Die Riemann'sche Vermutung

Größe: px
Ab Seite anzeigen:

Download "Die Riemann'sche Vermutung"

Transkript

1 Die Riemann'sche Vermutung Julián Cancino (ETH Zürich) 7. Juni 7 Leonhard Euler (77-783) und Bernhard Riemann (86-866) sind sicher die bedeutendsten Mathematiker aller Zeiten für ihre Beiträge zu verschiedenen Gebiete der Mathematik und der theoretische Physik. Hier wird ein der grösste Rätsel der Mathematik präsentiert. Nähmlich die Riemann'sche Vermutung die aus seinem 859 erschienen 8-seitigen Artikel Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse stammt. Dies war der erste und letzte Einstieg von Riemann in die analytische Zahlentheorie. Vermutung (859) Alle die nicht-triviale Nullstellen der Funktion ζ : C C haben Realteil /. Nach seine Vermutung schreibt er : Hiervon wäre allerdings ein strenger Beweis zu wünschen; ich habe indess die Aufsuchung desselben nach einigen üchtigen vergeblichen Versuchen vorläug bei Seite gelassen, da er für den nächsten Zweck meiner Untersuchung entbehrlich schien. [3] Heute wurde diese Vermutung noch nicht bewiesen... Zetafunktionen Bevor wir uns mit der Vermutung selbst beschäftigen, müssen wir die zugrunde Zetafunktion studieren.. Euler'sche Zetafunktion Euler hat die Zetafunktion wie folgt deniert : ζ(k) := n= n k (N R) Diese ist von einem potitiven ganzzahligen Agrument abhängig und ζ() ist die bekannte divergente harmonische Reihe. Euler konnte auch die folgende Sätze beweisen:

2 . Riemann'sche Zetafunktion Satz (Euler, 75). n N : ζ(n) = ( ) n (π)n B n (n)! Wobei die B n die Bernoulli-Zahlen sind, deren ersten in der Tabelle. gelistet sind. n B n / /6 4 /3 6 /4 8 /3 Tabelle : Die erste zehn Bernoulli-Zahlen [] Im Gegenteil hat man keine geschlossene Formel für die Werte bei ungeraden Argument. Man weiss sogar sehr wenig von diese Zahlen : Erst 978 wurde von Apéry gezeigt, dass ζ(3) irrational ist. Seit weiss man, dass mindestens einer von ζ(5), ζ(7), ζ(9) und ζ() irrational ist. Satz (Produktdarstellung der Zetafunktion, Euler). n N : ζ(n) = p n Die vom Satz induzierte Darstellung der Zeta-Funktion ist interessant, denn sie die folgende Folgerung hat : Satz 3. Es gibt unendlich viele Primzahlen. Beweis. Die Aussage ist äquivalent zu s N\{, } : ζ(s) / Q, denn ein endliches Produkt von rationalen Zahlen immer noch rational ist. Aus dem Satz folgt ζ() = π und Adrien-Marie Legendre (75-833) hat 794 gezeigt, dass π irrational ist.. Riemann'sche Zetafunktion.. Einfache Verallgemeinerung Eine sinnvolle Verallgemeinerung der Zetafunktion auf C (und somit auch auf R C) erhählt man, indem man einfach ein komplexen Argument s verwendet: Satz 4. ζ : C C, s n= n s konvergiert absolut falls Re(s) >. Beweis. = n= n s n= e s log(n) = e (Re(s)+i Im(s)) log(n) n= k N gilt B k+ =. Und somit auch π.

3 . Riemann'sche Zetafunktion 3 = e Re(s) log(n) e i Im(s) log(n) = n Re(s) = = ζ(re(s)) nre(s) n= Nun weiss man aus der Analysis, dass n= n= n x u x du Dieses Integral exisitiert genau dann, wenn x > ist. Mit x := Re(s) sind wir fertig. n=.. Gammafunktion Um fortfahren zu können, brauchen wir die Gammafunktion, die gewissermassen die fortsetzung der Fakultät auf C ist (Abbildung ). Sie wird deniert mittels 3 : Γ(s) := x s e x dx (C \ Z C) Abbildung : Γ(s) als Funktion von Re(s) und Im(s) [5]. Es ist möglich die folgenden Identitäten zu zeigen :. Γ(s + ) = s Γ(s),. n N : Γ(n + ) = n!, 3. Γ(s) Γ( s) sin(πs) = π,..3 Zusammenhang zwischen den Zeta- und Gammafunktionen Mit der Substitution x = n u erhielt Riemann Γ(s) = (n u) s e n u ndu = n s u s e n u du Γ(s) n s = u s e n u du 3 Ich konnte nicht in der Literatur verizieren, ob tatsächlich diese Integrals auch für s / R Sinn macht, aber es scheint so. 3

4 4 Γ(s) ζ(s) = Γ(s) n= n s = ( ) u s (e u ) n du In den Klammern steht eine Reihe, die wir "geometrisieren"können : (e u ) n = n= (e u ) n = n= Also haben wir die folgende Formel bewiesen (für Re(s) > ) : n= e u = e u e u = e u ζ(s) Γ(s) = u s e u du..4 Auf der ganze C-Ebene Nun was Riemann geschat hat ist diese Funktion analytisch auf der ganzen komplexen Ebene fortzusetzen. Die ganze Überlegung basiert sich auf die Theorie der Funktionen einer komplexen veränderlichen und wir wollen hier nur die Resultate geben. Satz 5 (Analytische Fortsetung der Zetafunktion). Γ( s) u s ζ(s) = πi e u du (C \ {} C) D Wobei D den Weg von unterhalb von und parallel zur reellen Achse um die Ursrung und zurück zu oberhalb und parallel zur reellen Achse entspricht 4. Satz 6 (Funktionalgleichung). s C : ζ( s) = ( πs ) (π) s cos Γ(s) ζ(s) Der Satz 6 ist eine Folgerung des 5 und der Eigenschaft 3 der Gammafunktion. Nullstellen der Zetafunktion Jetzt haben wir die wichtige Eigenschaften der Zetafunktion gezeigt und wir können uns mit deren Nullstellen beschäftigen. Die Frage die wir beantworten wollen lautet : Wo sind die Nullstelle? Wir werden hier die komplexe Ebene in Gebiete teilen und diese separat untersuchen.. Re(s) > Eigentlich gilt den Satz immer für komplexe Werte von s, falls Re(s) >. Und somit auch den Satz 7. s C : Re(s) > ζ(s). 4 Siehe die Abbildung E.3 auf der Seite 5 von []. 4

5 . Re(s) < 5 Abbildung : ζ(s) als Funktion von Re(s) und Im(s) [4]. Beweis. Diese Aussage ist völlig äquivalent mit s C : Re(s) > ζ(s) >, denn ζ(s) = ζ(s) =. Aus dem Satz folgt : ζ(s) = p s = Denn jedes ist strikt grösser als. Also gibt es keine Nullstelle mit Re(s) >. p s + p s = + p Re(s) >. Re(s) < Wegen der Funktionalgleichung (Satz 6) und der Tatsache, dass die Gammafunktion keine Nullstelle hat [, 5], folgt den Satz 8. s C : Re(s) < Im(s) ζ(s). Beweis. Sei t := s. Dann Re(t) = Re(s) > und mit 7 folgt ζ(t) >. Mit 6 : ( ) ζ(s) = ζ( t) = πt (π) t cos Γ(t) ζ(t) = ( ) πt (π) t cos Γ(t) ζ(t) Γ(t) ζ(t) = (π) Re(t) (eiπt/ + e iπt/ ) Γ(t) ζ(t) (π) }{{ Re(t) e iπt/ e iπt/ } :=C> = C e πim(t)/ e πim(t)/ > Falls Im(t) = Im(s). 5

6 .3 Re(s) : Nicht-triviale Nullstellen 6 Also gibt es keine Nullstelle mit Re(s) < Im(s)... s R : Triviale Nullstellen Im Fall Im(s) = ist s reell und man leitet den Satz 9 (Triviale Nullstellen der Zetafunktion). s Z ζ(s) =. Beweis. Sei t := s. Dann Re(t) = Re(s) > und mit 7 folgt ζ(t) >. Mit 6 : ( ) ζ(s) = ζ( t) = πt (π) t cos Γ(t) ζ(t) = ( ) πt (π) t cos Γ(t) ζ(t) ( ) Γ(t) ζ(t) = πt ( (π) }{{ Re(t) cos π ) ( π ) ( π ) = C cos πs = C cos cos(πs) + sin sin(πs) } }{{}}{{ } :=C> = = Falls s Z. = C sin(πs) = Bemerkungswert ist die Tatsache, dass es eine Formel bei allen nicht-positiven ganze Zahlen gibt, in Unterschied zu den positiven, für die wir nur eine Formel bei geraden Argument kennen (Satz ): Satz. k N : ζ( k) = ( ) k B k+ k + Aus diese Formel folgt sofort den Satz 9, indem man merkt, dass die Bernouilli-Zahlen verschwinden bei ungeraden Indizes (Vgl. Tabelle.)..3 Re(s) : Nicht-triviale Nullstellen Jetzt kommen wir zum schwierigsten Teil : der sogenannte kritische Streifen. In ihrem Beweis des Primzahlentheorems haben De La Vallée Poussin und Hadamard gezeigt, dass die Zetafunktion keine Nullstelle mit Realtail hat. Wegen der Funktionalgleichung 6, ist es oensichtlich, dass für jede Nullstelle s auch s eine Nullstelle sein muss. Also sind die Nullstellen auf dem kritischen Streifen symmetrisch um den Punkt / der C-Ebene verteilt. Damit impliziert Hadamards Resultat, dass es keine Nullstelle gibt, die rein Imaginär ist. Also ist jetzt das mögliche Gebiet für die Nullstelle auf {s C < Re(s) < } eingeschränkt. Interessant ist auch die Tatsache, dass ζ(s) = ζ(s). Die Symmetrie der Nullstellen ist dann noch grösser 5. Eine in gewissem Sinne schwächere Version der Riemann'sche Vermutung ist der 5 Siehe die Abbildung 6.4 auf der Seite 95 von []. 6

7 .3 Re(s) : Nicht-triviale Nullstellen 7 Satz (Bohr & Landau, 94). Sei ε >. Dann gibt es ungefähr ( ( ) ) T T log π π Nullstellen der Form s = / + i t mit t C : Re(t) T Im(t) ε. Für T strebt den relativen Fehler der Anzahl gegen Null. Obwohl dieser Satz sehr ähnlich zur Vermutung scheint, ist er nicht äquivalent, denn es nur um eine Abschätzung geht. Es könnte wohl sein, dass es eine (oder sogar endlich viele) Nullstelle(n) mit Realteil nicht gleich / gibt. In diesem Fall wäre der Satz immer noch gültig; die Vermutung aber nicht mehr..3. Re(s) = / : Riemann'sche Vermutung Abbildung 3: ζ(s) als Funktion von Im(s) für Re(s) = [4]. Die Abbildung 3 zeigt die erste Nullstellen auf der kritischen Gerade {s C Re(s) = }. Bis Heute konnte niemand weder beweisen noch widerlegen die Riemann'sche Vermutung (859) s C \ R : ζ(s) = Re(s) = Alle die Nullstellen (.5 9 ), die man bis heute mit numerische Rechnungen gefunden hat, gehören zur kritischen Gerade. Und es gilt den Satz (Hardy, 94). Es gibt unendlich viele Nullstellen auf der kritischen Gerade. Wie für den Satz gibt uns der Satz keine Garantie, dass es keine Nullstelle mit Re(s). Die symmetrische Verteilung um den Punkt / und die Sätze und geben dennoch anscheinend starke Indize über die Gültigkeit der Riemann'sche Vermutung. Ganz bestimmt, wenn jemand diese Vermutung beweisen oder widerlegen schat, ist seine Zukunft gesichert : sie gehört zu den Problemen des Milleniums des Clay Mathematik Institut und wird auf jedem Fall mit eine Fields-Medaille belohnt. 7

8 LITERATUR 8 Literatur [] Harold M. Edwards, Riemann's Zeta Function, Academic Press, New York, 974, S. 35. [] Julian Havil, Gamma, Princeton University Press, Princeton, 3, S. 66. [3] Bernhard Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie, November 859 ( [4] [5] 8

Die Riemannsche Zetafunktion. 1 Einführung

Die Riemannsche Zetafunktion. 1 Einführung Die Riemannsche Zetafunktion Vortrag zum Seminar zur Funktionentheorie,..8 Michael Hoschek Mit meinem Vortrag möchte ich die wichtigste Dirichletsche Reihe, die Riemannsche Zetafunktion mit einigen besonderen

Mehr

Die wichtigste Funktion der Mathematik

Die wichtigste Funktion der Mathematik Die wichtigste Funktion der Mathematik Mathematisches Seminar: Experimentelle Mathematik Stefan Angersbach Hochschule Darmstadt February 28, 2014 Inhaltsverzeichnis 1 Einleitung 2 Geschichte der ζ-funktion

Mehr

7. Die Funktionalgleichung der Zetafunktion

7. Die Funktionalgleichung der Zetafunktion 7. Die Funktionalgleichung der Zetafunktion 7.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x = O( x und f (x = O( x für x ˆf(t := f(xe πixt dx. die

Mehr

5. Funktional-Gleichung der Zetafunktion

5. Funktional-Gleichung der Zetafunktion 5. Funktional-Gleichung der Zetafunktion 5.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x O( x und f (x O( x für x ˆf(t : f(xe πixt dx. die Fourier-Transformierte

Mehr

Fortsetzung der Zetafunktion

Fortsetzung der Zetafunktion Fortsetzung der Zetafunktion Sören Lammers Ausarbeitung zum Vortrag im Proseminar Analysis (Sommersemester 009, Leitung Prof. Dr. E. Freitag) Zusammenfassung: Thema dieser Ausarbeitung ist die Riemannsche

Mehr

Primzahlen und die Riemannsche Vermutung

Primzahlen und die Riemannsche Vermutung Primzahlen und die Riemannsche Vermutung Benjamin Klopsch Mathematisches Institut Heinrich-Heine-Universität zu Düsseldorf Tag der Forschung November 2005 Untersuchung über die Häufigkeit der Primzahlen

Mehr

Die Musik der Primzahlen

Die Musik der Primzahlen Mathematik Querbeet Institut für Reine Mathematik Universität Ulm 14. Dezember 2018 Der Primzahlsatz Wieviele Primzahlen gibt es? Der Primzahlsatz Wieviele Primzahlen gibt es? p = 2, 3, 5, 7, 11, 13, 17,

Mehr

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1 23 3 Die Γ-Funktion Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. f(n) = (n )! für n N. Das wird durch die Funktionalgleichung erreicht. Bemerkungen. f(z + ) =

Mehr

Die Riemannsche Hypothese

Die Riemannsche Hypothese Die Riemannsche Hypothese Janina Müttel und Pieter Moree Zusammenfassung Die Riemannsche Hypothese besagt, dass alle nichttrivialen Nullstellen der Zeta-Funktion den Realteil 2 besitzen. Was diese Annahme

Mehr

Kuriositäten der Unendlichkeit Zetafunktionen und ihre Werte. Immanuel-Kant-Oberschule, Berlin. Heinrich-Hertz-Oberschule, Berlin

Kuriositäten der Unendlichkeit Zetafunktionen und ihre Werte. Immanuel-Kant-Oberschule, Berlin. Heinrich-Hertz-Oberschule, Berlin Kuriositäten der Unendlichkeit Zetafunktionen und ihre Werte Teilnehmer: Nico Dietzsch Helena Jotkute Denis Kunz Theodor Morawetz Erik Probst Amin Thainat Gruppenleiter: Jürg Kramer Barbara Jung Immanuel-Kant-Oberschule,

Mehr

2. Primzeta-Funktion. Summe der reziproken Primzahlen

2. Primzeta-Funktion. Summe der reziproken Primzahlen O. Forster: Analytische Zahlentheorie. Primzeta-Funktion. Summe der reziroken Primzahlen.. Definition. Die Primzeta-Funktion ist für Re(s > definiert durch P(s := s. Dabei wird über alle Primzahlen summiert.

Mehr

30 Die Gammafunktion und die Stirlingsche Formel

30 Die Gammafunktion und die Stirlingsche Formel 3 Die Gammafunktion und die Stirlingsche Formel 35 Charakterisierung der Gammafunktion 36 Darstellung der Gammafunktion 38 Beziehung zwischen der Gammafunktion und der Zetafunktion 3 Stirlingsche Formel

Mehr

Primzahlen von Euklid bis heute

Primzahlen von Euklid bis heute Mathematisches Institut Universität zu Köln bruinier@math.uni-koeln.de 5. November 2004 Pythagoras von Samos (ca. 570-480 v. Chr.) Euklid von Alexandria (ca. 325-265 v. Chr.) Teilbarkeit Satz von Euklid

Mehr

Die Riemannsche Vermutung

Die Riemannsche Vermutung Mathematik Online: Beiträge zu berühmten, gelösten und ungelösten Problemen Die Riemannsche Vermutung von Jörg Brüdern Nummer - April 008. Primzahlen. Das Zählen gehört zu den archaischen Wurzeln der Mathematik.

Mehr

1 Einführung. (ii) Exponentialfunktion, Winkelfunktionen, hyperbolische Winkelfunktionen, abgeleitete

1 Einführung. (ii) Exponentialfunktion, Winkelfunktionen, hyperbolische Winkelfunktionen, abgeleitete Inhaltsverzeichnis 1 Einführung I 1.1 Spezielle Funktionen in der Vorlesung.................. I 1. Mathematische Theorien und Konzepte................. I 1.3 Kurzübersicht...............................

Mehr

Zahlentheorie. Prof. Dr. H. Brenner Osnabrück SS Vorlesung 11 Satz (von Euklid) Es gibt unendlich viele Primzahlen.

Zahlentheorie. Prof. Dr. H. Brenner Osnabrück SS Vorlesung 11 Satz (von Euklid) Es gibt unendlich viele Primzahlen. Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung Satz.. (von Euklid) Es gibt unendlich viele Primzahlen. Beweis. Angenommen, die Menge aller Primzahlen sei endlich, sagen wir {p, p 2,...,

Mehr

Über divergente Reihen. de seribus divergentibus (L. Euler)

Über divergente Reihen. de seribus divergentibus (L. Euler) Über divergente Reihen de seribus divergentibus (L. Euler) Eine spezielle Reihe Was ist +2+3+4+5+6+7+? a) Die Reihe ist divergent. Sie ist unendlich groß. Keine weitere Diskussion. b) Unter gewissen Umständen

Mehr

Primzahlen und die Riemannsche Vermutung

Primzahlen und die Riemannsche Vermutung Primzahlen und die Riemannsche Vermutung Von Christopher Deninger 1 Einführung Die natürlichen Zahlen 1,, 3, 4, sind uns wohlvertraut. Ihre multiplikativen Bestandteile sind die Primzahlen, d.h. die Zahlen

Mehr

a n (z a) f (z) = für alle z K erfüllt ist. Dabei gilt a n = f (n) (a) für alle n N 0. Beispiel 1: Sei f (z) = z 3 3z + 4.

a n (z a) f (z) = für alle z K erfüllt ist. Dabei gilt a n = f (n) (a) für alle n N 0. Beispiel 1: Sei f (z) = z 3 3z + 4. Satz (VEKDF, Teil II) Sei D C und f : D C eine holomorphe Funktion. Dann ist f in einer Umgebung von jedem Punkt a D durch eine Potenzreihe darstellbar. Das bedeutet: Es gibt einen Kreis K um a und a 0,

Mehr

Die wichtigste Funktion der Mathematik

Die wichtigste Funktion der Mathematik Hochschule Darmstadt Mathematisches Seminar Experimentelle Mathematik Die wichtigste Funktion der Mathematik Autor: Stefan Angersbach Betreuer: Prof. Dr. Torsten-Karl Strempel 28. Februar 204 Inhaltsverzeichnis

Mehr

Die Riemannsche Vermutung

Die Riemannsche Vermutung Elem. Math. 57 (2002) 90 95 0013-6018/02/030090-6 c Birkhäuser Verlag, Basel, 2002 Elemente der Mathematik Die Riemannsche Vermutung Jürg Kramer 1 Einführung In dem hier vorzustellenden Millenniumsproblem

Mehr

Langlands-Programm. Zahlentheorie = Algebra + Geometrie + Analysis. Torsten Wedhorn. 19. Januar 2012

Langlands-Programm. Zahlentheorie = Algebra + Geometrie + Analysis. Torsten Wedhorn. 19. Januar 2012 Zahlentheorie = Algebra + Geometrie + Analysis 19. Januar 2012 Inhalt 1 Dreieckszahlen 2 3 4 Dreieckszahlen Eine rationale Zahl D > 0 heißt Dreieckszahl (oder Kongruenzzahl), falls D die Fläche eines rechtwinkligen

Mehr

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

L-Funktionen in Geometrie und Arithmetik

L-Funktionen in Geometrie und Arithmetik Fachbereich Mathematik Technische Universität Darmstadt bruinier@mathematik.tu-darmstadt.de 30. Januar 2008 Leonhard Euler (1707 1783) Bernhard Riemann (1826-1866) Die rationalen Zahlen Prinzahlen Die

Mehr

Analytische ZAHLENTHEORIE. Skriptum zur Vorlesung von Prof. Michael DRMOTA

Analytische ZAHLENTHEORIE. Skriptum zur Vorlesung von Prof. Michael DRMOTA Analytische ZAHLENTHEORIE Skriptum zur Vorlesung von Prof. Michael DRMOTA Inhaltsverzeichnis Zahlentheoretische Funktionen Analytische Funktionen und Dirichletsche Reihen 7 3 Der Primzahlsatz mit Restglied

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Zahlentheorie. Vorlesung 11. Die Unendlichkeit der Primzahlen. N = p 1 p 2 p 3 p r +1.

Zahlentheorie. Vorlesung 11. Die Unendlichkeit der Primzahlen. N = p 1 p 2 p 3 p r +1. Prof. Dr. H. Brenner Osnabrück WS 206/207 Zahlentheorie Vorlesung Die Unendlichkeit der Primzahlen Satz.. Es gibt unendlich viele Primzahlen. Beweis. Angenommen, die Menge aller Primzahlen sei endlich,

Mehr

Christine Schweinem. 9. November Γ(x) := t x 1 e t dt, x > 0. (1) t x 1 dt< für x>0. t x 1 e t t. = lim 1

Christine Schweinem. 9. November Γ(x) := t x 1 e t dt, x > 0. (1) t x 1 dt< für x>0. t x 1 e t t. = lim 1 Seminar Fraktionale Differentialgleichungen WS / Prof. Dr. Peter E. Kloeden Thema: Gamma Funktion Christine Schweinem 9. ovember Definition der Gamma Funktion Im Reellen gibt es für die Gamma Funktion

Mehr

Höhere Mathematik Vorlesung 3

Höhere Mathematik Vorlesung 3 Höhere Mathematik Vorlesung 3 März 17 ii Ein Mathematiker ist eine Maschine, die Kaffee in Theoreme verwandelt. Alfréd Rényi 3 Die Eulerschen Funktionen Die reelle Fakultätsfunktion x! Die Motivation zur

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

Es gibt eine Heuristik, mit der sich die Primzahldichte

Es gibt eine Heuristik, mit der sich die Primzahldichte Es gibt eine Heuristik, mit der sich die Primzahldichte 1 ln(x) für großes x N plausibel machen lässt. Die Idee besteht darin, das Änderungsverhalten der Primzahldichte bei x zu untersuchen. Den Ansatz

Mehr

Dirichlet-Reihen I. 1 Motivation und Definition der Dirichlet-Reihen

Dirichlet-Reihen I. 1 Motivation und Definition der Dirichlet-Reihen Vortrag zum Seminar zur Funktionentheorie 10. 12. 2007 Corinna Wübling Dieser Vortrag beschäftigt sich mit Dirichlet-Reihen. Im ersten Abschnitt werden die Dirichlet-Reihen definiert und typische Beispiele

Mehr

Die Faszination der Primzahlen

Die Faszination der Primzahlen zu Die der Institut für Mathematik Humboldt-Universität zu Berlin 27. April 2015 zu zu zu zu Die natürlichen Zahlen. Die Menge der natürlichen Zahlen: N = {0, 1, 2, 3,... }. zu zu Die natürlichen Zahlen.

Mehr

Vortrag CASK Die Nullstellen der Zeta Funktion und die Verteilung der Primzahlen. - unter Verwendung von mathcad 12. Prof. Dr.

Vortrag CASK Die Nullstellen der Zeta Funktion und die Verteilung der Primzahlen. - unter Verwendung von mathcad 12. Prof. Dr. Vortrag CASK 007 Die Nullstellen der Zeta Funktion und die Verteilung der Primzahlen - unter Verwendung von mathcad Prof. Dr. Peter Grobstich. Die Ermittlung aller Primzahlen bis N. Der Zusammenhang der

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

Potenzreihenentwicklung im Reellen und Komplexen

Potenzreihenentwicklung im Reellen und Komplexen Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und

Mehr

Funktionentheorie I : WS Die Γ Funktion

Funktionentheorie I : WS Die Γ Funktion Funktionentheorie I : WS -5 Die Γ Funktion Dr. Rolf Busam Materialien zur Vorlesung Funktionentheorie I, WS -5. Eine kleine Formelsammlung zur Γ Funktion. Definition: Ist H r := { z C ; Re z > } die rechte

Mehr

Das Volumen und die Oberfläche einer n-dimensionalen Kugel

Das Volumen und die Oberfläche einer n-dimensionalen Kugel Das Volumen und die Oberfläche einer n-dimensionalen Kugel Alois Temmel 6. Februar 14 c 14, A. Temmel Inhaltsverzeichnis 1 Die Volumenformel 3 1.1 Die n-dimensionale Kugel.................... 3 1.1.1 Die

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

DIRICHLET-L-REIHEN UND SATZ VON DIRICHLET ÜBER PRIMZAHLEN IN ARITHMETISCHEN PROGRESSIONEN

DIRICHLET-L-REIHEN UND SATZ VON DIRICHLET ÜBER PRIMZAHLEN IN ARITHMETISCHEN PROGRESSIONEN DIRICHLET-L-REIHEN UND SATZ VON DIRICHLET ÜBER PRIMZAHLEN IN ARITHMETISCHEN PROGRESSIONEN MARIN GENOV Zusammenfassung. Die nachfolgende Ausarbeitung hat sich zum Ziel gesetzt, einen möglichst kurzen, zugleich

Mehr

Dirichletreihen im Komplexen

Dirichletreihen im Komplexen Dirichletreihen im Komplexen Dominik Wrazidlo Ausarbeitung zum Vortrag im Proseminar Analysis (Sommersemester 2009, Leitung Prof. Dr. E. Freitag) Zusammenfassung: Gegenstand dieser Ausarbeitung ist die

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k. Analysis, Woche 7 Reihen I A 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k. Analysis, Woche 7 Reihen I 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n =

Mehr

1. Zeta-Funktion und Euler-Produkt

1. Zeta-Funktion und Euler-Produkt . Zeta-Funktion und Euler-Produkt. Zeta-Funktion und Euler-Produkt.. Die Riemannsche Zeta-Funktion ist für s C mit Re s > definiert durch ζ(s) := n= n s. Traditionell schreibt man s = σ + it mit σ, t R.

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Die Euler-Mascheroni-Konstante

Die Euler-Mascheroni-Konstante Die Euler-Mascheroni-Konstante Niloufar Rahi Ausarbeitung zum Vortrag in Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Wenn von der

Mehr

Die letzte Eintragung ins Gaußsche Tagebuch (9. Juli 1814)

Die letzte Eintragung ins Gaußsche Tagebuch (9. Juli 1814) Die letzte Eintragung ins Gaußsche Tagebuch (9. Juli 84) Eine Bemerkung von einigen Zeilen mit einer fast 00-jährigen Nachfolgegeschichte: Beschreibung des Problems: Es handelt sich bei diesem Problem

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  13. September 2003 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

1 k k konvergent? und

1 k k konvergent? und 28 Reihen 27 28 Reihen Aufgabe: Sind die Reihen ( + und onvergent? 28. Komplexe Reihen. a Für eine Folge (a in C heißt die Reihe a onvergent, falls die Folge der Partialsummen (s n := n a onvergiert. In

Mehr

5.1 Anwendung auf die Berechnung uneigentlicher

5.1 Anwendung auf die Berechnung uneigentlicher Kapitel 5 Anwendungen des Residuenkalküls Wie sich am Ende des vorigen Kapitels in Beispiel 4.17 bereits angedeutet hat, bietet der Residuenkalkül ein mächtiges Werkzeug, um uneigentliche Integrale mit

Mehr

Der Primzahlsatz, Teil 2

Der Primzahlsatz, Teil 2 Vortrag zum Seminar zur Funktionentheorie, 4.5.22 Maike Gerhard Ziel dieses Vortrags ist es den Primzahlsatz zu beweisen. Dieser besagt π() π(), d.h. lim ln /ln =, wobei π() die Anzahl der Primzahlen kleiner

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x.

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x. Der Primzahlsatz Zusammenfassung Im Jahr 896 wurde von Hadamard und de la Vallée Poussin der Primzahlsatz bewiesen: Die Anzahl der Primzahlen kleiner gleich verhält sich asymptotisch wie / log. Für ihren

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Nachträge Große Zahlen?

Nachträge Große Zahlen? Nachträge Große Zahlen? Nachträge Fermat und der Satz zu x n + y n = z n Literatur: Simon Singh, Fermats letzter Satz Andrew Wiles ist 1953 geboren, war also 1994 zu alt für die Fieldsmedaille. Er erhielt

Mehr

Johannes Gutenberg-Universität Mainz

Johannes Gutenberg-Universität Mainz Johannes Gutenberg-Universität Mainz Im Rahmen des Seminares Struktur und Zufälligkeit der Primzahlen im Sommersemester 07 Bei Prof. Dr. Maria Lukacova 5.4.7 Stephanie Katharina Schwab Inhaltsverzeichnis

Mehr

Der Kotangens und der Herglotz-Trick. Kapitel 23

Der Kotangens und der Herglotz-Trick. Kapitel 23 Der Kotangens und der Herglot-Trick Kapitel 3 Was ist die interessanteste Formel in der elementaren Funktionentheorie? In seinem wunderbaren Artikel [], dessen Darstellung wir folgen, schlägt Jürgen Elstrodt

Mehr

2 Das Quadratische Reziprozitätsgesetz

2 Das Quadratische Reziprozitätsgesetz Das Quadratische Rezirozitätsgesetz Anna Sökeland, Natalie Graßmuck 6.0.007 1 Vorbemerkungen 3 mod 13, d.h. modulo 13 ist 3 ein Quadrat. Definition : Sei eine Primzahl. x F y F mit ist Quadrat modulo,

Mehr

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen Inhaltsübersicht Kapitel 13: Spezielle Funktionen Deltafunktion Gammafunktion Fehlerfunktion Notizen zur Vorlesung Mathematik für Materialwissenschaftler 2 1 Die Bezeichnung Delta-Funktion ist streng genommen

Mehr

Proseminarprogramm Sommersemester 2018

Proseminarprogramm Sommersemester 2018 Proseminarprogramm Sommersemester 2018 Analysis Voraussetzungen: Analysis 1. Vorbesprechung: am Mittwoch, dem 7. 2. 2018, um 13 Uhr s.t. in Seminarraum 4 im Mathematikon INF 205 Vorträge Vortrag 1: Der

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

Tutor: Martin Friesen, Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion

Tutor: Martin Friesen, Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 3 - Funktionentheorie, Prof. G. Hemion. Die Exponentialfunktion ist exp z Wie in der reellen Analysis werden auch die trigonometrischen Funktionen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Zwischenprüfung Winter 2016 Analysis I D-BAUG

Zwischenprüfung Winter 2016 Analysis I D-BAUG ETH Zürich Zwischenprüfung Winter 216 Analysis I D-BAUG Dr. Meike Akveld Wichtige Hinweise Prüfungsdauer: 9 Minuten. Zugelassene Hilfsmittel: Keine, ausser das verteilte Blatt mit Standardintegralen. Es

Mehr

Proseminarprogramm Sommersemester 2012

Proseminarprogramm Sommersemester 2012 Proseminarprogramm Sommersemester 2012 Analysis Voraussetzungen: Analysis 1. Vorbesprechung: am Montag, dem 30. 1. 2012, um 13 Uhr c.t. in Hörsaal 3 in INF288. Vorträge 1 Der Verdichtungssatz 17. 4. 2012

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Folgen, Reihen, Potenzreihen, Exponentialfunktion Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2

Mehr

Kapitel 3. Reihen und ihre Konvergenz

Kapitel 3. Reihen und ihre Konvergenz Kapitel 3 Reihen und ihre Konvergenz Abschnitt 3.1 Der Reihenbegri und erste Beispiele Denitionen zu Reihen, 1 Denition. Sei (a n ) n N0 eine Folge reeller Zahlen. Für n N 0 heiÿt dann die Zahl s n :=

Mehr

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit Kapitel Primzahlen Bevor wir uns allgemeineren Themen und Begriffen der Algebra zuwenden, wollen wir einige zugleich elementare und schöne Ideen aus der Theorie der Primzahlen zusammenstellen, da diese

Mehr

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 2: Eigenschaften der Fourier-Transformation Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Fourier-Transformation Eigenschaften der Fourier-Transformation Definitionsgleichungen

Mehr

Vorname Nachname Matrikelnummer Tutor Uhrzeit

Vorname Nachname Matrikelnummer Tutor Uhrzeit . Arbeitsblatt Analysis SS.. 3. Vorname Nachname Matrikelnummer Tutor Uhrzeit Aufgabe 3 4 5 6 7 8 9 Code Punkte Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und

Mehr

Struktur und Zufall in der Menge der Primzahlen

Struktur und Zufall in der Menge der Primzahlen Struktur und Zufall in der Menge der Primzahlen Vortrag zum Tag der Mathematik 2013 PD Dr. Karin Halupczok 2. März 2013, LVM in Münster Primzahlen zählen: von Euklid bis Riemann Primzahlmuster nden: viele

Mehr

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) =

Aufgabe 1 Berechnen Sie folgende Integrale mit Hilfe des Residuensatzes: e z a) f(z) dz = 2πi Res(f, 1) = eπi. Res(f, 1) = (z 1)f(z) = Karlsruher Institut für Technologie (KIT) SS 3 Institut für Analysis 73 Prof Dr Tobias Lamm Dr Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Aufgabe Berechnen Sie folgende

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch!

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch! Bemerkungen: 1 Die Bedeutung von (und damit ) ist klar. wird oft, vor allem in Beweisen, auch als geschrieben (im Englischen: iff, if and only if). 2 Für zwei boolesche Aussagen A und B ist A B falsch

Mehr

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil 14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit

Mehr

Der Primzahlsatz. Seminararbeit. Johannes Philipp Schürz Betreuung: Ao.Univ.Prof. Dr.techn. Harald Woracek

Der Primzahlsatz. Seminararbeit. Johannes Philipp Schürz Betreuung: Ao.Univ.Prof. Dr.techn. Harald Woracek Seminararbeit Der Primzahlsatz Johannes Philipp Schürz 0.03.06 Betreuung: Ao.Univ.Prof. Dr.techn. Harald Woracek Institut für Analysis and Scientic Computing Technische Universität Wien Inhaltsverzeichnis

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

schreiben, wobei p und q ganze Zahlen sind.

schreiben, wobei p und q ganze Zahlen sind. Schülerinfotag 1. Man zeige, dass keine rationale Zahl ist. Das heißt lässt sich nicht als p q schreiben, wobei p und q ganze Zahlen sind. Proof. Wir werden das Prinzip Beweis durch Widerspruch verwenden.

Mehr

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy

D-MATH Funktionentheorie HS 2018 Prof. Michael Struwe. Lösungen Serie 5. Korollare der Integralformel von Cauchy D-MATH Funktionentheorie HS 08 Prof. Michael Struwe Lösungen Serie 5 Korollare der Integralformel von Cauchy. (a) Berechnen Sie für folgende Funktionen die Taylorreihe bei z 0 und bestimmen Sie den Konvergenzradius.

Mehr

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen:

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Musterlösung 1 Hilberträume Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Die durch das Skalarprodukt induzierte

Mehr

Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q.

Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q. Beispiel 27 (Beweis durch Widerspruch) Wir nehmen an, dass die zu zeigende Aussage falsch ist und führen diese Annahme zu einem Widerspruch. Satz 28 3 ist irrational, d. h. 3 / Q. Beweis: Widerspruchsannahme:

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 4 MC-Aufgaben (Online-Abgabe) 1. Sei z := exp ( π 6 i) (5 + b i). Für welches b R ist z eine reelle Zahl? (a) 1 (b) (c) 1 5 (d) 5 (e)

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Analysis I. 3. Beispielklausur mit Lösungen

Analysis I. 3. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine

Mehr

8. Spezielle Funktionen

8. Spezielle Funktionen H.J. Oberle Differentialgleichungen II SoSe 2013 8. Spezielle Funktionen Spezielle Funktionen (der mathematischen Physik) entstehen zumeist aus Separationsansätzen für PDG bei Vorliegen von Symmetrie-Eigenschaften.

Mehr

Die j-funktion, Abschätzung der Fourierkoeffizienten. 1 Grundlagen

Die j-funktion, Abschätzung der Fourierkoeffizienten. 1 Grundlagen Die j-funktion, Abschätzung der Fourierkoeffizienten Vortrag zum Seminar zur Funktionentheorie, 0.04.00 Felix Voigtländer Diese Ausarbeitung beschäftigt sich zunächst mit der j-funktion. Diese stellt einerseits

Mehr

14. Die Riemannsche Zetafunktion

14. Die Riemannsche Zetafunktion 4. Die Riemannsche Zetafunktion 83 4. Die Riemannsche Zetafunktion Zum Abschluss dieses Skripts wollen wir noch ein paar sehr interessante Anwendungen unserer erarbeiteten Theorie betrachten, die zum einen

Mehr

Ruprecht-Karls-Universität Heidelberg Mathematisches Institut. Ausarbeitung des Vortrags: Irrationale Zahlen

Ruprecht-Karls-Universität Heidelberg Mathematisches Institut. Ausarbeitung des Vortrags: Irrationale Zahlen Ruprecht-Karls-Universität Heidelberg Mathematisches Institut Ausarbeitung des Vortrags: Irrationale Zahlen Proseminar: Überraschungen und Gegenbeispiele in der reellen Analysis Dr. Gudrun Thäter von Jan

Mehr

Fagnano-Integral und Weierstraß sche σ-funktion. 1 Bekannte Definitionen

Fagnano-Integral und Weierstraß sche σ-funktion. 1 Bekannte Definitionen Vortrag zum Seminar zur Funktionentheorie II, 7..23 Jonas Gallenkämper Ziel dieses Seminarbeitrags ist, das Fagnano-Integral zu berechnen und dessen Zusammenhang zu speziellen Gittern, sowie weitere entsprechende

Mehr

L-Funktionen und die Vermutungen von Deligne und Beilinson

L-Funktionen und die Vermutungen von Deligne und Beilinson Mellit, Anton L-Funktionen und die Vermutungen von Deligne... Tätigkeitsbericht 2009 L-Funktionen und die Vermutungen von Deligne und Beilinson Mellit, Anton Max-Planck-Institut für Mathematik, Bonn Korrespondierender

Mehr

Universalität für Wigner Matrizen

Universalität für Wigner Matrizen Universalität für Wigner Matrizen Benjamin Schlein, Universität Zürich HSGYM Tag 29. Januar 2015 1 1. Einführung Zufallmatrizen: sind N N Matrizen dessen Einträge Zufallsvariablen mit gegebenen Verteilung

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr