Bildgebende Systeme in der Medizin

Größe: px
Ab Seite anzeigen:

Download "Bildgebende Systeme in der Medizin"

Transkript

1 Hochschule Mannheim 11/10/2011 Page 1/20 Bildgebende Systeme in der Medizin Magnet Resonanz Tomographie I: Kern-Magnet-Resonanz Spektroskopie Multinuclear NMR Lehrstuhl für Computerunterstützte Klinische Medizin Medizinische Fakultät Mannheim, Universität Heidelberg Theodor-Kutzer-Ufer 1-3 D Mannheim, Deutschland Literatur 11/10/2011 Page 2/20

2 Historie der MRT Bildgebung 11/10/2011 Page 3/ Pauli suggests that nuclear particles may have angular momentum (spin) Rabi measures magnetic moment of nucleus. Coins magnetic resonance (Physik) Rabi Magnetische Resonanzmethode 1971 Damadian patent: Apparatus and method for detecting cancer in tissue 1973 Lauterbur publishes method for generating images using NMR gradients 1976 first image of human hand s MRI scanners become clinically prevalent (Physiologie/Medizin) Lauterbur & Mansfield Bildgebung mit NMR 1896 Pieter Zeeman discovered line splitting for materials placed in magnetic field (Physik) Zeeman & Lorentz Zeeman- Effekt 1946 Purcell shows that matter absorbs energy at a resonant frequency Bloch demonstrates that nuclear precession can be measured in detector coils (Physik) Bloch & Purcell Messung magnetischer Kraftfelder 1973 Mansfield independently publishes gradient approach to MR First whole body image Aberdeen 1990 Ogawa and colleagues create functional images using endogenous, blood-oxygenation contrast. MRT I: Spektroskopie Praktikum 9,4T MRT II: Bildgebung Praktikum 3T MRT III: Anwendungen und Forschungsthemen 11/10/2011 Page 4/20 MRT Komponenten & Physikalische Parameter radio- gradients G xyz static field frequency RF shim coils gradient shim transmitter receiver technical component physical parameter static field M 0 radiofreq. RF signal control panel computer 350 MHz 350 MHz image processor gradients G xyz image

3 MRI Systeme 11/10/2011 Page 5/20 11/10/2011 Page 6/20 Der Kernspin Kernspin Nukleares Magnetisches Moment Rotation Statisches Magnetfeld 1. Kerne mit ungerader Anzahl Protonen und/oder Neutronen besitzen einen Spin 2. Spin kann man sich als Eigenrotation des Kerns vorstellen 3. Im Magnetfeld wird die Rotationsfrequenz abhängig von der Feldstärke

4 Klassische Betrachtung des Drehimpulses 11/10/2011 Page 7/20 Kernspin (Drehimpuls) Nukleares Magnetisches Moment L µ Rotation ω Statisches Magnetfeld v I = q Ladung auf Kreisbahn 2πr µ = I A Kreisstrom erzeugt magnetisches Moment L = r p Bahndrehimpuls r r ω r v r Quantenmechanik 11/10/2011 Page 8/20 Drehimpuls Magn. Moment L = r p r L =h I quantisiert µ = I A µ = γhi r Protonen haben Spin I=1/2 Gyromagnetisches Verhältnis µ γ = L Im Magnetfeld wird Rotationsfrequenz abhängig von der Feldstärke: Larmor Frequenz ω = γ Unter Annahme, dass in z-richtung zeigt gilt: 0 L z = mh Z-Komponente gequantelt 1 m = ± 2 Magnetquantenzahl I r h Spinoperator Plancksches Wirkungsquantum

5 Zeemann Effekt (1896) 11/10/2011 Page 9/20 m = -1/2 M 0 E = ħ ω = h f = γħ m = +1/2 B = 0 B = Curie s law: M 0 = ρ I(I+1) γ 2 h 2 3kT 11/10/2011 Page 10/20 M 0 Die resultierende Magnetisierung(quantitativ) Das Verhältnis der auf- zu abgerichteten Spins ist durch die Boltzmann Gleichung bestimmt: N N down up = e E kt wobei N down = Anzahl der entgegen dem Magnetfeld gerichteten Spins, N up = Anzahl der mit dem Magnetfeld gerichteten Spins, Auf Zimmertemperatur ist die Differenz sehr gering (Die resultierende Magnetisierung wird pro Tesla nur von % der 1 H Kerne gewährleistet) thermisches Rauschen vermindert eine höhere Polarisation. Demzufolge ist die MRT Sensitivität schwach! Bemerke: Die Polarisation ist bei gegebener Temperatur nur durch die statische Magnetfeldstärke und das gyromagnetische Moment gegeben.

6 11/10/2011 Page 11/20 MR Aktive Kerne nucleus spin I gyromagnetic ratio γ [10 8 rad s -1 T -1 ] natural abundance of isotope in % sensitivity for = const. in % (rel. to 1 H) S ~ 1 H 1/2 2,675 99,98 100,00 19 F 1/2 2, ,00 83,40 23 Na 3/2 0, ,00 9,27 31 P 1/2 1, ,00 6,65 2 H 1 0,410 0,01 9, C 0-98,89-13 C 1/2 0,673 1,11 1, N 1 0,193 99,63 1, O 0-99,76-17 O 5/2-0,363 0,04 1, Cl 3/2 0,262 75,77 3, K 3/2 0,125 93,26 4, Mg 5/2-0,164 10,00 2, Ca 7/2-0,180 0,14 8, S 3/2 0,205 0,75 1, /10/2011 Page 12/20 MR Spektroskopie Das Objekt befindet sich im homogenen statischen Magnetfeld Die RF-Spule erzeugt ein verändeliches Magnetfeld B 1 orthogonal auf Nach der Anregung wird das MR Signal in einer RF Spule empfangen

7 11/10/2011 Page 13/20 Signal Preparation 1. Zunächst zufällige Ausrichtung der magnetischen Momente 2. Statisches erzeugt resultierenden Magnetisierungsvektor 3. Magnetisches Wechselfeld B 1 lenkt diesen um den Flipwinkel α aus RF High frequency B 1 y z 11/10/2011 Page 14/20 Signal Messung Die rotierende Magnetisierung induziert eine Messspannung in der Empfangsspule - + mv y x

8 Faraday Induktion 11/10/2011 Page 15/20 Dynamo Rotierender Magnet unter einer geschlossenen Leiterschelife Resultierende Magnetisierung im Koordinatensystem z N S x M y y U ind dφ = dt U ind induzierte Spannung Φ... magnetischer Fluss durch Leiterschleife t Zeit signal intensity M xy free induction decay: FID time 11/10/2011 Page 16/20 Signal Detektion Basiert auf: - Induktionsgesetz - Prinzip der Reziprozität Elektromagnetische Induktion: durchsetzt ein zeitlich veränderlicher magnetischer Fluss eine geschlossene Leiterschelife, wird eine Spannung induziert, deren Amplitude proportional zur zeitlichen Änderung des magnetischen Flusses durch die Leiterschleife ist. Φ = B dφ da U ind = A dt Prinzip der Reziprozität: Die Empfangssensitivität für eine rotierende Magnetisierung im Punkt P(x,y,z) entspricht genau dem notwendigen Stromfluss in der verwendeten Leiterschleife, der benötigt wird um eine genauso große Magnetisierung in diesem Punkt P zu erzeugen (Biot-Savart Gesetz).

9 RUPRECHT-KARLS 11/10/2011 Page 17/20 RF Spulen: Volumen Resonatoren RUPRECHT-KARLS 11/10/2011 Page 18/20 Zusammenfassung Komponenten eines Spektrometers: - Polarisationsmagnet - Shimspulen - Hochfrequenzspule - Breitbandverstärker zum Senden und Empfangen Das MR Signal: - magnetisches Moment des Kerns - Drehimpuls des Kerns - Magnetisierung bildet sich aus Anregung mit RF Puls Präzession Detektion in Leiterschleife Induktion

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT Physikalische Grundlagen der Magnetresonanz-Tomographie MRT http://www.praxis-nuramed.de/images/mrt_3_tesla.png Seminarvortrag am 30.05.2016 von Nanette Range MRT Bilder Nanette Range 30.05.2016 2 Motivation

Mehr

Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT)

Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT) Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT) Prof. Dr. Willi Kalender, Ph.D. Institut für Medizinische Physik Universität Erlangen-Nürnberg www.imp.uni-erlangen.de 3D

Mehr

Teil 1: Röntgen-Computertomographie CT

Teil 1: Röntgen-Computertomographie CT 11/12/2008 Page 1 HeiCuMed: Blockkurs Bildgebende Verfahren, Strahlenbehandlung, Strahlenschut Teil 1: Röntgen-Computertomographie CT Lehrstuhl für Computerunterstütte Klinische Mediin Mediinische Fakultät

Mehr

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 2 NMR-Spektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality 1 Einführung: NMR, was ist das? NMR = Nuclear Magnetic Resonance oder zu deutsch: Kernspinresonanz

Mehr

Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance

Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Andreas Bünning 9. Januar 2012 Betreuer: Dr. Andreas Thomas Seite 1 3 PHYSIKALISCHE GRUNDLAGEN 1 Motivation Die nuclear magnetic resonance,

Mehr

NMR Spektroskopie. 1nm Frequenz X-ray UV/VIS Infrared Microwave Radio

NMR Spektroskopie. 1nm Frequenz X-ray UV/VIS Infrared Microwave Radio NMR Spektroskopie 1nm 10 10 2 10 3 10 4 10 5 10 6 10 7 Frequenz X-ray UV/VIS Infrared Microwave Radio Anregungsmodus electronic Vibration Rotation Nuclear Spektroskopie X-ray UV/VIS Infrared/Raman NMR

Mehr

1. Allgemeine Grundlagen Quantenmechanik

1. Allgemeine Grundlagen Quantenmechanik 1. Allgemeine Grundlagen 1.3. Quantenmechanik Klassische Mechanik vs Quantenmechanik Klassische (Newton sche) Mechanik klassischer harmonischer Oszillator Quantenmechanik quantenmechanischer harmonischer

Mehr

NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums

NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums Martin Fuchs 1 Motivation Die Nuclear Magnetic Resonance, oder zu deutsch Kernspinresonanz ist vor allem durch die aus der Medizin nicht mehr wegzudenkende

Mehr

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Viele Kerne besitzen einen Spindrehimpuls. Ein Kern mit der Spinquantenzahl I hat einen Drehimpuls (L)

Mehr

Grundlagen der magnetischen Kernresonanz

Grundlagen der magnetischen Kernresonanz Grundlagen der magnetischen Kernresonanz 26.05.2014 Spin und gyromagnetisches Verhältnis Zeeman-Effekt Spin-Präzession Magnetisierung Teilchen haben Spin S Erfüllt Eigenwertgleichungen ˆ S 2 Ψ = s(s +

Mehr

NMR-Spektroskopie Nuclear Magnetic Resonance - Spektroskopie H2N HO2C CH3

NMR-Spektroskopie Nuclear Magnetic Resonance - Spektroskopie H2N HO2C CH3 NMR-Spektroskopie Nuclear Magnetic Resonance - Spektroskopie anwendbar auf Atomkerne mit magnetischem Moment z.b. 1 H, 13 C, und andere Kerne O H 2 N NH HO 2 C Si CH 3 6. 5. 4. 3. 2. 1.. ppm Folie 1 Bedeutung

Mehr

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung 2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung Übergang zwischen den beiden Energieniveaus ω l = γb 0 γ/2π Larmor-Frequenz ν L 500 400 300 200 100 ν L = (γ/2π)b 0 [MHz/T] 1 H 42.57

Mehr

Bildbeispiele Physikalisches Prinzip Hounsfield-Einheiten Bilderzeugung. Strahlenbelastung Bildbeispiele. Hirn - Weichteilfenster

Bildbeispiele Physikalisches Prinzip Hounsfield-Einheiten Bilderzeugung. Strahlenbelastung Bildbeispiele. Hirn - Weichteilfenster Prof. Dr. med. P. Schramm Röntgen- Computer-Tomografie Magnet-Resonanz-Tomografie Physikalisches Prinzip Dr. rer. nat. Uwe H. Melchert Röntgen - Computer-Tomografie Bildbeispiele Physikalisches Prinzip

Mehr

Spektroskopische Methoden in der Organischen Chemie (OC IV) NMR Spektroskopie 1. Physikalische Grundlagen

Spektroskopische Methoden in der Organischen Chemie (OC IV) NMR Spektroskopie 1. Physikalische Grundlagen NMR Spektroskopie 1. Physikalische Grundlagen Viele Atomkerne besitzen einen von Null verschiedenen Eigendrehimpuls (Spin) p=ħ I, der ganz oder halbzahlige Werte von ħ betragen kann. I bezeichnet die Kernspin-Quantenzahl.

Mehr

MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM

MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM MRT Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM WARUM SIND RÖNTGEN UND CT NICHT GENUG? MAGNETRESONANZTOMOGRAPHIE Die Große Frage? "Image by AZRainman.com Wie schaffen wir das überhaupt?

Mehr

Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a)

Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a) Doppelspalt (ideal) Doppelspalt (real) Zentralabstand b, Spaltbreite a Dreifachspalt Zentralabstand b, Spaltbreite a Beugungsgitter (N Spalte, N

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 30. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 30. 06.

Mehr

Fortgeschrittenenpraktikum

Fortgeschrittenenpraktikum Fortgeschrittenenpraktikum Nuclear Magnetic Resonance (NMR) Standort: Physikgebäude, Raum PHY D012 Versuchsdurchführung: - Donnerstag: 11-17 Uhr - Freitag: 8-16 Uhr - Im Sommersemester können die Anfangszeiten

Mehr

Wo ist der magnetische Nordpol der Erde?

Wo ist der magnetische Nordpol der Erde? Wo ist der magnetische Nordpol der Erde? A B C D am geographischen Nordpol am geographischen Südpol Nahe am geographischen Südpol Nahe am geographischen Nordpol 3. Magnetische Phänomene 3.1. Navigation,

Mehr

Eigenschaften einiger für die NMR-Spektrometrie organischer Verbindungen wichtiger Kerne

Eigenschaften einiger für die NMR-Spektrometrie organischer Verbindungen wichtiger Kerne Der Zusammenhang zwischen dem magnetischen Moment eines Atomkerns und seines mechanischen Drehimpulses lautet: μ=γ J, wobei γ das gyromagnetische Verhältnis ist. Der mechanische Drehimpuls ist durch die

Mehr

Magnetresonanztomographie (MRT) * =

Magnetresonanztomographie (MRT) * = γ * γ π Beispiel: - Protonen ( H) Messung - konstantes B-Feld (T) in -Richtung - Gradientenfeld (3mT/m) in -Richtung - bei 0: f 00 4,6 MH Wie stark ist Frequenveränderung Df der Spins bei 0 mm? f (0mm)

Mehr

2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment

2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment Prof. Dieter Suter / Prof. Roland Böhmer Magnetische Resonanz SS 03 2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment 2.1.1 Felder und Dipole; Einheiten Wir beginnen mit einer

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

NMR Spektroskopie (Nuclear Magnetic Resonance Kern-Magnetische Resonanz)

NMR Spektroskopie (Nuclear Magnetic Resonance Kern-Magnetische Resonanz) NMR Spektroskopie (Nuclear Magnetic Resonance Kern-Magnetische Resonanz) Viele Atomkerne besitzen einen von Null verschiedenen Eigendrehimpuls (Spin) p = ħ I, der ganz - oder halbzahlige Werte von ħ betragen

Mehr

Bestimmung der Struktur einer (un)bekannten Verbindung

Bestimmung der Struktur einer (un)bekannten Verbindung Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektrometrie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie H 3 C H 3

Mehr

Methodische Ansätze zur Strukturaufklärung: Rnt. - Kernmagnetische Resonanzspektroskopie (NMR)

Methodische Ansätze zur Strukturaufklärung: Rnt. - Kernmagnetische Resonanzspektroskopie (NMR) ? Methodische Ansäte ur Strukturaufklärung: - Rastersondenmikroskopie (AFM, SPM) SPM - Röntgenbeugung Rnt. - Elektronenspektroskopie (UV-vis) UV-vis - Schwingungsspektroskopie (IR) IR - Massenspektroskopie

Mehr

Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen

Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen Seminar 5. 0. 200 Teil : NMR Spektroskopie. Einführung und Physikalische Grundlagen.2 H NMR Parameter: a) Chemische

Mehr

Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung

Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung Das Magnetische Feld als Folge von Ladungsverschiebungen Gerader stromdurchflossener Leiter Spulenförmiger Leiter Wichtige Kenngrößen

Mehr

MRT-GRUNDLAGEN. Dr. Felix Breuer. 64. Heidelberger Bildverarbeitungsforum, Fürth, Fraunhofer

MRT-GRUNDLAGEN. Dr. Felix Breuer. 64. Heidelberger Bildverarbeitungsforum, Fürth, Fraunhofer MRT-GRUNDLAGEN Dr. Felix Breuer 64. Heidelberger Bildverarbeitungsforum, Fürth, 07.03.2017 Fraunhofer INHALT NMR (Nuclear Magnetic Resonance) Grundlagen Signalentstehung/Detektion NMR Bildgebung Schichtselektion

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 06. 07. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 06. 07. 2009

Mehr

Was wir heute daher vorhaben: Was Sie heute lernen sollen...

Was wir heute daher vorhaben: Was Sie heute lernen sollen... 18.05.16 Technik der MRT MRT in klinischer Routine und Forschung Magnet Resonanz Tomographie Kernspintomographie PD Dr. Alex Frydrychowicz Was wir heute daher vorhaben: Was Sie heute lernen sollen... Allgemeine

Mehr

2.5 Evolution der Spins im Magnetfeld

2.5 Evolution der Spins im Magnetfeld - 43-2.5 Evolution der Spins im Magnetfeld 2.5.1 Drehimpuls und Drehmoment Wenn wir die Bewegung eines Spins im Magnetfeld betrachten, so müssen wir zunächst den Einfluss des Magnetfeldes auf den assoziierten

Mehr

3.7 Elektronenspinresonanz, Bestimmung des g-faktors

3.7 Elektronenspinresonanz, Bestimmung des g-faktors 1 Einführung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 3 - Atomphysik 3.7 Elektronenspinresonanz, Bestimmung des g-faktors Die Elektronenspinresonanz (ESR) ist ein Verfahren, das in vielen

Mehr

Einstein-de-Haas-Versuch

Einstein-de-Haas-Versuch Einstein-de-Haas-Versuch Versuch Nr. 5 Vorbereitung - 7. Januar 23 Ausgearbeitet von Martin Günther und Nils Braun Einführung 2 Aufbau und Durchführung Das hier vorgestellte Experiment von Einstein und

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 4 Thema: Elektromagnetische Schwingungen, elektromagnetische Wellen und Spezielle Relativitätstheorie Technische Universität München 1 Fakultät für

Mehr

Bildgebende Verfahren in der Medizin MRT-Tomographie

Bildgebende Verfahren in der Medizin MRT-Tomographie Bildgebende Verfahren in der Medizin MRT-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Sta Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT

Mehr

Kernresonanzspektroskopie

Kernresonanzspektroskopie Gleich geht s los! Kernresonanzspektroskopie 1. Geschichtliche Entwicklung 2. Physikalische Grundlagen 3. Das NMR-Spektrometer 4. Anwendung der 1 H-NMR-Spektren zur Analyse der Konstitution von Molekülen

Mehr

Kernspin-Tomographie. Inhalte. SE+ MED 4. Semester. Werner Backfrieder. Kernspin. Physikalische Grundlagen Lamorfrequenz Relaxation

Kernspin-Tomographie. Inhalte. SE+ MED 4. Semester. Werner Backfrieder. Kernspin. Physikalische Grundlagen Lamorfrequenz Relaxation Kernspin-Tomographie SE+ MED 4. Semester Werner Backfrieder Inhalte Kernspin Phsikalische Grundlagen Lamorfrequen Relaation 90 o Impuls, T1-, T2-Relaation Free Induction Deca (FID) Kontrast Pulssequenen

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum

Mehr

Das NMR-Experiment in der Vektordarstellung

Das NMR-Experiment in der Vektordarstellung Das NMR-Experiment in der Vektordarstellung Kerne mit einer Spinquantenzahl I = ½ ( 1 H, 13 C) können in einem äußeren statischen homogenen Magnetfeld B 0 (Vektorfeld) zwei Energiezustände einnehmen: +½

Mehr

8 Instrumentelle Aspekte

8 Instrumentelle Aspekte 8.1 Spektrometer Literatur: einen einfachen Einstieg in die expperimentellen Aspekte der NMR bietet E. Fukushima and S.B.W. Roeder, Experimental Pulse NMR, Addison-Wesley, London (1981). Das Buch ist nicht

Mehr

Vorlesung "Grundlagen der Strukturaufklärung"

Vorlesung Grundlagen der Strukturaufklärung Vorlesung "Grundlagen der trukturaufklärung" für tudenten des tudiengangs "Bachelor Chemie" ommersemester 2003 Zeit: Montag, 9:00 bis 12:00 und Dienstag, 12:00 bis 14:00 Ort: MG 088 (Montags) und MC 351

Mehr

Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen

Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Physikalische Grundlagen der Bildgebung Röntgen, CT Ultraschall Szintigraphie MR-Tomographie Absorption von Röntgenstrahlen Änderung der

Mehr

Bildgebende Verfahren in der Medizin MRT-Tomographie

Bildgebende Verfahren in der Medizin MRT-Tomographie Bildgebende Verfahren in der Medizin MRT-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester # 29,30 11/12/2008 und 16/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Magnetische Kernresonanz Spins im Magnetfeld, Relaxation, Bildgebung Magnetische

Mehr

Molekulare Biophysik. NMR-Spektroskopie (Teil 1)

Molekulare Biophysik. NMR-Spektroskopie (Teil 1) Molekulare Biophysik NMR-Spektroskopie (Teil 1) Das Vorlesungs-Programm 2/94 Vorlesung Molekulare Biophysik : NMR-Spektroskopie Tag 1 Theoretische Grundlagen der NMR-Spektroskopie (1) Tag 2 Theoretische

Mehr

A 52 GRUNDLAGEN DER NMR (DER KERN-ZEEMAN-EFFEKT) Ziel des Versuches

A 52 GRUNDLAGEN DER NMR (DER KERN-ZEEMAN-EFFEKT) Ziel des Versuches Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 52 GRUNDLAGEN DER NMR (DER KERN-ZEEMAN-EFFEKT) Ziel des Versuches Die NMR-Spektroskopie ist eine wichtige Charakterisierungsmethode

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Vorlesung 20: Roter Faden:

Vorlesung 20: Roter Faden: Vorlesung 20: Roter Faden: Heute: Maxwellsche Gleichungen Elektromagnetische Wellen Versuche: Hertz: em Wellen, Antennen Applets: http://www.walter-fendt.de/ph14d emwellen Ausgewählte Kapitel der Physik,

Mehr

Kernspinresonanztomographie (NMR)

Kernspinresonanztomographie (NMR) Kernspinresonanztomographie (NMR) Einleitung Physikalische Grundlagen: Makroskopische Kernmagnetisierung Präzession der Kernmagnetisierung Kernresonanzexperiment Blochsche Gleichungen/Relaxation Selektive

Mehr

Kernmagnetische Resonanzspektroskopie. N Nuclear M Magnetic R Resonance Beobachtung magnetisch aktiver Kerne in einem äußeren Magnetfeld

Kernmagnetische Resonanzspektroskopie. N Nuclear M Magnetic R Resonance Beobachtung magnetisch aktiver Kerne in einem äußeren Magnetfeld NMR- SPEKTROSKOPIE Prüfungsfrage Radiospektroskopische Methode: NMR. Das Spin und magnetische Moment, die Bedingung der Resonanz, Spektralspaltung, chemische Verschiebung. Kernmagnetische Resonanzspektroskopie

Mehr

5.5 Kernspintomographie und Spektroskopie

5.5 Kernspintomographie und Spektroskopie 334 5. Elektrizität schen Evolution entstammenden Störfaktoren krankmachende Bedeutung zukommt. Mögliche Schädigung durch Strahlung niederfrequenter als sichtbares Licht muß wegen des Fehlens eines eindeutigen

Mehr

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik). phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen

Mehr

MR Magnetresonanz / Kernspin-Tomographie

MR Magnetresonanz / Kernspin-Tomographie MR - Magnetresonanz MR Magnetresonanz / MR wer wir sind Kernspin-Tomographie Die MR Geschichte Our market Our portfolio Our focus on clinical fields Our innovations Peter Kreisler Driving clinical and

Mehr

Christian Geppert (Autor) Methodische Entwicklungen zur spektroskopischen 1H-NMR- Bildgebung

Christian Geppert (Autor) Methodische Entwicklungen zur spektroskopischen 1H-NMR- Bildgebung Christian Geppert (Autor) Methodische Entwicklungen zur spektroskopischen 1H-NMR- Bildgebung https://cuvillier.de/de/shop/publications/2537 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier,

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

Anwendung der NMR-Spektroskopie in der Anorganischen Chemie

Anwendung der NMR-Spektroskopie in der Anorganischen Chemie Anwendung der NMR-Spektroskopie in der Anorganischen Chemie Literatur Canet D.: NMR-Konzepte und Methoden, Springer-Verlag, New-York 1994 Farrar T.C., Becker E.D.: Pulse and Fourier Transform NMR, Introduction

Mehr

Magnetisches Induktionsgesetz

Magnetisches Induktionsgesetz Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung

Mehr

5. Instrumentelle Aspekte

5. Instrumentelle Aspekte Prof. Dieter Suter / Prof. Roland Böhmer Magnetische Resonanz SS 03 5.1 Spektrometer 5. Instrumentelle Aspekte Literatur: einen einfachen Einstieg bietet E. Fukushima and S.B.W. Roeder, 'Experimental Pulse

Mehr

Bildgebende Systeme in der Medizin

Bildgebende Systeme in der Medizin Hochschule annheim 11/10/2011 Page 1/27 Bildgebende Ssteme in der ediin agnet Resonan Tomographie I: RT Basisparameter ultinuclear NR Lehrstuhl für Computerunterstütte Klinische ediin ediinische Fakultät

Mehr

0.0.1 Polarisiertes Helium-3 und Anwendungen

0.0.1 Polarisiertes Helium-3 und Anwendungen 0.0.1 Polarisiertes Helium-3 und Anwendungen Polarisation Abbildung 0.1: Aufgrund der unterschiedlichen g-faktoren (gi P = 5, 5 u. g3he I = 4, 25) der Kerne kommt es zu unterschiedlichen Ausrichtungen

Mehr

14. Atomphysik. Inhalt. 14. Atomphysik

14. Atomphysik. Inhalt. 14. Atomphysik Inhalt 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

Spektroskopische Methoden in der Organischen Chemie (OC IV) C NMR Spektroskopie

Spektroskopische Methoden in der Organischen Chemie (OC IV) C NMR Spektroskopie 6. 3 C NMR Spektroskopie Die Empfindlichkeit des NMR Experiments hängt von folgenden physikalischen Parametern (optimale Abstimmung des Spektrometers vorausgesetzt) ab: Feldstärke B o, Temperatur T, gyromagnetisches

Mehr

Kernspinresonanz, Kernspin-Tomographie

Kernspinresonanz, Kernspin-Tomographie Kernspinresonanz, Kernspin-Tomographie nützt die Wechselwirkungen von Kerndipolmomenten mit elektromagnetischen Feldern NMRS... Nuclear Magnetic Resonance Spectroscopy MRT... Magnetic Resonance Tomography

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Magnetresonanztomographie (MRT)

Magnetresonanztomographie (MRT) Prinzip - aktiver Abbildungsvorgang durch Zuführung von Energie (starkes konstantes Magnetfeld + elektromagnetische Pulse) und - passiver Abbildungsvorgang durch Ausnutzung körpereigener Signale (Spin-Ensembles

Mehr

Strom durch Bewegung

Strom durch Bewegung 5 Induktion 1 Strom durch ewegung Stromimpuls ei ewegung des Stabmagneten wird eine Spannung erzeugt kein Stromimpuls Ohne ewegung des Stabmagneten wird keine Spannung erzeugt Stromimpuls ei ewegung des

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

14. Atomphysik Physik für E-Techniker. 14. Atomphysik

14. Atomphysik Physik für E-Techniker. 14. Atomphysik 14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig

Mehr

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv. 7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz 1 7.5 Drehimpuls Drehscheml für Zentralkräfte: M 0

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

Relaxation. Dominik Weishaupt. 2.1 T1: Longitudinale Relaxation T2/T2*: Transversale Relaxation 8

Relaxation. Dominik Weishaupt. 2.1 T1: Longitudinale Relaxation T2/T2*: Transversale Relaxation 8 2 Relaxation 7 7 2 Relaxation Dominik Weishaupt 2.1 T1: Longitudinale Relaxation 8 2.2 T2/T2*: Transversale Relaxation 8 D. Weishaupt, V. D. Köchli, B. Marincek, Wie funktioniert MRI?, DOI 10.1007/978-3-642-41616-3_2,

Mehr

Messung der Magnetischen Momente von p und n. Hauptseminar WS 2006/2007 Bahnbrechende Experimente der Kern- und Teilchenphysik bis 1975

Messung der Magnetischen Momente von p und n. Hauptseminar WS 2006/2007 Bahnbrechende Experimente der Kern- und Teilchenphysik bis 1975 Messung der Magnetischen Momente von p und n Hauptseminar WS 2006/2007 Bahnbrechende Experimente der Kern- und Teilchenphysik bis 1975 Till-Lucas Hoheisel 6.12.06 Inhalt: 1. Erste Messung des mag. Moments

Mehr

Bericht zum Versuch Gepulste Kernspinresonanz

Bericht zum Versuch Gepulste Kernspinresonanz Bericht zum Versuch Gepulste Kernspinresonanz Anton Haase, Michael Goerz 22. Januar 27 Freie Universität Berlin Fortgeschrittenenpraktikum Teil A Tutor: M. Brecht Inhalt 1 Einführung 2 1.1 Kernspin................................

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Magnetische Resonanzmethoden

Magnetische Resonanzmethoden Nuclear Magnetic Resonance (NMR) und Electron Spin Resonance (ESR) Kernspinresonanz und Elektronenspinresonanz Wichtige Technik in der organischen Chemie Zahlreiche Anwendungen in der Chemie, Medizin,

Mehr

NEUTRONEN RESONANZ SPIN ECHO NRSE

NEUTRONEN RESONANZ SPIN ECHO NRSE NEUTRONEN RESONANZ SPIN ECHO NRSE Inhaltsverzeichnis 1. Warum NRSE? 2. Flipper Spulen 3. NRSE-Instrument 4. Das Auflösungsellipsoid 5. Ablauf einer Messung 6. Anwendung NRSE: Phononen Lebensdauer 7. MIEZE-Instrument

Mehr

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport

Mehr

Chemisches Grundpraktikum II (270002) Kernresonanzspektroskopie. NMR-Spektroskopie

Chemisches Grundpraktikum II (270002) Kernresonanzspektroskopie. NMR-Spektroskopie hemisches Grundpraktikum II (270002) Kernresonanzspektroskopie NMR-Spektroskopie (Nuclear Magnetic Resonance). Kählig, SS 2010 Von der Substanz zur Struktur Substanz NMR - Spektren Struktur N N 1 Spektroskopie

Mehr

Grundlagen der MR-Tomographie

Grundlagen der MR-Tomographie Grundlagen der MR-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT Universität des Landes

Mehr

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur VL 16 VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2. Paschen-Back Effekt VL15. Wasserstoffspektrum 15.1. Lamb Shift VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz

Mehr

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie VL 17 VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz VL 17 17.1. Elektronenspinresonanz 17.2. Kernspintomographie Wim de Boer, Karlsruhe Atome und Moleküle, 21.06.2012 1 Magnetische

Mehr

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie

VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie VL 17 VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz VL 17 17.1. Elektronenspinresonanz 17.2. Kernspintomographie Wim de Boer, Karlsruhe Atome und Moleküle, 21.06.2012 1 Magnetische

Mehr

Auswertung des Versuches Gepulste Kernspinresonanz

Auswertung des Versuches Gepulste Kernspinresonanz Auswertung des Versuches Gepulste Kernspinresonanz Andreas Buhr, Matrikelnummer 1229903 9. Mai 2006 Inhaltsverzeichnis Gepulste Kernspinresonanz 1 Formales 3 2 Überblick über den Versuch 4 3 Grundlagen

Mehr

Permeability prediction by NMR and SIP

Permeability prediction by NMR and SIP Permeability prediction by NMR and SIP A laboratory study Annick Fehr N.Klitzsch,, F. Bosch, C. Clauser Applied Geophysics and Geothermal Energy, RWTH Aachen University Kernmagnetische Resonanz Spins präzedieren

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

NMR - Seite 1. NMR (Kernresonanzspektroskopie) Allgemeines zur Theorie

NMR - Seite 1. NMR (Kernresonanzspektroskopie) Allgemeines zur Theorie NMR - Seite 1 NMR (Kernresonanzspektroskopie) Allgemeines zur Theorie Protonen besitzen ebenso wie Elektronen einen eigenen Spin (Drehung um die eigene Achse).Allerdings gibt es mehrere Möglichkeiten als

Mehr

Klassische Elektrodynamik

Klassische Elektrodynamik Klassische Elektrodynamik Pascal Peter 13.01.09 Pascal Peter () Klassische Elektrodynamik 13.01.09 1 / 35 Gliederung 1 Klassische Elektrodynamik Einführung Die maxwellschen Gleichungen Vektornotation 2

Mehr

Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011.

Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011. Skript ur 19. Vorlesung Quantenmechanik, Freitag den 4. Juni, 011. 13.5 Weitere Eigenschaften des Spin 1/ 1. Die Zustände und sind war Eigenustände der -Komponente ŝ des Spin- Operators s, sie stellen

Mehr

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2 Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung

Mehr

An welche Stichwörter von der letzten Vorlesung

An welche Stichwörter von der letzten Vorlesung An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Der magnetische Fluss durch eine Schleife: da Φ = Das faradaysche Induktionsgesetz: Die Induktivität: l A L = NF i Die Spannung

Mehr

Vorlesung Mehrdimensionale NMR-Spektroskopie- Grundlagen und Anwendungen in der Strukturaufklärung Teil I. Peter Schmieder AG NMR

Vorlesung Mehrdimensionale NMR-Spektroskopie- Grundlagen und Anwendungen in der Strukturaufklärung Teil I. Peter Schmieder AG NMR Vorlesung Mehrdimensionale NMR-Spektroskopie- Grundlagen und Anwendungen in der Strukturaufklärung Teil I Das Programm 2/108 Wintersemester 2007/2008 10 Termine: 24.10.07, 31.10.07, 07.11.07, 14.11.07,

Mehr