Das NMR-Experiment Eine kurze Einführung
|
|
|
- Ina Braun
- vor 9 Jahren
- Abrufe
Transkript
1 Multipuls-NMR in der Organischen Chemie Das NMR-Experiment Eine kurze Einführung Spektroskopie bedeutet Wechselwirkung von elektromagnetischer Strahlung (Photonen) mit Materie; meist Absorption, aber auch Beugung und Streuung. Absorption: Die Teilchen werden von einem Grund- (Ruhe-)zustand mit der Energie E 0 in einen angeregten Zustand E 1 versetzt, wenn eine bestimmte, diskrete Energie ΔE (ΔE = E 1 E 0 ) für diese Anregung aufgenommen, absorbiert werden kann. E 1 Die Energie für ein Lichtquant berechnet sich zu ΔE = E 1 -E 2 = h ν = h c/λ mit c = ν λ h? h: Plancksches Wirkungsquantum ν: Anregungsfrequenz c: Lichtgeschwindigkeit E 0 λ: Wellenlänge der Anregungsstrahlung 1
2 Multipuls-NMR in der Organischen Chemie Ausschnitt aus dem elektromagnetischen Spektrum NMR 2
3 Multipuls-NMR in der Organischen Chemie Wie entstehen die diskreten Energiezustände in der NMR? Die meisten Atomkerne haben ein Eigendrehimpuls (Kernspin) p 0 und damit auch ein magnetisches Moment µ = γp. γ ist das magnetogyrische Verhältnis, eine charakteristische Stoffkonstante für jeden Kern [γ(1h) 4 γ(13c)]. Damit µ in unterschiedlichen Energiezuständen exisz tieren kann, muss man es mit einem anderen B0 magnetischen Moment in Wechselwirkung bringen. In der NMR-Spektroskopie verwendet man dazu ein äußeres, statisches Magnetfeld µ H0 mit einer Flussdichte B0. Dies bedeutet, dass für eine NMR-Messung ein Magnetfeld y erzeugt, also ein Labormagnet (links) x aufgestellt werden muss. Die Wechselwirkung wird durch das Vektorprodukt beschrieben und erzeugt eine sog. LARMORPräzession von µ um die Richtung von B0 (z-achse) mit einer Winkelgeschwindigkeit ω0, bzw. der Larmorfrequenz ν0: ω0 = 2 π ν0 = - γ B0 (LARMOR-Beziehung) 3
4 Multipuls-NMR in der Organischen Chemie In B 0 -> ausgewählte Orientierungen für Drehimpulsvektor p (Richtungsquantelung): p = (I(I+1)) 0.5 *(h/2π) 1 H- und 13 C-Kerne -> Spinquantenzahl I = 1/2 Im äußeren Magnetfeld 2I+1 = 2*1/2 +1 = 2 Energiezustände: m = + 1/2 und -1/2 (m = mag. Quantenzahl). Komponente von p in Feldrichtung: p z = m *(h/2π) Die Kernspins präzedieren also mit der Winkelgeschwindigkeit ω 0 auf zwei Kegelmänteln um die z-achse (Richtung von B 0 ). E-Unterschied (α, β) gering -> α-zustand nur geringfügig überpopuliert -> Boltzmann-Verteilung: N β /N α = e - ΔE/kT k = Boltzmann-Konstante und T = absolute Temperatur in K. Dadurch ist die NMR (Nuclear Magnetic Resonance = Kernmagnetische Resonanz) eine recht unempfindlichen und relativ substanzaufwändigen spektroskopischen Methode. Aber ΔE steigt linear mit Zunahme von B 0, da Em = -γ m (h/2π) B 0 x B 0 µ z α, +1/2 (Grundzustand) B 1 y Detektor β, -1/2 (angeregter Zustand) 4
5 Multipuls-NMR in der Organischen Chemie Man gibt die Substanz, die in ca ml Lösungsmittel aufgenommen wird, in einem 5-mm-Probenröhrchen mit Hilfe eines Rotors (Spinner, links) in den Magneten, wo er sich in einem nur wenige cm3 großen Probenraum befindet und meist zur Verbesserung der Feldhomogenität mit Hz rotiert. Strahlt man ein elektromagnetisches Wechselfeld B1 mit ν1 (= ν0, Larmorfrequenz, via RF Spule) in der transversalen Ebene (x,y) ein, kann Energieabsorption erfolgen (α β), sodass sich die Populationen zugunsten des angeregten Zustands (β) verändern. Dabei wird in der transversalen Ebene eine makroskopische Magnetierung erzeugt, die vom Detektor (auch RF coil) registriert und danach zum NMR-Signal weiter verarbeitet wird (-> Tafel). 5
6 Multipuls-NMR in der Organischen Chemie Nach Abschalten von B 1 zerfällt die makroskopische messbare transversale Magnetierung M x/y zu Null (transversale bzw. Spin-Spin Relaxation, T 2 ), und es bildet sich wieder das ursprüngliche Boltzmann-Gleichgewicht unter Energieabgabe zurück (M z ->M z0 longitudinale bzw. Spin-Gitter Relaxation, T 1 ). z y x Eine quantitative Beschreibung des NMR-Experiments folgt im Vorlesungsblock NMR-2 (Instrumentelle Methoden II). 6
7 Multipuls-NMR in der Organischen Chemie B A Figure 1 : (A) Cutaway diagram of a superconducting magnet. (B) Probe assembly. Siehe auch S. 9 7
8 Multipuls-NMR in der Organischen Chemie - The superconducting magnet (600 MHz proton frequency, 14.1 T) (see A,) The very strong (and homogeneous) magnetic fields necessary for high-resolution NMR spectroscopy can only be achieved by superconducting electromagnets. The superconducting magnet itself is cooled by liquid helium (boiling point 4 K = -269 C). At this temperature, the magnet wire is superconducting, meaning that the current flows with negligible resistance. To slow down the evaporation of the helium, a second cooling bath surrounds the helium vessel (Dewar). This second bath consists of liquid nitrogen (boiling point 77 K = -196 C). The radiofrequency probe is located in the central bore of the magnet and is kept at room temperature. The sample is placed inside this probe for the measurements. The temperature of the sample is precisely adjusted by a precooled stream of nitrogen gas that can be heated to the desired temperature. - The triple-resonance probe ( 1 H/ 15 N/ 13 C) with field gradients (see B) The probe consists of a radio frequency (RF) circuit containing a coil for applying RF pulses at a certain nucleus frequency and subsequently detecting the magnetization. In the triple-resonance 1 H/ 15 N/ 13 C probe, there are actually 2 coils: one is used for 1 H and 2 H, the other one is used for 13 C and 15 N. The characteristics of a probe RF circuit as a function of an applied RF frequency w is described by the complex impedance Z = R + i[wl 1 / (wc)] where i = 1, R = resistance, L = inductance, C = capacity. This circuit has minimal impedance (it resonates) at a frequency w 0 = (LC) -1/2. In order to efficiently deliver RF energy to the sample and to optimize signal sensitivity, the probe circuit must be tuned so that the resonance frequency w 0 equals the RF frequency. This is done by adjusting a capacitor, i.e. by changing C. In addition, the impedance of the coil has to be matched to the impedance of the amplifier output. The two adjustments are usually called tuning and matching. - The RF transmitter and receiver equipment The RF transmitter consists of frequency synthesizers and amplifiers for producing pulses at a certain frequency w. These pulses are applied to the probe in order to produce oscillating magnetic fields B 1 at the position of the sample. The receiver includes preamplifier, analog-digital converter (ADC), and several other components. 8
9 Multipuls-NMR in der Organischen Chemie -The data acquisition and processing computer (i.e. the console) For data acquisition, the console permits to set up all parameters of the electronic system. In addition the time sequence of the RF pulses is determined by a program written in a specific language. For data processing, the console permits the digital signal in the time domain to be transformed in the frequency domain (the actual spectrum). Ergänzung zu Figur 1(A), S. 7 -> in der Regel supraleitende Magnete zum Beispiel Magnetspulen aus Niob/Tantal-Draht -> Kühlung notwendig damit supraleitend 9
10 Spektroskopie in der Organischen Chemie Die chemische Verschiebung - 1 Die Messfrequenz ν einer Kernsorte, hier: 1 H (Protonen), hängt bei einem isolierten Kern ausschließlich vom äußeren Magnetfeld (B 0 ) und seinem magnetogyrischen Verhältnis γ, einer Naturkonstanten, ab (Larmor-Beziehung; Grundgleichung der NMR): ν( 1 H) = γ( 1 H) B 0 Dennoch haben nicht alle Wasserstoffatome in realen Molekülen exakt die gleiche Resonanzfrequenz, weil außerdem auch die umgebenden Elektronen einen Einfluss auf ν( 1 H) haben (chemische Umgebung). Die umgebenden Elektronen können lokale Magnetfelder erzeugen und damit B 0 am Ort des Kerns verändern (Abschirmung): B effektiv = B 0 - σ B 0 = B 0 (1 - σ) Die Abschirmungskonstante σ ist zwar gering (10-3 bis 10-6 Hz), reicht aber aus, um einen Resonanzbereich aufzuspannen, innerhalb dessen die 1 H-Signale dispergiert, also separat dargestellt werden. 1 H-NMR-Spektroskopie 1
11 Spektroskopie in der Organischen Chemie Es ist technisch schwierig, absolute Resonanzfrequenzen/ Abschirmungskonstanten σ zu messen. Dies ist zudem nicht leicht reproduzierbar und muss für Messungen bei unterschiedlichem B 0 nachträglich umgerechnet werden. Daher bezieht man Angaben zur Signalposition (ν S ) innerhalb des Messbereiches auf einen internen Standard, das Signal einer universell verwendeten Standard- oder Referenzsubstanz (ν ref ), und gibt nur die relativen Abstände dazu an: ν S - ν ref. Der übliche Standard in der 1 H- und 13 C-NMR-Spektroskopie ist Tetramethylsilan (TMS, Si(CH 3 ) 4 ) (alternativ: T-abh. H 2 0 shift, für hetero relativ zu 1 H basierend auf γ-verhältnis) Immer noch unpraktisch, da ν S direkt proportional zu B 0 ist, also vom Typ des verwendeten Spektrometer-Magneten abhängig ist. Dieses Problem eliminiert man, indem man die Frequenzdifferenz durch die Larmorfrequenz der Referenzsubstanz, ν ref, teilt, wodurch man die chemische Verschiebung δ, erhält: (ν S - ν ref [in Hz]) / ν ref [in Hz] x 10 6 = (ν S - ν ref [in Hz]) / ν ref [in MHz] = δ (in ppm) 1 H-NMR-Spektroskopie 2
12 Spektroskopie in der Organischen Chemie Der Zusatz [ppm] ( 10-6 ; part per million) ist im Prinzip keine Einheit, wird aber nach den neuesten IUPAC-Empfehlungen wie eine Einheit behandelt. Tetramethylsilan [(CH 3 ) 4 Si), TMS mit δ = 0 ppm) ist eine vorteilhafte Referenzverbindung, - weil es eine leicht flüchtige Verbindung ist, die nach der Messung wieder einfach entfernt werden kann, - weil es chemisch inert ist und seine chemische Verschiebung nur wenig vom Messmedium abhängt - und weil fast alle Signale der üblichen Substrate eine deutlich größere, also positive chemische Verschiebung haben. Resonanzbereiche 1 H-Kerne: ca ppm (meisten 1H bei 2 bis 12 ppm, 1 ppm 10-6 ) 13 C-Kerne ca. 250 ppm (z.b. C=O ppm, CH3-2 bis H-NMR-Spektroskopie 3
13 Spektroskopie in der Organischen Chemie Es muss also festgehalten werden: (a) (b) (c) Die chemische Verschiebung δ (auf der ppm-skala) ist unabhängig von der Feldstärke B 0 des für die Messung verwendeten Labormagneten. Die chemische Verschiebung ν (in Hz), gemessen als Frequenzabstand vom TMS-Signal (δ = 0, ν = 0), ist jedoch abhängig von der Feldstärke B 0 ; sie nimmt proportional mit B 0 zu. Die chemische Verschiebung eines Signals, ν in Hz, ergibt sich also aus dem δ-wert multipliziert mit der Messfrequenz in Hz. Beispiel: Wurde die chemische Verschiebung eines Kerns bei einer Messfrequenz von 400 MHz mit δ = 3,25 ppm bestimmt, so ist das Signal 3, Hz = 1300 Hz vom TMS-Signal entfernt. Bei 200 MHz ist der Abstand bei gleichem δ-wert nur 650 Hz. Merke: Während die chemische Verschiebung ν in Hz feldstärkeabhängig ist, sind δ-werte in ppm feldstärkeunabhängig (und auch die Kopplungskonstante J in Hz als substanzspezifische Größe; siehe später). 1 H-NMR-Spektroskopie 4
14 Spektroskopie in der Organischen Chemie Einiges zum Sprachgebrauch: Wird ein Kern entschirmt, verschiebt sich sein NMR-Signal zu höheren Frequenzen oder paramagnetisch (im Spektrum nach links). Die veraltete Bezeichnung, das Signal werde tieffeldverschoben ist zwar immer noch gebräuchlich, sollte aber vermieden werden. Wird ein Kern abgeschirmt, verschiebt sich sein NMR-Signal zu kleineren Frequenzen oder diamagnetisch (im Spektrum nach rechts). Die veraltete Bezeichnung ist: hochfeldverschoben. entschirmt 1 H abgeschirmt zu hohen Frequenzen (paramagnetisch) verschoben zu niedrigen Frequenzen (diamagnetisch) verschoben 10 5 δ (ν, E) 0 1 H-NMR-Spektroskopie 5
15 Spektroskopie in der Organischen Chemie Merke: Die Begriffe Abschirmung und Entschirmung beziehen sich immer auf die Kerne; es handelt sich um eine physikalische Eigenschaft. Der Begriff Signalverschiebung bezieht sich immer auf die NMR-Signale und das Spektrum; es ist das Ergebnis einer Messung. Die Bezeichnungen hoch- und tieffeldverschoben sind deswegen veraltet, weil sie aus der Zeit der sog. Sweep-Spektroskopie ( Continuous-Wave ) stammen, bei der in der Tat während der Messung das magnetische Feld verändert wurde. In der heute praktisch ausschließlich verwendeten Puls-Fourier- Transform-(PFT)-Methode wird dagegen kein magnetisches Feld mehr variiert. Die genannten Bezeichnungen sind daher nach dem Übergang zur PFT-Methode (während der 1970er Jahre) physikalisch sinnlos geworden, aber wegen ihrer Griffigkeit immer noch weit verbreitet. 1 H-NMR-Spektroskopie 6
Die chemische Verschiebung - 1
Die chemische Verschiebung - 1 Die Messfrequenz ν einer Kernsorte, hier: 1 H (Protonen), hängt bei einem isolierten Kern ausschließlich vom äußeren Magnetfeld (B 0 ) und ihrem magnetogyrischen Verhältnis
Das NMR-Experiment in der Vektordarstellung
Das NMR-Experiment in der Vektordarstellung Kerne mit einer Spinquantenzahl I = ½ ( 1 H, 13 C) können in einem äußeren statischen homogenen Magnetfeld B 0 (Vektorfeld) zwei Energiezustände einnehmen: +½
NMR Spektroskopie. 1nm Frequenz X-ray UV/VIS Infrared Microwave Radio
NMR Spektroskopie 1nm 10 10 2 10 3 10 4 10 5 10 6 10 7 Frequenz X-ray UV/VIS Infrared Microwave Radio Anregungsmodus electronic Vibration Rotation Nuclear Spektroskopie X-ray UV/VIS Infrared/Raman NMR
Kernmagnetische Resonanzspektroskopie. N Nuclear M Magnetic R Resonance Beobachtung magnetisch aktiver Kerne in einem äußeren Magnetfeld
NMR- SPEKTROSKOPIE Prüfungsfrage Radiospektroskopische Methode: NMR. Das Spin und magnetische Moment, die Bedingung der Resonanz, Spektralspaltung, chemische Verschiebung. Kernmagnetische Resonanzspektroskopie
Spektroskopische Methoden in der Organischen Chemie (OC IV) NMR Spektroskopie 1. Physikalische Grundlagen
NMR Spektroskopie 1. Physikalische Grundlagen Viele Atomkerne besitzen einen von Null verschiedenen Eigendrehimpuls (Spin) p=ħ I, der ganz oder halbzahlige Werte von ħ betragen kann. I bezeichnet die Kernspin-Quantenzahl.
Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a)
Doppelspalt (ideal) Doppelspalt (real) Zentralabstand b, Spaltbreite a Dreifachspalt Zentralabstand b, Spaltbreite a Beugungsgitter (N Spalte, N
Bestimmung der Struktur einer (un)bekannten Verbindung
Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektrometrie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie H 3 C H 3
Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ
Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Viele Kerne besitzen einen Spindrehimpuls. Ein Kern mit der Spinquantenzahl I hat einen Drehimpuls (L)
Kernmagnetische Resonanzspektroskopie (NMR) Spektroskopische Methoden
Kernmagnetische Resonanzspektroskopie (NMR) Spektroskopische Methoden Grundlagen Die meisten Atomkerne führen eine Drehbewegung um die eigene Achse aus ("Spin"). Da sie geladene Teilchen (Protonen) enthalten,
Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen
Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen Seminar 5. 0. 200 Teil : NMR Spektroskopie. Einführung und Physikalische Grundlagen.2 H NMR Parameter: a) Chemische
Chemisches Grundpraktikum II (270002) Kernresonanzspektroskopie. NMR-Spektroskopie
hemisches Grundpraktikum II (270002) Kernresonanzspektroskopie NMR-Spektroskopie (Nuclear Magnetic Resonance). Kählig, SS 2010 Von der Substanz zur Struktur Substanz NMR - Spektren Struktur N N 1 Spektroskopie
Kernmagnetismus und Magnetfelder
Kernmagnetismus und Magnetfelder. Kernspin Die meisten Kerne besitzen einen Eigendrehimpuls oder P ist gequantelt P = h I(I + ) h = h und h: das Plancksche Wirkungsquantum. π I: Kernspinquantenzahl (kurz:
Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie
1 H-NMR-Spektroskopie nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 4.1 Allgemeines Spektroskopische Methode zur Untersuchung von Atomen: elektronische Umgebung Wechselwirkung
NMR - Seite 1. NMR (Kernresonanzspektroskopie) Allgemeines zur Theorie
NMR - Seite 1 NMR (Kernresonanzspektroskopie) Allgemeines zur Theorie Protonen besitzen ebenso wie Elektronen einen eigenen Spin (Drehung um die eigene Achse).Allerdings gibt es mehrere Möglichkeiten als
Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17
Teil 2 NMR-Spektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality 1 Einführung: NMR, was ist das? NMR = Nuclear Magnetic Resonance oder zu deutsch: Kernspinresonanz
Kernresonanzspektroskopie
Gleich geht s los! Kernresonanzspektroskopie 1. Geschichtliche Entwicklung 2. Physikalische Grundlagen 3. Das NMR-Spektrometer 4. Anwendung der 1 H-NMR-Spektren zur Analyse der Konstitution von Molekülen
Eigenschaften einiger für die NMR-Spektrometrie organischer Verbindungen wichtiger Kerne
Der Zusammenhang zwischen dem magnetischen Moment eines Atomkerns und seines mechanischen Drehimpulses lautet: μ=γ J, wobei γ das gyromagnetische Verhältnis ist. Der mechanische Drehimpuls ist durch die
2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung
2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung Übergang zwischen den beiden Energieniveaus ω l = γb 0 γ/2π Larmor-Frequenz ν L 500 400 300 200 100 ν L = (γ/2π)b 0 [MHz/T] 1 H 42.57
Physikalische Grundlagen der Magnetresonanz-Tomographie MRT
Physikalische Grundlagen der Magnetresonanz-Tomographie MRT http://www.praxis-nuramed.de/images/mrt_3_tesla.png Seminarvortrag am 30.05.2016 von Nanette Range MRT Bilder Nanette Range 30.05.2016 2 Motivation
NMR Spektroskopie (Nuclear Magnetic Resonance Kern-Magnetische Resonanz)
NMR Spektroskopie (Nuclear Magnetic Resonance Kern-Magnetische Resonanz) Viele Atomkerne besitzen einen von Null verschiedenen Eigendrehimpuls (Spin) p = ħ I, der ganz - oder halbzahlige Werte von ħ betragen
Multipuls-NMR in der Organischen Chemie. Puls und FID
Puls und FID Obwohl der Puls eine bestimmte, am NMR-Spektrometer vorab eingestellte Sendefrequenz ν 1 hat, ist er in der Lage, über einen relativ weiten Frequenzbereich von mehreren khz, den gesamten Resonanzbereich
NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums
NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums Martin Fuchs 1 Motivation Die Nuclear Magnetic Resonance, oder zu deutsch Kernspinresonanz ist vor allem durch die aus der Medizin nicht mehr wegzudenkende
Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance
Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Andreas Bünning 9. Januar 2012 Betreuer: Dr. Andreas Thomas Seite 1 3 PHYSIKALISCHE GRUNDLAGEN 1 Motivation Die nuclear magnetic resonance,
NMR Spektroskopie I = 0 : C, 16 O (sogenannte gg-kerne haben immer I=0!) I = 1/2: 1 H, 13 C, 15 N, 19 F, 31 P,... I = 1: 2. H=D, 6 Li, 14 N I = 3/2: 7
NMR Spektroskopie folie00 Viele Atomkerne besitzen einen von Null verschiedenen Eigendrehimpuls (Spin) p=ħ I, der ganz oder halbzahlige Werte von ħ betragen kann. I bezeichnet die Kernspin-Quantenzahl.
VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur
VL 16 VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2. Paschen-Back Effekt VL15. Wasserstoffspektrum 15.1. Lamb Shift VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz
1. Allgemeine Grundlagen Quantenmechanik
1. Allgemeine Grundlagen 1.3. Quantenmechanik Klassische Mechanik vs Quantenmechanik Klassische (Newton sche) Mechanik klassischer harmonischer Oszillator Quantenmechanik quantenmechanischer harmonischer
UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick
UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische hemie Prof. Dr. B. Dick PHYSIKALISH-HEMISHES PRAKTIKUM (Teil Ic) (Spektroskopie) Versuch NMR Protonenresonanz 0 http://www-dick.chemie.uni-regensburg.de/studium/praktikum1c.html
4.57 ppm 1.45 ppm = 3.12 ppm 3.12 ppm * MHz = Hz Hz = rad/sec
(1) Zwei Signale liegen im Protonenspektrum bei 1.45 und 4.57 ppm, das Spektrometer hat eine Frequenz von 400.13 MHz. Wieweit liegen die Signale in Hz bzw. in rad/sec auseinander? 4.57 ppm 1.45 ppm = 3.12
NMR-Spektroskopie Teil 2
BC 3.4 : Analytische Chemie I NMR Teil 2 NMR-Spektroskopie Teil 2 Stefanie Wolfram [email protected] Raum 228, TO Vom Spektrum zur Struktur 50000 40000 Peaks u. Integrale 30000 Chemische Verschiebung
Übungsaufgaben zur NMR-Spektrometrie
Übungsaufgaben NMR 33 Übungsaufgaben zur NMR-Spektrometrie Aufgabe 1 a) Wieviele unterschiedliche Orientierungen des Kernmomentes relativ zu einem externen Magnetfeld sind beim 14 N-Kern (I = 1, γ = 1.932
Methodische Ansätze zur Strukturaufklärung: Rnt. - Kernmagnetische Resonanzspektroskopie (NMR)
? Methodische Ansäte ur Strukturaufklärung: - Rastersondenmikroskopie (AFM, SPM) SPM - Röntgenbeugung Rnt. - Elektronenspektroskopie (UV-vis) UV-vis - Schwingungsspektroskopie (IR) IR - Massenspektroskopie
Polarisationstransfer
Polarisationstransfer Schon früh in der Geschichte der NMR-Spektroskopie hat man Experimente durchgeführt, bei denen auf einzelne Signale, d.h. bestimmte Spinübergänge, selektiv mit einer B 2 -Frequenz
Ferienkurs Experimentalphysik Übung 2 - Musterlösung
Ferienkurs Experimentalphysik 4 00 Übung - Musterlösung Kopplung von Drehimpulsen und spektroskopische Notation (*) Vervollständigen Sie untenstehende Tabelle mit den fehlenden Werten der Quantenzahlen.
Kernmagnetische Resonanz
Strahlung Kernmagnetische Resonanz Die verschiedenen Arten der Spektroskopie nutzen die Adsorption, Emission oder Streuung von Strahlen an Atomen oder Molekülen. Die Kernresonanzspektroskopie im speziellen
Strukturaufklärung (BSc-Chemie): Einführung
Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme
Wo ist der magnetische Nordpol der Erde?
Wo ist der magnetische Nordpol der Erde? A B C D am geographischen Nordpol am geographischen Südpol Nahe am geographischen Südpol Nahe am geographischen Nordpol 3. Magnetische Phänomene 3.1. Navigation,
14. Atomphysik. Inhalt. 14. Atomphysik
Inhalt 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment
3.7 Elektronenspinresonanz, Bestimmung des g-faktors
1 Einführung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 3 - Atomphysik 3.7 Elektronenspinresonanz, Bestimmung des g-faktors Die Elektronenspinresonanz (ESR) ist ein Verfahren, das in vielen
Kernmagnetische Resonanz NMR
Kernmagnetische Resonanz: NMR F. Bloch E.M. Purcell: NMR 195 Physik Standard-Technik zur Strukturanalyse in der Organischen Chemie Kernmagnetische Resonanz NMR Kern: Eigenschaft der Atomkerne wird Kernspin
NMR-Lösungsmittel. 1 H-NMR. Bei der Verwendung der normalen, nichtdeuterierten Lösungsmittel. Spektroskopie in der Organischen Chemie
NMR-Lösungsmittel In der werden i.a. deuterierte Lösungsmittel verwendet. ie Substitution der leichten durch die schweren Wasserstoffatome hat zwei Vorteile: - euterium als Spin-1-Kern hat ebenfalls ein
14. Atomphysik Physik für E-Techniker. 14. Atomphysik
14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment
Einführung in die ENDOR- Spektroskopie
Einführung in die ENDOR- Spektroskopie Institut für Chemie und Biochemie Freie Universität Berlin Stand: 1996 Inhalt (1) 1. Einführung 2. Grundlagen 2.1. ENDOR-Spektroskopie 2.2. TRIPLE-Resonanz 2.3. Spektrometer-Aufbau
14. Atomphysik Aufbau der Materie
14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment
Bestimmung der Struktur einer (un)bekannten Verbindung
Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektroskopie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie neue Produktlinie,
SMT Chipinduktivitäten SMT Chip Inductors. Baugröße / Size 1812 (4532) Serie / Series 5309, compliant
SMT Chipinduktivitäten SMT Chip Inductors compliant Baugröße / Size 1812 (4532) Serie / Series 539, 559-56 - Allgemeine Eigenschaften und technische Informationen zu den en SMD-Spulen Mit der Baugröße
MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM
MRT Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM WARUM SIND RÖNTGEN UND CT NICHT GENUG? MAGNETRESONANZTOMOGRAPHIE Die Große Frage? "Image by AZRainman.com Wie schaffen wir das überhaupt?
Magnetische Resonanzmethoden
Nuclear Magnetic Resonance (NMR) und Electron Spin Resonance (ESR) Kernspinresonanz und Elektronenspinresonanz Wichtige Technik in der organischen Chemie Zahlreiche Anwendungen in der Chemie, Medizin,
Vorlesung "Grundlagen der Strukturaufklärung"
Vorlesung "Grundlagen der trukturaufklärung" für tudenten des tudiengangs "Bachelor Chemie" ommersemester 2003 Zeit: Montag, 9:00 bis 12:00 und Dienstag, 12:00 bis 14:00 Ort: MG 088 (Montags) und MC 351
Einführung in die NMR-Spektroskopie. NMR-Spektroskopie. Teil 1: Einführung und Grundlagen der 1 H NMR. Das NMR Spektrometer
NMR-Spektroskopie Einführung in die NMR-Spektroskopie m I = - /2 (β) Teil : Einführung und Grundlagen der NMR E E. Physikalische und apparative Grundlagen m I = + /2 (α).2 Das D NMR Experiment.3 Die chemische
VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie
VL 17 VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz VL 17 17.1. Elektronenspinresonanz 17.2. Kernspintomographie Wim de Boer, Karlsruhe Atome und Moleküle, 21.06.2012 1 Magnetische
VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie
VL 17 VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz VL 17 17.1. Elektronenspinresonanz 17.2. Kernspintomographie Wim de Boer, Karlsruhe Atome und Moleküle, 21.06.2012 1 Magnetische
Bildbeispiele Physikalisches Prinzip Hounsfield-Einheiten Bilderzeugung. Strahlenbelastung Bildbeispiele. Hirn - Weichteilfenster
Prof. Dr. med. P. Schramm Röntgen- Computer-Tomografie Magnet-Resonanz-Tomografie Physikalisches Prinzip Dr. rer. nat. Uwe H. Melchert Röntgen - Computer-Tomografie Bildbeispiele Physikalisches Prinzip
III. Strukturbestimmung organischer Moleküle
III. Strukturbestimmung organischer Moleküle Röntgenstrukturbestimmung g Spektroskopie UV-VIS IR NMR Massenspektrometrie (MS) Röntgenstruktur eines bakteriellen Kohlenhydrats O O O O O O O C3 Röntgenstruktur
Vorlesung Allgemeine Chemie (CH01)
Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut
Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie
1 H-NMR-Spektroskopie nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 4 NMR-Spektroskopie 5.1 1 H-NMR-Spektroskopie Wasserstoffatome ( 1 H, natürliche Häufigkeit 99,985 %) mit
Thema heute: Aufbau der Materie: Das Bohr sche Atommodell
Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte
Grundlagen der Quantentheorie
Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische
Magnetresonanztomographie (MRT) * =
γ * γ π Beispiel: - Protonen ( H) Messung - konstantes B-Feld (T) in -Richtung - Gradientenfeld (3mT/m) in -Richtung - bei 0: f 00 4,6 MH Wie stark ist Frequenveränderung Df der Spins bei 0 mm? f (0mm)
Atom-, Molekül- und Festkörperphysik
Atom-, Molekül- und Festkörperphysik für LAK, SS 2016 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 2. Vorlesung, 17. 3. 2016 Wasserstoffspektren, Zeemaneffekt, Spin, Feinstruktur,
Mößbauer-Spektroskopie Vortrag zum apparativen Praktikum SS 05. Hella Berlemann Nora Obermann
Mößbauer-Spektroskopie Vortrag zum apparativen Praktikum SS 05 Hella Berlemann Nora Obermann Übersicht: Mößbauer (1958): rückstoßfreie Kernresonanzabsorption von γ-strahlen γ-strahlung: kurzwellige, hochenergetische,
Bildgebende Systeme in der Medizin
Hochschule Mannheim 11/10/2011 Page 1/20 Bildgebende Systeme in der Medizin Magnet Resonanz Tomographie I: Kern-Magnet-Resonanz Spektroskopie Multinuclear NMR Lehrstuhl für Computerunterstützte Klinische
Versuchsprotokoll: Magnetische Kernresonanz (NMR)
Versuchsprotokoll: Magnetische Kernresonanz (NMR) Christian Buntin, Jingfan Ye Gruppe 221 Karlsruhe, 22. November 2010 Inhaltsverzeichnis 1 Theoretische Grundlagen 2 1.1 Kernspin und magnetisches Moment.............................
Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen
Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin
Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306
Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 [email protected]
22. Wärmestrahlung. rmestrahlung, Quantenmechanik
22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von
Digitalisierung und ihre Konsequenzen
Digitalisierung und ihre Konsequenzen Bisher haben wir im Zusammenhang mit dem FID und den daraus resultierenden frequenzabhängigen Spektren immer nur von stetigen Funktionen gesprochen. In Wirklichkeit
Spin-Echo und J-Modulation; APT
Spin-Echo und J-Modulation; APT Stellen wir uns ein PFT-Experiment vor, bei dem ν = ν 0 - ν 1 = 0 und der Puls ein 90 0 -Puls sein soll. Außerdem wollen wir der Einfachheit halber zunächst annehmen, dass
27. Wärmestrahlung. rmestrahlung, Quantenmechanik
24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung
Spektroskopische Methoden in der Organischen Chemie (OC IV) C NMR Spektroskopie
6. 3 C NMR Spektroskopie Die Empfindlichkeit des NMR Experiments hängt von folgenden physikalischen Parametern (optimale Abstimmung des Spektrometers vorausgesetzt) ab: Feldstärke B o, Temperatur T, gyromagnetisches
2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment
Prof. Dieter Suter / Prof. Roland Böhmer Magnetische Resonanz SS 03 2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment 2.1.1 Felder und Dipole; Einheiten Wir beginnen mit einer
15 Kernphysik Physik für E-Techniker. 15 Kernphysik
15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.
2) In welcher Einheit wird die Energie (x-achse) im NMR-Spektrum angegeben und wie ist sie definiert?
Aufgabe 1: Verständnisfragen 1) Welche Eigenschaften eines Atomkerns führen zu einem starken NMR-Signal? (man sagt der Kern hat eine große Empfindlichkeit) Ein Isotop eines Elements wird empfindlich genannt,
Fundamentale Physikalische Konstanten - Gesamtliste Relativer Größe Symbol Wert Einheit Fehler
UNIVERSELLE KONSTANTEN Vakuumlichtgeschwindigkeit c, c 0 299 792 458 m s 1 (exact) Magnetische Feldkonstante des Vakuums µ 0 4π 10 7 N A 2 (exact) =12.566 370 614... 10 7 N A 2 (exact) Elektrische Feldkonstante
Radiologie Modul I. Teil 1 Grundlagen Röntgen
Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE
Elektromagnetische Wellen
Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch
Fortgeschrittenenpraktikum
Fortgeschrittenenpraktikum Nuclear Magnetic Resonance (NMR) Standort: Physikgebäude, Raum PHY D012 Versuchsdurchführung: - Donnerstag: 11-17 Uhr - Freitag: 8-16 Uhr - Im Sommersemester können die Anfangszeiten
Auf dem Weg zur Beherrschung der Gefahren Simulation der Wechselwirkungen des HF Feldes mit Implantaten
Auf dem Weg zur Beherrschung der Gefahren Simulation der Wechselwirkungen des HF Feldes mit Implantaten Prof. Dr. Waldemar Zylka Professor der Physik und Medizintechnik Fachhochschule Gelsenkirchen Fachbereich
Molekulare Biophysik. NMR-Spektroskopie (Teil 2)
Molekulare Biophysik NMR-Spektroskopie (Teil 2) NMR-Parameter NMR-Parameter 3/88 Folgenden NMR-Parameter sind von Interesse chemische Verschiebung skalare Kopplung Relaxation / NOE-Effekt NMR-Parameter
Edelgas-polarisierte. NMR- Spektroskopie. Jonas Möllmann Jan Mehlich. SoSe 2005
Edelgas-polarisierte NMR- Spektroskopie Jonas Möllmann Jan Mehlich SoSe 2005 NMR Prinzip Aufspaltung der Kernspins in verschiedene Niveaus durch angelegtes Magnetfeld Messung des Besetzungs- unterschiedes
A 52 GRUNDLAGEN DER NMR (DER KERN-ZEEMAN-EFFEKT) Ziel des Versuches
Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 52 GRUNDLAGEN DER NMR (DER KERN-ZEEMAN-EFFEKT) Ziel des Versuches Die NMR-Spektroskopie ist eine wichtige Charakterisierungsmethode
Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17
Teil 2 NMR-Spektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality 1 Rückblick Kerne haben magn. Moment, dass sich entlang der Magnetfeldlinien eines statischen
Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18
Teil 2 NMR-Spektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 www.ruhr-uni-bochum.de/chirality 1 Rückblick Kerne haben magn. Moment, dass sich entlang der Magnetfeldlinien eines statischen
[[ [ [ [[ Natur, Technik, Systeme. Test, Dezember Erstes Semester WI10. PV Panel und Kondensator
Natur, Technik, Systeme Test, Dezember 00 Erstes Semester WI0 Erlaubte Hilfsmittel: Bücher und persönlich verfasste Zusammenfassung. Rechen- und Schreibzeugs. Antworten müssen begründet und nachvollziehbar
18. Strukturaufklärung in der Organischen Chemie
Inhalt Index 18. Strukturaufklärung in der Organischen Chemie Die Kenntnis der zahlreichen organischen Reaktionen und funktionellen Gruppen, die in den vorangegangenen Kapiteln vorgestellt wurden, sollten
27. Wärmestrahlung. rmestrahlung, Quantenmechanik
25. Vorlesung EP 27. Wärmestrahlung V. STRAHLUNG, ATOME, KERNE 27. Wä (Fortsetzung) Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung und Materie Versuche: Quadratisches Abstandsgesetz
Homonukleare Korrelationsspektroskopie (COSY)
Homonukleare Korrelationsspektroskopie (COSY) Hier wird ähnlich wie bei HETCOR in beiden Dimensionen die chemische Verschiebung abgebildet. Im homonuklearen Fall ( 1 H, 1 H COSY) jedoch, ist es in beiden
