Organisation und Evolution des Genoms
|
|
|
- Jutta Klein
- vor 9 Jahren
- Abrufe
Transkript
1 Organisation und Evolution des Genoms
2 Organisation und Evolution des Genoms Definition Genom: vollständige DNA-Sequenz eines Organismus
3 I. Einfachstes Genom: Prokaryoten Zwei Gruppen, evolutionär unterschiedlicher Ursprung Genomgröße: wenige Mb, hunderte bis tausende Gene Einzelnes kleines zirkuläres Chromosom, DNA nicht verpackt 1. Eubakterien = Bakterien 2. Archaea (früher: Archaebakterien)
4 II. Eukaryoten-Genom A. Kern (nukleäres Genom) B. Mitochondrien bzw. Chloroplasten
5 B. Wie ist das mitochondriale Genom organisiert? Zirkuläre ds DNA bp H (heavy) Strang: >> G L (light) Strang: >> C 37 Gene, 28 kodiert durch H Strang, 9 durch L Strang 24 RNAs (22 trna, 2 rrna) 13 Proteine (Atmungskette) 93% kodierende Sequenz (vs. 3% nukleär) Überlappende kodierende Sequenzen Keine Introns Wesentliche nicht-kodierende Region: D-loop Enthält vorrangigen Promotor
6 A. Nukleäres Genom der Eukaryoten Hefe: C.elegans Drosophila 1 Zelle 14 Mb 6200 Gene 20% kodierende DNA 1000 Zellen 100 Mb Gene 8 % kodierende DNA 117 Mb Gene 17 % kodierende DNA Mensch Zellen 3,2 Gb % kodierende DNA
7 A1. Wie ist das nukleäre Genom organisiert? A2. Evolution des nukleären Genoms
8 1. Wie ist das nukleäre Genom organisiert? 1.1 in mehrere lineare Chromosomen! S. cerevisiae (Hefe) C. elegans (Wurm) D. melanogaster (Fruchtfliege) M. musculus (Maus) H. sapiens 16 11/ Mb 100 Mb 170 Mb (2500 Mb Euchromatin) 3200 Mb (2950 Mb Euchromatin) 1.2 DNA ist verpackt
9 1.3 Zwei Texte aus 4 Buchstaben: die DNA-Sequenzen von Mensch und Maus (Nature 15. Feb. 2001/Science Nature 5. Dez 2002) Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM
10 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM Chromosomen sind in Banden organisiert! Giemsa-Färbung: häufige Chromosomenfärbung G-Banden: Schwarz = Giemsa-positiv Chromatin kondensiert Replizieren spät in der S-Phase Weniger aktive Transkription Weniger Gene AT-reich
11 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM Durchschnittl. 41% GC (Mensch) 42% (Maus) Variation im GC-Gehalt über das Genom: Mensch: deutlich, ca. 30% - 65% Maus: weniger Variation um Durchschnitt Gibt es eine Korrelation zwischen GC-Gehalt und verschiedenen biologischen Eigenschaften? - Giemsa-Banden -Repetitive Sequenzen - Gendichte
12 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM Dinukleotid CpG: Deutlich unterrepräsentiert als statistisch erwartet. Warum?
13 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM CpG islands : Definition Häufig im 5 -Bereich von Genen => Regulation Mensch: 27000, Maus 15500
14 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM Repetitive Sequenzen Genomgröße korreliert nicht mit Organismuskomplexität! Humanes Genom 200x größer als Hefe, aber 200x kleiner als Amöbe Nukleäres Genom Gensequenzen Sequenzen ausserhalb von Genen Kodierend < 5% Mensch Nicht- Kodierend Introns etc. Einzelne / gering repetitive Elemente Häufige Wiederholungen Tandem Repeats Verstreute (Interspersed) Repeats 46% Mensch 37,5% Maus
15 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM Tandem Repeats: Megasatelliten: kb lange Blöcke Satelliten: bp, Centromer! Minisatelliten: 6 64 bp, Telomer! Microsatelliten: 1 4 bp, alle Chromosomen Funktion unklar
16 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM Interspersed Repeats: 1. SINEs : Short interspersed nuclear elements 2. LINEs: Long interspersed nuclear elements 3. LTRs: Long terminal repeats 4. DNA Transposons Reverse Transkription, RNA-Zwischenstufe (Retroposition)
17 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM SINEs: Short interspersed nuclear elements z.b. Alu Element: menschliches Genom 280 bp lang 1 Mio Kopien, 1 pro 3 kb hoher GC-Gehalt Giemsa-negative Banden wahrscheinlich über Retrotransposition verbreitetes 7SL RNA-Pseudogen
18 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM Long interspersed nuclear elements LINE-1, LINE-2 Familien LINE-1: Maus und Mensch viele aktiv transponierend 6.1 kb, > repeats Giemsa-positive Banden (AT-reich)
19 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM Gen: a) Nichtkodierende RNA-Gene trnas rrnas snornas: small nucleolar RNAs: rrna Prozessierung snrna: small nuclear RNA: Spliceosome XIST... keine ORFs, oft sehr klein, kein polya
20 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM b) Protein-kodierende Gene
21 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM b) Protein-kodierende Gene
22 Pseudogen: = inaktive Genkopie DNA-Region mit hoher Ähnlichkeit zu bekanntem Gen nicht funktionell, da Signal für Transkription feht (Promotor) oder aufgrund von Mutationen, die Translation verhindern Prozessierte Pseudogene: entstanden durch Retrotransposition von (partiell) gespleisster RNA in Genom häufig: Fehlen von manchen oder allen Introns Unprozessierte Pseudogene: entstanden durch Duplikation oder Degeneration eines vorhandenen Gens
23 Rekorde im humanen Genom! Was ist das größte Gen? DMD = Dystrophin-Gen (2.4 Mb) Was ist die längste kodierende Sequenz? Titin, bp Welches Gen hat die meisten Exons? Titin, 178 Exons Welches Gen enthält das längste Exon? Titin, bp
24 Zusammenfassung Humanes Genom Anzahl Gene: Mensch / Maus: Durschnittl. kodierende Sequenzlänge: 1400 bp Exons pro Transkript: 8.7 (Maus 8.4) 1,5 % des Genoms: kodierende Sequenz Durschnittl. Genlänge: 30 kb => 1/3 des Genoms
25 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM Exofish (Exon Finding by Sequences Homology) is a genomic tool based on the assumption that coding regions are more conserved than non-coding regions through evolution. Therefore, if we compare the genome of two species, regions of homology should reveal coding regions. Exofish is performed with sequences of Tetraodon nigroviridis, and calibrated to annotate human genome.
26 Band, GC, SINE, LINE, SNP, ncrna, CpG, Exofish, EST, Genes, OMIM
27 A2. Evolution des nukleären Genoms Eukaryotische Einzeller Eukaryotische Vielzeller Genomgröße Genzahl - Duplikationen - Enstehung von Mosaikgenen aus Teilen anderer Gene - De novo Genentstehung aus nichtkodierender DNA - Lateraler Gentransfer zwischen Spezies - Chromosomale Rearrangements
28 A2. Evolution des nukleären Genoms Chromosomale Umbauten Vergleich Maus/Mensch
29 A2. Evolution des nukleären Genoms wichtige Begriffe! Paraloge: ähnliche nicht-allelische chromosomale oder DNA-Segmente innerhalb einer Spezies weisen auf engen evolutionären Zusammenhang hin Orthologe: Ähnlichkeit zwischen chromosomalen oder DNA-Segmenten verschiedener Spezies Homologie: ursprünglich Beziehung allelischer chromosomaler Segmente im weiteren Sinne jede Art von Verwandtschaft, welche auf gemeinsamen evolutionären Ursprung hinweist, innerhalb und zwischen Spezies
Interspergierte Repetitive Elemente
Interspergierte Repetitive Elemente SINEs = short interspersed nuclear elements LINES = long interspersed nuclear elements MIR = mammalian wide interspersed repeats (Säugerspezifisch?) DNA-Transposons
Vorlesungsthemen Mikrobiologie
Vorlesungsthemen Mikrobiologie 1. Einführung in die Mikrobiologie B. Bukau 2. Zellaufbau von Prokaryoten B. Bukau 3. Bakterielles Wachstum und Differenzierung B. Bukau 4. Bakterielle Genetik und Evolution
Molekulare Evolution
Molekulare Evolution 1. Grundprinzip: Die Evolution arbeitet aus gegebenen Materialien neue Strukturen (Gene, Organe, usw.) enstehen nur aus schon existierenden Technische vs. Biologische 1. Technische
Arten der Intronen. Spliceosome Struktur des snrnp U1. Spliceosome. Vorlesung 3: Evolution des eukaryotischen Genoms 4/20/11
Vorlesung 3: Evolution des eukaryotischen Genoms Struktur des eukaryotischen Gens Intronen und Exonen Genduplikation--Familien des Gens Eiweißdomänen (Protein domains) Domänen und Exonen: sind sie verwandt?
Das Human-Genom und seine sich abzeichnende Dynamik
Das Human-Genom und seine sich abzeichnende Dynamik Matthias Platzer Genomanalyse Leibniz Institut für Altersforschung - Fritz-Lipmann Institut (FLI) Humangenom - Sequenzierung 1. Methode 2. Ergebnisse
1. Skizzieren Sie schematisch ein Gen mit flankierender Region. Bezeichnen und beschriften Sie:
1. Skizzieren Sie schematisch ein Gen mit flankierender Region. Bezeichnen und beschriften Sie: - 5 UTR (leader) - 3 UTR (trailer) - Terminator - Stopp-Kodon - Initiationskodon - Transkriptionsstartstelle
Local Structures (Examples)
Lokale Strukturen Local Structures (Examples) cruciform from: NAR 1995 23 11, 1977-1983 H-DNA may play a role in eukaryote transcription (only weak evidence) Funktionen lokaler Strukturen (Beispiel) Struktur
Von der Präbiotik über eine RNA-Welt zur DNA-Welt
Von der Präbiotik über eine RNA-Welt zur DNA-Welt Typische Unterschiede zwischen Pro- und Eukaryoten Kein Zellkern Keine Organellen Gene in Operons Polycistronische mrna 5s, 13s + 18s rrna-gene geclustered
GENETIK. für Studierende. Michaela Aubele. für Ahnungslose. Eine Einstiegshilfe. 2. Auflage. Dr. Michaela Aubele, München.
Michaela Aubele GENETIK für Ahnungslose Eine Einstiegshilfe für Studierende 2. Auflage von Prof. Dr. Michaela Aubele, München Mit 52 Abbildungen und 33 Tabellen S. Hirzel Verlag die VII Vorwort V Kurzer
Zentrales Dogma der Biologie
Zentrales Dogma der Biologie Transkription: von der DNA zur RNA Biochemie 01/1 Transkription Biochemie 01/2 Transkription DNA: RNA: Biochemie 01/3 Transkription DNA: RNA: Biochemie 01/4 Transkription RNA:
Aufbau und Funktion des Genoms: Von der Genstruktur zur Funktion
Assoc. Prof. PD Mag. Dr. Aufbau und Funktion des Genoms: Von der Genstruktur zur Funktion Wien, 2013 Währinger Straße 10, A-1090 Wien [email protected] www.meduniwien.ac.at/medizinische-genetik
Klassische Verfahren zur Analyse von Eukaryoten-DNA. Die DNA-Schmelzanalyse:
Klassische Verfahren zur Analyse von Eukaryoten-DNA Die DNA-Schmelzanalyse: Genome unterscheiden sich erheblich in der Basenzusammensetzung (GC-Gehalt) Denaturierte ( geschmolzene ) DNA kann reassoziieren
BCDS - Biochemische Datenbanken und Software
BCDS - Biochemische Datenbanken und Software Seminarinhalte Bioinformatische Genom- und Proteomanalyse Literaturrecherche und Zitation Naturwissenschaftliche Software Termine 25. Mai, 1. Juni, 8. Juni,
Biochemie Vorlesung Die ersten 100 Seiten
Biochemie Vorlesung 11-15 Die ersten 100 Seiten 1. Unterschiede der Zellen Eukaryoten- Prokaryoten Eukaryoten: - Keine Zellwand - Intrazelluläre Membransysteme - Kernhülle mit 2 Membranen und Kernporen
Mobile Genetische Elemente / Transposition
Mobile Genetische Elemente / Transposition Transposition Retrotransposition / Retroviren repetitive Elemente mobile Elemente und Genomevolution / -regulation Gentherapie Berit Jungnickel Institut für Klinische
KV: Genexpression und Transkription Michael Altmann
Institut für Biochemie und Molekulare Medizin KV: Genexpression und Transkription Michael Altmann Herbstsemester 2008/2009 Übersicht VL Genexpression / Transkription 1.) Was ist ein Gen? 2.) Welche Arten
Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016
Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016 Vorbemerkung für die Erlangung des Testats: Bearbeiten Sie die unten gestellten Aufgaben
Typische Unterschiede zwischen Pro- und Eukaryoten
Typische Unterschiede zwischen Pro- und Eukaryoten Kein Zellkern Keine Organellen Gene in Operons Polycistronische mrna 5s, 16s /23s rrna-gene geclustered Gene ohne Introns Keine 5,8s rrna Nur eine RNA-Polymerase
DNA mrna Protein. Initiation Elongation Termination. RNA Prozessierung. Unterschiede Pro /Eukaryoten
7. Transkription Konzepte: DNA mrna Protein Initiation Elongation Termination RNA Prozessierung Unterschiede Pro /Eukaryoten 1. Aus welchen vier Nukleotiden ist RNA aufgebaut? 2. RNA unterscheidet sich
Zellstrukturen und ihre Funktionen Zellkern (inkl. Chromosomen)
Zellstrukturen und ihre Funktionen Zellkern (inkl. Chromosomen) Nukleus aufgebaut aus Kernmembran = Kontinuum aus rauem Endoplasmatischem Reticulum, Kernplasma, Chromatin, Nucleolen 3 verschiedene Zustände
Informationsgehalt von DNA
Informationsgehalt von DNA Topics Genes code, gene organisation, signals, gene detection Genomes genome organisation, nucleotide patterns, junk DNA DNA als Informationsträger DNA Building Blocks Desoxyribose
Transkription in Prokaryoten (Bakterien)
Einführung Transkription in Prokaryoten (Bakterien) Transkription in Eukaryoten - Eukaryotische RNA-Polymerasen - Transkription durch RNA-Polymerase II - Transkription durch RNA-Polymerase I & III - Genregulation
Das internationale Human-Genom Projekt. Stand Ergebnisse Perspektiven
Das internationale Human-Genom Projekt Stand Ergebnisse Perspektiven 2003 1953 April, 25 th, 1953 Watson, J.D., and F.H.C.Crick. 1953. Molecular Structure of Nucleic Acids: A Structure for Deoxynucleic
Modell für rezessive Epistasie
Modell für rezessive Epistasie Selbsten Beide Enzyme aktiv Figure 6-19 Enzym 2 defekt Enzym 1 defekt Kein Substrat Block am ersten Enzym Aufspaltung der F2 in 9:4:3 Suppression Beispiel Hefe a ts Stirbt
Eukaryotische messenger-rna
Eukaryotische messenger-rna Cap-Nukleotid am 5 -Ende Polyadenylierung am 3 -Ende u.u. nicht-codierende Bereiche (Introns) Spleißen von prä-mrna Viele Protein-codierende Gene in Eukaryoten sind durch nicht-codierende
Vorlesung Molekulare Humangenetik
Vorlesung Molekulare Humangenetik WS 2013/2014 Dr. Shamsadin DNA-RNA-Protein Allgemeines Prüfungen o. Klausuren als indiv. Ergänzung 3LP benotet o. unbenotet Seminar Block 2LP Vorlesung Donnerstags 14-16
Posttranskriptionale RNA-Prozessierung
Posttranskriptionale RNA-Prozessierung Spaltung + Modifikation G Q Spleissen + Editing U UUU Prozessierung einer prä-trna Eukaryotische messenger-rna Cap-Nukleotid am 5 -Ende Polyadenylierung am 3 -Ende
Genaktivierung und Genexpression
Genaktivierung und Genexpression Unter Genexpression versteht man ganz allgemein die Ausprägung des Genotyps zum Phänotyp einer Zelle oder eines ganzen Organismus. Genotyp: Gesamtheit der Informationen
Bioinformatik II: Phylogenetik
Bioinformatik II: Phylogenetik phylogenetisch Phylai: griechische Klans phylum: der Stamm phylogenetisch: die Stammesgeschichte von Lebewesen betreffend Hierarchien der Klassifikation: Domäne: Eukaryonten
Transkription Teil 2. - Transkription bei Eukaryoten -
Transkription Teil 2 - Transkription bei Eukaryoten - Inhalte: Unterschiede in der Transkription von Pro- und Eukaryoten Die RNA-Polymerasen der Eukaryoten Cis- und trans-aktive Elemente Promotoren Transkriptionsfaktoren
Genomics. Ernst W. Mayr Fakultät für Informatik TU München
Genomics Ernst W. Mayr Fakultät für Informatik TU München http://wwwmayr.in.tum.de/ A. Biologische Hintergründe nde 1. Gene und Phänotypisches 1.1. Beobachtungen nach Mendel 1.2. Eukaryotische Zelle 1.3.
DNA mrna Protein. Initiation Elongation Termination. RNA Prozessierung. Unterschiede Pro /Eukaryoten
7. Transkription Konzepte: DNA mrna Protein Initiation Elongation Termination RNA Prozessierung Unterschiede Pro /Eukaryoten 3. Aus welchen vier Nukleotiden ist RNA aufgebaut? 4. DNA RNA 5. Ein Wissenschaftler
In den Proteinen der Lebewesen treten in der Regel 20 verschiedene Aminosäuren auf. Deren Reihenfolge muss in der Nucleotidsequenz der mrna und damit
In den Proteinen der Lebewesen treten in der Regel 20 verschiedene Aminosäuren auf. Deren Reihenfolge muss in der Nucleotidsequenz der mrna und damit in der Nucleotidsequenz der DNA verschlüsselt (codiert)
Klonierung von S2P Rolle der M19-Zellen. POL-Seminar der Biochemie II 13.02.2007 Sebastian Gabriel
Klonierung von S2P Rolle der M19-Zellen POL-Seminar der Biochemie II 13.02.2007 Sebastian Gabriel Inhalt 1. Was ist eine humane genomische DNA-Bank? 2. Unterschied zwischen cdna-bank und genomischer DNA-Bank?
DNA-Replikation. Konrad Beyreuther. Stefan Kins
DNA-Replikation Konrad Beyreuther Stefan Kins DNA-Replikation Originalgetreue Verdopplung des genetischen Materials als Voraussetzung für die kontinuierliche Weitergabe der in der DNA verschlüsselten Information
1. Definition und Mechanismen
Zusammenfassung 1. Definition und Mechanismen Epigenetik (von griechisch epi- über ) bezeichnet erbliche Veränderungen in der Genexpression, die nicht von Veränderungen in der DNA Sequenz (Mutationen)
Eine neue RNA-Welt. Uralte RNA-Welt Am Anfang der Entstehung des Lebens. Bekannte RNA-Welt Protein-Synthese. Neue RNA-Welt Regulatorische RNA-Moleküle
RNAs Eine neue RNA-Welt 1. Uralte RNA-Welt Am Anfang der Entstehung des Lebens Bekannte RNA-Welt Protein-Synthese Neue RNA-Welt Regulatorische RNA-Moleküle Uralte RNA-Welt 3. RNA Nucleotide Ribozym-katalysierte
C SB. Genomics Herausforderungen und Chancen. Genomics. Genomic data. Prinzipien dominieren über Detail-Fluten. in 10 Minuten!
Genomics Herausforderungen und Chancen Prinzipien dominieren über Detail-Fluten Genomics in 10 Minuten! biol. Prin cip les Genomic data Dr.Thomas WERNER Scientific & Business Consulting +49 89 81889252
27 Funktionelle Genomanalysen Sachverzeichnis
Inhaltsverzeichnis 27 Funktionelle Genomanalysen... 543 27.1 Einleitung... 543 27.2 RNA-Interferenz: sirna/shrna-screens 543 Gunter Meister 27.3 Knock-out-Technologie: homologe Rekombination im Genom der
Übung II. Einführung, Teil 1. Arbeiten mit Ensembl
Übung II Einführung, Teil 1 Arbeiten mit Ensembl Ensembl Genome Browser (Bereitstellung von Vielzeller Genomen) Projekt wurde 1999 initiiert Projektpartner EMBL European Bioinformatics Institute (EBI)
Molekulare Genetik und Zellbiologie. Versuch 5 Präparation und Amplifikation menschlicher DNA. DNA Fingerprint VNTR-Analyse
Molekulare Genetik und Zellbiologie Versuch 5 Präparation und Amplifikation menschlicher DNA DNA Fingerprint VNTR-Analyse Menschliche Genom 3000 Mb Gene und Gen-verwandte Sequenzen 900 Mb (30%) Extragene
Algorithmus Sortieren von Zahlen (aufsteigend)
Hausaufgabe https://de.wikipedia.org/wiki/dualsystem http://de.wikipedia.org/ieee_754 (Darstellung von Gleitkommazahlen) http://de.wikipedia.org/wiki/wurzel_(mat hematik)#berechnung - lesen, verstehen
DNA Replikation ist semikonservativ. Abb. aus Stryer (5th Ed.)
DNA Replikation ist semikonservativ Entwindung der DNA-Doppelhelix durch eine Helikase Replikationsgabel Eltern-DNA Beide DNA-Stränge werden in 5 3 Richtung synthetisiert DNA-Polymerasen katalysieren die
Vom Gen zum Protein. Zusammenfassung Kapitel 17. Die Verbindung zwischen Gen und Protein. Gene spezifizieren Proteine
Zusammenfassung Kapitel 17 Vom Gen zum Protein Die Verbindung zwischen Gen und Protein Gene spezifizieren Proteine Zellen bauen organische Moleküle über Stoffwechselprozesse auf und ab. Diese Prozesse
DNA, RNA, Molekularbiologie
Biologie DNA, RNA, SALI Library ENTDECKUNG UND AUFBAU Entdeckung der DNA 2 Aufbau und Struktur 3 WIE DIE DNA DEN ORGANISMUS STEUERT Kernsäuren: DNA, RNA 4 Proteine 5 GENEXPRESSION Genexpression Ablesen
Zentrales Dogma der Biochemie Zyklus eines Retrovirus Der Fluss der genetischen Information verläuft von der DNA zur RNA zum Protein. Zumindest bis 19
Unterschiede DNA < > RNA Posttranskriptionale Veränderungen EML BIORUNDE DNA/RNA II Zentrales Dogma der Biochemie Der Fluss der genetischen Information verläuft von der DNA zur RNA zum Protein. Outline
DNA mrna Protein. Initiation Elongation Termination. RNA Prozessierung. Unterschiede Pro /Eukaryoten
7. Transkription Konzepte: DNA mrna Protein Initiation Elongation Termination RNA Prozessierung Unterschiede Pro /Eukaryoten 1. Aus welchen vier Nukleotiden ist RNA aufgebaut? 2. RNA unterscheidet sich
Translation benötigt trnas und Ribosomen. Genetischer Code. Initiation Elongation Termination
8. Translation Konzepte: Translation benötigt trnas und Ribosomen Genetischer Code Initiation Elongation Termination 1. Welche Typen von RNAs gibt es und welches sind ihre Funktionen? mouse huma n bacter
Genetische Kontrolle der Entwicklung mehrzelliger Eukaryonten
1. Was sind maternale Effektgene, wann entstehen aus diesen Genen Genprodukte und wo sind diese lokalisiert? Welche Aspekte der Entwicklung steuern maternale Effektgene? Übung 12 Entwicklungsgenetik Genetische
Molekularbiologie 6c Proteinbiosynthese. Bei der Proteinbiosynthese geht es darum, wie die Information der DNA konkret in ein Protein umgesetzt wird
Molekularbiologie 6c Proteinbiosynthese Bei der Proteinbiosynthese geht es darum, wie die Information der DNA konkret in ein Protein umgesetzt wird 1 Übersicht: Vom Gen zum Protein 1. 2. 3. 2 Das Dogma
Elektronenmikroskopie zeigte die Existenz der A-, P- und E- trna-bindungsstellen. Abb. aus Stryer (5th Ed.)
Elektronenmikroskopie zeigte die Existenz der A-, P- und E- trna-bindungsstellen Die verschiedenen Ribosomen-Komplexe können im Elektronenmikroskop beobachtet werden Durch Röntgenkristallographie wurden
Eine neue RNA-Welt. Uralte RNA-Welt Am Anfang der Entstehung des Lebens. Bekannte RNA-Welt Protein-Synthese. Neue RNA-Welt Regulatorische RNA-Moleküle
RNAs Eine neue RNA-Welt 1. Uralte RNA-Welt Am Anfang der Entstehung des Lebens Bekannte RNA-Welt Protein-Synthese Neue RNA-Welt Regulatorische RNA-Moleküle 2. Eine neue RNA-Welt die Anzahl der nicht-kodierenden
Biochemisches Grundpraktikum
Biochemisches Grundpraktikum Dr. Ellen Hornung; Email: [email protected]; Tel: 39-5748 Einteilung der Praktikumsplätze: Eintragen in Listen am - Dienstag, 10.11.2009, von 12:00 13:00 - Freitag, 13.11.2009,
Translation benötigt trnas und Ribosomen. Genetischer Code. Initiation Elongation Termination
8. Translation Konzepte: Translation benötigt trnas und Ribosomen Genetischer Code Initiation Elongation Termination 1. Welche Typen von RNAs gibt es und welches sind ihre Funktionen? mouse huma n bacter
Reverse Transkription, Rekombination, Transposition
Reverse Transkription, Rekombination, Transposition Hans-Georg Kräusslich, Abteilung Virologie http://virology.hyg.uni-heidelberg.de 27.06.06 Retro- und Pararetroviren Reverse Transkription Integration
Seminar zur Grundvorlesung Genetik
Seminar zur Grundvorlesung Genetik Wann? Gruppe B1: Montags, 1600-1700 Wo? Kurt-Mothes-Saal, Leibniz-Institut für Pflanzenbiochemie Teilnahme obligatorisch, max. 1x abwesend Kontaktdaten Marcel Quint Leibniz-Institut
Molekulargenetik der Eukaryoten WS 2014/15, VL 10. Erwin R. Schmidt Institut für Molekulargenetik
Molekulargenetik der Eukaryoten WS 2014/15, VL 10 Erwin R. Schmidt Institut für Molekulargenetik Replikationsgabel bei Prokaryoten Replikationsgabel bei Eukaryoten Pol e Pol d GINS (Go, Ichi, Nii, and
Die DNA Replikation. Exakte Verdopplung des genetischen Materials. Musterstrang. Neuer Strang. Neuer Strang. Eltern-DNA-Doppelstrang.
Die DNA Replikation Musterstrang Neuer Strang Eltern-DNA-Doppelstrang Neuer Strang Musterstrang Exakte Verdopplung des genetischen Materials Die Reaktion der DNA Polymerase 5`-Triphosphat Nächstes Desoxyribonucleosidtriphosphat
Inhalt Genexpression Microarrays E-Northern
Inhalt Genexpression Microarrays E-Northern Genexpression Übersicht Definition Proteinbiosynthese Ablauf Transkription Translation Transport Expressionskontrolle Genexpression: Definition Realisierung
Inhaltsverzeichnis. 1. Lebensformen: Zellen mit und ohne Kern... 3. 2. DNA: Träger der genetischen Information... 9
Vorwort IX Teil I Grundlagen 1. Lebensformen: Zellen mit und ohne Kern... 3 Eukaryoten... 4 Prokaryoten... 6 Literatur... 8 2. DNA: Träger der genetischen Information... 9 Bausteine: Nucleotide... 10 Doppelhelix...
Promotor kodierende Sequenz Terminator
5.2 Genexpression Sequenz in eine RNA-Sequenz. Die Enzyme, die diese Reaktion katalysieren, sind die DNA-abhängigen RNA-Polymerasen. Sie bestehen aus mehreren Untereinheiten, die von den Pro- bis zu den
Regulation der Genexpression: regulierbare Promotoren, Proteine und sirna
Regulation der Genexpression: regulierbare Promotoren, Proteine und sirna Biochemie Praktikum Christian Brendel, AG Grez Ebenen der Genregulation in Eukaryoten Cytoplasma DNA Zellkern Introns Exons Chromatin
Seminar zur Grundvorlesung Genetik
Seminar zur Grundvorlesung Genetik Wann? Gruppe B5: Donnerstags, 11 15-12 00 Wo? Raum 133 Teilnahme obligatorisch, max. 1x abwesend Kontaktdaten Marcel Quint Leibniz-Institut für Pflanzenbiochemie - Nachwuchsgruppe
Unterschiede zwischen Prokaryoten und. Eukaryont. Unterschiede prokaryotische eukaryotische Zelle. Zellaufbau Prokaryoten. Zellaufbau Eukaryoten
Unterschiede zwischen Prokaryoten und Prokaryoten lassen sich in 2 Reiche unterteilen: Eubakterien und Archaebakterien werden in 4 Reiche unterteilt: Protozoen (Einzeller), Pilze, Pflanzen und Tiere Unterschiede
Ein Unkraut als Modell für Pflanzengenome
Grafik: Hans Guldner Arabidopsis thaliana Ein Unkraut als Modell für Pflanzengenome Klaus Mayer Das zwanzigste Jahrhundert begann mit der Wiederentdeckung der Mendelschen Regeln über die Vererbung bei
Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016
Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016 Fragen für die Übungsstunde 4 (20.06. 24.06.) Regulation der Transkription II, Translation
Versuch von Beadle und Tatum Verändertes Gen -> veränderter Phänotyp
Versuch von Beadle und Tatum Verändertes Gen -> veränderter Phänotyp Neurospora crassa Ein-Gen-ein-Enzym Hypothese Ein-Gen-ein-Polypeptid-Hypothese Ein-Gen-ein-Genprodukt-Hypothese Purves et al. 12.1 1
Mündliche Themen: aus der Grundanforderungen
Mündliche Themen: aus der Grundanforderungen 1 - Sie ziehen Themen aus derselben Liste wegen der ungelungenen Klausuren- 1. Die wichtigsten Eigenschaften des Kohlenstoffes und Wassers im Hinsicht des Lebens
KV: Translation Michael Altmann
Institut für Biochemie und Molekulare Medizin KV: Translation Michael Altmann Herbstsemester 2008/2009 Übersicht VL Translation 1.) Genexpression 2.) Der genetische Code ist universell 3.) Punktmutationen
Genexpression. Introns, T7-Typ DNA Polymerase, RNA Editing, Transsplicing
Genexpression Übersicht Mais mtdna Reis mtdna u. ctdna Introns, T7-Typ DNA Polymerase, RNA Editing, Transsplicing Eukaryotische Genstruktur Aufbau eines Gens Promotor und regulatorische Sequenzen Exons
Institut für Biochemie und Molekulare Medizin. Lecture 1 Translational components. Michael Altmann FS 2011
Institut für Biochemie und Molekulare Medizin Lecture 1 Translational components Michael Altmann FS 2011 Gene Expression Fliessdiagramm der eukaryotischen Genexpression Die Expression eines Gens kann auf
Genkartierung durch Rekombination in Drosophila. Chapter 4 Opener
Genkartierung durch Rekombination in Drosophila Chapter 4 Opener Gekoppelte Allele werden zusammen vererbt n Figure 4-2 Crossing-Over erzeugt neue Allel-Kombinationen Figure 4-3 Crossover zwischen Chromatiden
Expressionskontrolle in Eukaryonten
Expressionskontrolle in Eukaryonten Warum muss Genexpression kontrolliert werden? 1. Gewebsspezifische Kontrolle - nicht jedes Genprodukt ist in allen Zellen erforderlich - manche Genprodukte werden ausschliesslich
Welche Themen werden behandelt?
Welche Themen werden behandelt? Gene Anfang und Ende Detektion von Genen Konservierung als Maß für Funktionalität Verschiedene Arten des Sequenzvergleichs Genome Organisation Chromosomen Zentromere und
Thema: Eukaryotische Genregulation und RNA- Prozessierung. Spleißen, Capping, Polyadenylierung, RNA-Editieren Erwin R. Schmidt 11. 01.
Thema: Eukaryotische Genregulation und RNA- Prozessierung Spleißen, Capping, Polyadenylierung, RNA-Editieren Erwin R. Schmidt 11. 01. 2013 Worin unterscheiden sich die Gene bzw. die Genprodukte von Eukaryoten
Struktur und Eigenschaften der DNA in Pro und Eukaryonten
Struktur und Eigenschaften der DNA in Pro und Eukaryonten Bausteine von Nukleinsäuren: Nukleotide bestehen aus 3 Komponenten: C5-Zucker (RNA: D-Ribose, DNA: 2-Deoxy-D-ribose) Purin- und Pyrimidin-Basen
Evolution & Genetik (Beispiel Hämoglobin) Prof. Dr. Antje Krause FH Bingen 06721 / 409 253 [email protected]
Evolution & Genetik (Beispiel Hämoglobin) Prof. Dr. Antje Krause FH Bingen 06721 / 409 253 [email protected] DNA (Desoxyribonukleinsäure) 5 3 CGATGTACATCG GCTACATGTAGC 3 5 Doppelhelix Basen: Adenin,
Informationsgehalt von DNA
Informationsgehalt von DNA Welche Themen werden behandelt? Gene Code, Genorganisation Signale in DNA Detektion von Genen Genome Genomorganisation Nukleotidmuster Junk DNA 2 DNA als Informationsträger 3
Der Träger aller genetischen Informationen ist die D N A - Desoxyribonucleic acid (Desoxyribonucleinsäure, DNS)
N U C L E I N S Ä U R E N Der Träger aller genetischen Informationen ist die D N A - Desoxyribonucleic acid (Desoxyribonucleinsäure, DNS) BAUSTEINE DER NUCLEINSÄUREN Die monomeren Bausteine der Nucleinsäuren
Antwort: 2.Uracil. Antwort: 2. durch Wasserstoffverbindungen. Adenin, Cystein und Guanin kommen alle in der RNA und DNA vor.
Antwort: 2.Uracil Adenin, Cystein und Guanin kommen alle in der RNA und DNA vor. Thymin kommt nur in der DNA vor; Uracil nimmt seinen Platz in den RNA- Molekülen ein. Antwort: 2. durch Wasserstoffverbindungen
Übung II. Einführung. Teil 1 Arbeiten mit Sequenzen recombinante DNA
Übung II Einführung Teil 1 Arbeiten mit Sequenzen recombinante DNA Recombinante DNA Technologie Protein Synthese In vitro Expression Libraries Gene Transfer in Tieren und Pflanzen Recombinante DNA Technologie
Transkription und Translation sind in Eukaryoten räumlich und zeitlich getrennt. Abb. aus Stryer (5th Ed.)
Transkription und Translation sind in Eukaryoten räumlich und zeitlich getrennt Die Initiation der Translation bei Eukaryoten Der eukaryotische Initiationskomplex erkennt zuerst das 5 -cap der mrna und
MOL.504 Analyse von DNA- und Proteinsequenzen
MOL.504 Analyse von DNA- und Proteinsequenzen Kurs 1 Monika Oberer, Karl Gruber MOL.504 Modul-Übersicht Einführung, Datenbanken BLAST-Suche, Sequenzalignment Proteinstrukturen Virtuelles Klonieren Abschlusstest
Genetische Variabilität
Genetische Variabilität 1. SNPs Indels 1000 Genom Program 2. Kodierende sequenzen 3. Cis-regulatorische Sequenzen 4. Trans-regulatorische Sequenzen 5. Alternative Prozesse 6. Kopien Anzahlvariationen (CNV)
