktionen sind sogenannte Redox Reaktionen. Reduktion: A e A ; Oxidation: B B e Mischt man die Lösungen beider Substanzen, so läuft die Reaktion bei ausreichend

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg GRUNDLAGEN Modul: Versuch: Elektrochemie 1 Abbildung 1: I. VERSUCHSZIEL

Mehr

Übungen zu "EMK" Übungen zu EMK - Seite 1 (von 5)

Übungen zu EMK Übungen zu EMK - Seite 1 (von 5) Übungen zu "EMK" A Voraussage der ablaufenden Reaktion mit Standardpotentialen Welcher Stoff reagiert zu welchem Produkt? Möglichst die vollständige Reaktionsgleichung. E o Werte aus "Rauscher, Voigt".

Mehr

SS Thomas Schrader. der Universität Duisburg-Essen. (Teil 8: Redoxprozesse, Elektrochemie)

SS Thomas Schrader. der Universität Duisburg-Essen. (Teil 8: Redoxprozesse, Elektrochemie) Chemie für Biologen SS 2010 Thomas Schrader Institut t für Organische Chemie der Universität Duisburg-Essen (Teil 8: Redoxprozesse, Elektrochemie) Oxidation und Reduktion Redoxreaktionen: Ein Atom oder

Mehr

Elektrodenpotenziale und Galvanische Ketten

Elektrodenpotenziale und Galvanische Ketten Elektrodenpotenziale und Galvanische Ketten 1 Elektrodenpotenziale und Galvanische Ketten Die elektromotorische Kraft (EMK) verschiedener galvanischer Ketten soll gemessen werden, um die Gültigkeit der

Mehr

-1 (außer in Verbindung mit Sauerstoff: variabel) Sauerstoff -2 (außer in Peroxiden: -1)

-1 (außer in Verbindung mit Sauerstoff: variabel) Sauerstoff -2 (außer in Peroxiden: -1) 1) DEFINITIONEN DIE REDOXREAKTION Eine Redoxreaktion = Reaktion mit Elektronenübertragung sie teilt sich in Oxidation = Elektronenabgabe Reduktion = Elektronenaufnahme z.b.: Mg Mg 2 + 2 e z.b.: Cl 2 +

Mehr

Normalpotenziale - Spannungsreihe

Normalpotenziale - Spannungsreihe 1. Grundlagen der Elektrochemie 1.1 Normalpotenziale Spannungsreihe Experimentelle Befunde Steckt man einen Zinkstab in eine Lösung von Kupfersulfat CuSO 4, so wird er sofort von einer dünnen Schicht von

Mehr

Elektrodentypen - Intro. Elektrodentypen?! Was ist eine Elektrode? Was für Elektrodentypen gibt es? Betrachtung einzelner Elektroden:

Elektrodentypen - Intro. Elektrodentypen?! Was ist eine Elektrode? Was für Elektrodentypen gibt es? Betrachtung einzelner Elektroden: Elektrodentypen - Intro Elektrodentypen?! Was ist eine Elektrode? Was für Elektrodentypen gibt es? Betrachtung einzelner Elektroden: Elektrodentypen - Einleitung Was ist eine Elektrode? Eletrode leitet

Mehr

Einführung. Galvanische Zelle. Korrosion + - Univ.-Prof. Dr. Max J. Setzer Vorlesung - Korrosion Seite 1

Einführung. Galvanische Zelle. Korrosion + - Univ.-Prof. Dr. Max J. Setzer Vorlesung - Korrosion Seite 1 Univ.-Prof. Dr. Max J. Setzer Vorlesung - Korrosion Seite 1 Einführung MWG 8 / Die Korrosion ist ein Redox-Prozess Bei der Änderung der Oxidationsstufe entstehen Ionen geladene Teilchen. Der Oxidationsprozess

Mehr

Die spezifische Leitfähigkeit κ ist umgekehrt proportional zum Widerstand R:

Die spezifische Leitfähigkeit κ ist umgekehrt proportional zum Widerstand R: Institut für Physikalische Chemie Lösungen zu den Übungen zur Vorlesung Physikalische Chemie II im WS 205/206 Prof. Dr. Eckhard Bartsch / M. Werner M.Sc. Aufgabenblatt 3 vom 3..5 Aufgabe 3 (L) Leitfähigkeiten

Mehr

Vorlesung 3: Elektrodynamik

Vorlesung 3: Elektrodynamik Vorlesung 3: Elektrodynamik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16 Der elektrische Strom Elektrodynamik:

Mehr