Kernspinresonanz, Kernspin-Tomographie
|
|
|
- Lioba Melsbach
- vor 9 Jahren
- Abrufe
Transkript
1 Kernspinresonanz, Kernspin-Tomographie nützt die Wechselwirkungen von Kerndipolmomenten mit elektromagnetischen Feldern NMRS... Nuclear Magnetic Resonance Spectroscopy MRT... Magnetic Resonance Tomography MRI... Magnetic Resonance Imaging fmri... functional MRI viele Elemente bzw. Isotope besitzen Spin und können zur MR-Bildgebung verwendet werden
2 Kernspin: Ungepaarte Protonen, Neutronen und Elektronen können als Elementarmagneten mit einem magnetischen Moment (spin) mit einem Betrag von jeweils ½ betrachtet werden * bei ungepaarten Elementarteilchen eines Kerns addiert sich der Spin Bsp. Deuterium : 1 Neutron, 1 Proton, ungepaart * bei gepaarten Elementarteilchen hebt sich der Spin auf Bsp He: 2 Neutronen, 2 Protonen, gepaart Spin = 1 Spin=0
3 Präzession der Spins um B0 mit der Larmor -Frequenz f=g*b Ausrichtung von Spins und Aufspaltung der Energieniveaus in einem homogenen Magnetfeld Boltzmann-Statistik: Zustand niedriger Energie (N+) Zustand hoher Energie (N-) N-/N+ = e-e/kt
4 Netto-Magnetisierung M0 durch größere Anzahl von Spins in niedrigem Energieniveau, feldparallele Richtung zum homogenen Magnetfeld B0 (entlang der z-achse) Zustandsänderung der Spins: Photon der Larmor-Frequenz wird absorbiert, weil es die Energiedifferenz überbrückt: E = h * f = h * gy * B
5
6 90-Grad-Puls Anlegen eines zweiten, mit Larmor-Frequenz eines Kerntyps oszillierenden Magnetfeldes B1 (RF-Puls) Die Spins des entsprechenden Kerns werden aus der feldparallelen Richtung gekippt (absorbieren Energie), die Dauer der RF-Pulses bestimmt den Winkel (hier ein 90-Grad Puls, durch den die Magnetisierung in z-richtung verschwindet )
7 Einfachere Darstellung der Magnetisierung durch Verwendung eines rotierenden Referenz Koordinatensystems Bsp: 90-Grad Puls: Magnetisierungsvektor rotierendes Koordinatensystem Magnetisierungsvektor im Labor-System mit Larmour-Frequenz im Referenzsystem
8 T1-Relaxation (Spin-Gitter Relaxation): In einer bestimmten, kernspezifischen Zeit erholt sich das Spin System nach einem 90-Grad Puls: es emittiert die absorbierte Energie und kehrt in die feldparallele Richtung zurück. T1 bezeichnet die Zeit, nach der 63 % der Magnetisierung in den stabilen Zusatn zurückgekehrt sind. Durch Molekülbewegungen entstehen kleine Magnetfelder, die B0 variieren. Durch diese Inhomogenitäten variiert auch die Larmour Frequenz und die Spin-Gitter Relaxation T1 nimmt bei zunehmender Molekularbewegung ab.
9 Einfluß der Viskosität auf T1-Relaxatationszeit
10 Inversion Recovery Pulssequenz: Ein Spin System wird durch einen 180-Grad Puls invertiert. Nach einer gewissen Verzögerungszeit TI, während der ein Teil der Magnetisierung invertiert, wird ein 90-Grad Puls ausgesendet. Dadurch wird die restliche Magnetisierung in der X/Y-Ebene sichtbar.
11 T2-Relaxation (Spin-Spin Relaxation, transversale Relaxation): Das Signal in der transversalen (X/Y-) Ebene verschwindet meist schneller als die Magnetisierung in den Ausgangszustand zurückkehrt. Grund dafür ist das Dephasieren der Spins aufgrund von Inhomogenitäten im Magnetfeld und oszillierenden Feldern durch Bewegung benachbarter magnetischer Momente Die Dauer bis zum 63%-igen Verschwinden der transversalen Magnetisierung wird mit T2 bezeichnet, sie entspricht in leicht beweglichen Flüssigkeiten nahezu T1, nimmt in Festkörpern aber stark ab.
12 Spin Echo Pulssequenz: FID zeigt nach Re-Phasierung der Spins ein Echo, weil die auseinanderlaufenden Phasen gespiegelt werden und wieder zusammenlaufen.
13 Chemische Verschiebung Nicht alle Kerne eines Typs in chemischen Verbindungen strahlen dieselbe Larmor Frequenz wieder aus, Ursache: lokale Änderungen des Magnetfeldes, durch Bewegung von Elektronen -> Unterschiedliche Larmor-Frequenzen, charakteristisch für Moleküle
14 Schichtbilder & 3d-MRI durch Anlegen von Gradienten 3 orthogonale Gradienten-Spulen, die das Feld in den 3 Magnetachsen X,Y und Z ändern. Bei aktivierter z-gradientenspule regt ein HF-Impuls nur jene Kerne an, die genau die gleiche Frequenz haben -> es werden also nur Atomkerne einer bestimmten Schicht angeregt und nur aus dieser kommen die Echos. Durch Drehung der Magnetisierungsrichtung der Gradientenfelder (Gz,Gy,Gx) entstehen viele Einzelprojektionen, aus denen mittels der FFT-Frequenz- und Phasencodierung die Schnittbilder errechnet werden.
15 Bewegungsartefakt-Bereinigung bei einer BOLD-fMRI
16 Komponenten eines MRT-Systems Magnet oft supraleitender Magnet, der in einem Kryostaten eingeschlossen ist. (meist flüssiges Helium, isoliert durch Vakuum und flüssigen Stickstoff) Feldstärken zwischen 0.5 und 2 Tesla können wirtschaftlich nur durch solche Magneten erreicht werden Shimspulenset zur Korrektur von Feldinhomogenitäten Gradientenspulen-System erzeugt zeit-veränderliche Magnetfelder zur Schichtanregung HF-Spulen Helmholtz-, Kopf- oder Oberflächenspulen zur Anregung der Magnetweschselfeldes bzw. zur Messung der Emissionssignale, Leistungsverstäker, Quadratur-Detektor Spektrometer-System Zur Übertragung einer beliebigen Folge von Impulsen, Detektion, Diskretisierung Computer Frequenzsythese, Steuerung, Bildkonstruktion, Darstellung
17 Mikro-Gradienten und Helmholtz-Spulen-Set
18 Philips Gyro Siemens Magnetom
19
20 T1 gewichtetes Schnittbild T2 -Gewichtung, selbe Schicht ( gesundes Hirn)
21 In T2-Wichtung signalreduzierte Bandscheiben L2 bis S1. Dorsomediale, rechtsbetonte Bandscheibenvorwölbung L5/S1.
22 T1- gewichtetes MRT eines Meningeoms T2-gewichetes MRT, selbe Schicht
23 NMR-Spektrometer * zur chemischen Strukturanalyse * zur Erkennung intermolekularer Wechselbeziehungen * Feldstärken bis zu 18 T
24 Protein, modelliert durch NMR-Daten festere (helikale) und beweglichere Bereiche können gut durch die Spektralanalyse unterschieden werden
25
26 MR-Sicherheit Hauptgefahrenquelle ist der starke Magnet, die Kraft auf ferro= magnetische Materialien steigt mit der vierten Potenz der Näherung! Kontraindikationen sind also jegliche Arten von ferromagnetischen Implantaten Sicherheitsradius für Schrittmacherpatienten kann sich in die umliegenden Räume des Tomographen erstrecken
1. Allgemeine Grundlagen Quantenmechanik
1. Allgemeine Grundlagen 1.3. Quantenmechanik Klassische Mechanik vs Quantenmechanik Klassische (Newton sche) Mechanik klassischer harmonischer Oszillator Quantenmechanik quantenmechanischer harmonischer
NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums
NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums Martin Fuchs 1 Motivation Die Nuclear Magnetic Resonance, oder zu deutsch Kernspinresonanz ist vor allem durch die aus der Medizin nicht mehr wegzudenkende
Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT)
Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT) Prof. Dr. Willi Kalender, Ph.D. Institut für Medizinische Physik Universität Erlangen-Nürnberg www.imp.uni-erlangen.de 3D
Physikalische Grundlagen der Magnetresonanz-Tomographie MRT
Physikalische Grundlagen der Magnetresonanz-Tomographie MRT http://www.praxis-nuramed.de/images/mrt_3_tesla.png Seminarvortrag am 30.05.2016 von Nanette Range MRT Bilder Nanette Range 30.05.2016 2 Motivation
Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17
Teil 2 NMR-Spektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality 1 Einführung: NMR, was ist das? NMR = Nuclear Magnetic Resonance oder zu deutsch: Kernspinresonanz
MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM
MRT Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM WARUM SIND RÖNTGEN UND CT NICHT GENUG? MAGNETRESONANZTOMOGRAPHIE Die Große Frage? "Image by AZRainman.com Wie schaffen wir das überhaupt?
Relaxation. Dominik Weishaupt. 2.1 T1: Longitudinale Relaxation T2/T2*: Transversale Relaxation 8
2 Relaxation 7 7 2 Relaxation Dominik Weishaupt 2.1 T1: Longitudinale Relaxation 8 2.2 T2/T2*: Transversale Relaxation 8 D. Weishaupt, V. D. Köchli, B. Marincek, Wie funktioniert MRI?, DOI 10.1007/978-3-642-41616-3_2,
VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur
VL 16 VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2. Paschen-Back Effekt VL15. Wasserstoffspektrum 15.1. Lamb Shift VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz
Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a)
Doppelspalt (ideal) Doppelspalt (real) Zentralabstand b, Spaltbreite a Dreifachspalt Zentralabstand b, Spaltbreite a Beugungsgitter (N Spalte, N
2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung
2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung Übergang zwischen den beiden Energieniveaus ω l = γb 0 γ/2π Larmor-Frequenz ν L 500 400 300 200 100 ν L = (γ/2π)b 0 [MHz/T] 1 H 42.57
Physikalische Grundlagen der Kernspin-Tomographie
Vorlesung: Bildgebende Diagnoseverfahren SS 2008 Physikalische Grundlagen der Kernspin-Tomographie Hans-Jochen Foth TU Kaiserslautern Für diese Bildgebende Diagnosemethode werden auch andere Begriffe verwendet:
Bestimmung der Struktur einer (un)bekannten Verbindung
Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektrometrie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie H 3 C H 3
Grundlagen der magnetischen Kernresonanz
Grundlagen der magnetischen Kernresonanz 26.05.2014 Spin und gyromagnetisches Verhältnis Zeeman-Effekt Spin-Präzession Magnetisierung Teilchen haben Spin S Erfüllt Eigenwertgleichungen ˆ S 2 Ψ = s(s +
Wo ist der magnetische Nordpol der Erde?
Wo ist der magnetische Nordpol der Erde? A B C D am geographischen Nordpol am geographischen Südpol Nahe am geographischen Südpol Nahe am geographischen Nordpol 3. Magnetische Phänomene 3.1. Navigation,
Nuclear Magnetic Resonance, Magnetresonanztomographie (MRT)
Nuclear Magnetic Resonance, Magnetresonanztomographie (MRT) Die MRT ist ein nichtinvasives bildgebendes Schichtbildverfahren, welches ohne Strahlenbelastung arbeitet und den physikalischen Effekt der Magnetresonanz
Magnetresonanztomographie (MRT) * =
γ * γ π Beispiel: - Protonen ( H) Messung - konstantes B-Feld (T) in -Richtung - Gradientenfeld (3mT/m) in -Richtung - bei 0: f 00 4,6 MH Wie stark ist Frequenveränderung Df der Spins bei 0 mm? f (0mm)
NMR Spektroskopie. 1nm Frequenz X-ray UV/VIS Infrared Microwave Radio
NMR Spektroskopie 1nm 10 10 2 10 3 10 4 10 5 10 6 10 7 Frequenz X-ray UV/VIS Infrared Microwave Radio Anregungsmodus electronic Vibration Rotation Nuclear Spektroskopie X-ray UV/VIS Infrared/Raman NMR
Magnetresonanztomographie (MRT) Grundlagen der Tomographie
Gegeben: Körper in einem starken B 0 -Feld - Folge von HF-Pulsen erzeugt rotierende Quermagnetisierung M T - M T variiert je nach Gewebetyp ortsabhängige Observable: M T (x,y,z) - kleine Volumenelemente
Eigenschaften einiger für die NMR-Spektrometrie organischer Verbindungen wichtiger Kerne
Der Zusammenhang zwischen dem magnetischen Moment eines Atomkerns und seines mechanischen Drehimpulses lautet: μ=γ J, wobei γ das gyromagnetische Verhältnis ist. Der mechanische Drehimpuls ist durch die
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester # 29,30 11/12/2008 und 16/12/2008 Vladimir Dyakonov [email protected] Magnetische Kernresonanz Spins im Magnetfeld, Relaxation, Bildgebung Magnetische
Spektroskopische Methoden in der Organischen Chemie (OC IV) NMR Spektroskopie 1. Physikalische Grundlagen
NMR Spektroskopie 1. Physikalische Grundlagen Viele Atomkerne besitzen einen von Null verschiedenen Eigendrehimpuls (Spin) p=ħ I, der ganz oder halbzahlige Werte von ħ betragen kann. I bezeichnet die Kernspin-Quantenzahl.
NMR - Seite 1. NMR (Kernresonanzspektroskopie) Allgemeines zur Theorie
NMR - Seite 1 NMR (Kernresonanzspektroskopie) Allgemeines zur Theorie Protonen besitzen ebenso wie Elektronen einen eigenen Spin (Drehung um die eigene Achse).Allerdings gibt es mehrere Möglichkeiten als
Grundlagen der MR-Tomographie
Grundlagen der MR-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT Universität des Landes
Kernmagnetische Resonanzspektroskopie. N Nuclear M Magnetic R Resonance Beobachtung magnetisch aktiver Kerne in einem äußeren Magnetfeld
NMR- SPEKTROSKOPIE Prüfungsfrage Radiospektroskopische Methode: NMR. Das Spin und magnetische Moment, die Bedingung der Resonanz, Spektralspaltung, chemische Verschiebung. Kernmagnetische Resonanzspektroskopie
Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung
Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung Das Magnetische Feld als Folge von Ladungsverschiebungen Gerader stromdurchflossener Leiter Spulenförmiger Leiter Wichtige Kenngrößen
Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ
Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Viele Kerne besitzen einen Spindrehimpuls. Ein Kern mit der Spinquantenzahl I hat einen Drehimpuls (L)
Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen
Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Physikalische Grundlagen der Bildgebung Röntgen, CT Ultraschall Szintigraphie MR-Tomographie Absorption von Röntgenstrahlen Änderung der
Bildgebende Verfahren in der Medizin MRT-Tomographie
Bildgebende Verfahren in der Medizin MRT-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Sta Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT
2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment
Prof. Dieter Suter / Prof. Roland Böhmer Magnetische Resonanz SS 03 2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment 2.1.1 Felder und Dipole; Einheiten Wir beginnen mit einer
Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance
Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Andreas Bünning 9. Januar 2012 Betreuer: Dr. Andreas Thomas Seite 1 3 PHYSIKALISCHE GRUNDLAGEN 1 Motivation Die nuclear magnetic resonance,
Teil 1: Röntgen-Computertomographie CT
11/12/2008 Page 1 HeiCuMed: Blockkurs Bildgebende Verfahren, Strahlenbehandlung, Strahlenschut Teil 1: Röntgen-Computertomographie CT Lehrstuhl für Computerunterstütte Klinische Mediin Mediinische Fakultät
Fortgeschrittenenpraktikum
Fortgeschrittenenpraktikum Nuclear Magnetic Resonance (NMR) Standort: Physikgebäude, Raum PHY D012 Versuchsdurchführung: - Donnerstag: 11-17 Uhr - Freitag: 8-16 Uhr - Im Sommersemester können die Anfangszeiten
1 Physikalische Grundlagen
1 hysikalische Grundlagen 1.1 Atome und ihre Eigenschaften Ein Atom besteht aus einem Atomkern und ihn umgebenden Elektronen (negativ geladen). Der Atomkern besteht aus rotonen (positiv geladen) und eutronen
Bildgebende Systeme in der Medizin
Hochschule Mannheim 11/10/2011 Page 1/20 Bildgebende Systeme in der Medizin Magnet Resonanz Tomographie I: Kern-Magnet-Resonanz Spektroskopie Multinuclear NMR Lehrstuhl für Computerunterstützte Klinische
Was wir heute daher vorhaben: Was Sie heute lernen sollen...
18.05.16 Technik der MRT MRT in klinischer Routine und Forschung Magnet Resonanz Tomographie Kernspintomographie PD Dr. Alex Frydrychowicz Was wir heute daher vorhaben: Was Sie heute lernen sollen... Allgemeine
Methoden der kognitiven Neurowissenschaften
Methoden der kognitiven Neurowissenschaften SS 2013 Magnet-Resonanz-Tomographie (MRT) Jöran Lepsien Zeitplan Datum Thema 12.4. Einführung und Organisation 19.4. Behaviorale Methoden 26.4. Augenbewegungen
MR Grundlagen. Marco Lawrenz
MR Grundlagen Marco Lawrenz Department of Systems Neuroscience University Medical Center Hamburg-Eppendorf Hamburg, Germany and Neuroimage Nord University Medical Centers Hamburg Kiel Lübeck Hamburg Kiel
Das NMR-Experiment in der Vektordarstellung
Das NMR-Experiment in der Vektordarstellung Kerne mit einer Spinquantenzahl I = ½ ( 1 H, 13 C) können in einem äußeren statischen homogenen Magnetfeld B 0 (Vektorfeld) zwei Energiezustände einnehmen: +½
Definition MRT. MRT Magnetresonanztomographie = MRI Magnetic Resonance Imaging = Kernspintomographie = NMR Nuclear Magnetic Resonance
MaReCuM Seminar MRT OA PD Dr. med Henrik Michaely Leiter des Geschäftsfelds Abdominelle und Vaskuläre Bildgebung Institut für Klinische Radiologie und Nuklearmedzin Definition MRT MRT Magnetresonanztomographie
MaReCuM MRT. OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin
MaReCuM MRT OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin Definition MRT MRT Magnetresonanztomographie = MRI Magnetic
Auswertung des Versuches Gepulste Kernspinresonanz
Auswertung des Versuches Gepulste Kernspinresonanz Andreas Buhr, Matrikelnummer 1229903 9. Mai 2006 Inhaltsverzeichnis Gepulste Kernspinresonanz 1 Formales 3 2 Überblick über den Versuch 4 3 Grundlagen
Magnetresonanztomographie (MRT)
Prinzip - aktiver Abbildungsvorgang durch Zuführung von Energie (starkes konstantes Magnetfeld + elektromagnetische Pulse) und - passiver Abbildungsvorgang durch Ausnutzung körpereigener Signale (Spin-Ensembles
MRT. Funktionsweise MRT
MRT 1 25.07.08 MRT Funktionsweise Wofür steht MRT? Magnetische Resonanz Tomographie. Alternative Bezeichnung: Kernspintomographie. Das Gerät heißt dann Kernspintomograph. S N Womit wird der Körper bei
Molekulare Biophysik. NMR-Spektroskopie (Teil 1)
Molekulare Biophysik NMR-Spektroskopie (Teil 1) Das Vorlesungs-Programm 2/93 Vorlesung Molekulare Biophysik : NMR-Spektroskopie Tag 1 Theoretische Grundlagen der NMR-Spektroskopie (1) Tag 2 Theoretische
Magnetresonanztherapie Bildkonstrast - Protonendichte p - Spin-Gitter-Relaxationszeit T1 - Spin-Spin-Relaxationszeit T2
Bildkonstrast - Protonendichte p - Spin-Gitter-Relaxationszeit T1 - Spin-Spin-Relaxationszeit T2 Magnetisches Moment von Protonen - µ = y * h * m(i) (m = magn. Quantenzahl, y = gyromag. Verhältnis) - m(i)
15 Kernphysik Physik für E-Techniker. 15 Kernphysik
15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.
Bildbeispiele Physikalisches Prinzip Hounsfield-Einheiten Bilderzeugung. Strahlenbelastung Bildbeispiele. Hirn - Weichteilfenster
Prof. Dr. med. P. Schramm Röntgen- Computer-Tomografie Magnet-Resonanz-Tomografie Physikalisches Prinzip Dr. rer. nat. Uwe H. Melchert Röntgen - Computer-Tomografie Bildbeispiele Physikalisches Prinzip
Ferienkurs Experimentalphysik Lösung zur Übung 2
Ferienkurs Experimentalphysik 4 01 Lösung zur Übung 1. Ermitteln Sie für l = 1 a) den Betrag des Drehimpulses L b) die möglichen Werte von m l c) Zeichnen Sie ein maßstabsgerechtes Vektordiagramm, aus
Molekulare Biophysik. NMR-Spektroskopie (Teil 2)
Molekulare Biophysik NMR-Spektroskopie (Teil 2) NMR-Parameter NMR-Parameter 3/88 Folgenden NMR-Parameter sind von Interesse chemische Verschiebung skalare Kopplung Relaxation / NOE-Effekt NMR-Parameter
Magnetismus. Vorlesung 5: Magnetismus I
Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I
Pfeile (-+) verweisen auf Begriffe, die ebenfalls im Glossar erklärt werden.
81 Pfeile (-+) verweisen auf Begriffe, die ebenfalls im erklärt werden. Atemkompensation: ("resp comp"). Algorithmus, der die Bildaufnahme mit der Atmung synchron steuert, sodaß Artefakte infolge Atembewegungen
Magnetische Resonanzmethoden
Nuclear Magnetic Resonance (NMR) und Electron Spin Resonance (ESR) Kernspinresonanz und Elektronenspinresonanz Wichtige Technik in der organischen Chemie Zahlreiche Anwendungen in der Chemie, Medizin,
Bestimmung der Struktur einer (un)bekannten Verbindung
Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektroskopie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie neue Produktlinie,
VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie
VL 17 VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz VL 17 17.1. Elektronenspinresonanz 17.2. Kernspintomographie Wim de Boer, Karlsruhe Atome und Moleküle, 21.06.2012 1 Magnetische
VL 17. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie
VL 17 VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz VL 17 17.1. Elektronenspinresonanz 17.2. Kernspintomographie Wim de Boer, Karlsruhe Atome und Moleküle, 21.06.2012 1 Magnetische
Magnetresonanztomographie
Magnetresonanztomographie Kathrin Schulte 16. Januar 2008 Gliederung Abbildung: Magnetresonanztomograph Die Spin-Eigenschaft T1 / T2- Relaxation Sequenzen Rekonstruktion Zeitdiagramme Segmentierung des
Vorlesung 3. Karim Kouz SS Semester Biophysik MRT. Karim Kouz
Vorlesung 3 Karim Kouz SS2017 2. Semester Biophysik MRT Karim Kouz SS2017 2. Semester Biophysik 1 Grundlagen der MRT MRT = Magnetresonanztomographie Bildgebendes Verfahren, das Schnittbilder liefert, wobei
Kernspintomographie (MRT)
Kernspintomographie (MRT) Wichtig! Der physikalische Hintergrund (NMR) müssen Sie bei diesem Titel auch wissen (Spin, Auswirkungen des Spins im Magnetfeld, Zeemann-Effekt, Präzession von Elementarteilchen
NMR Spektroskopie (Nuclear Magnetic Resonance Kern-Magnetische Resonanz)
NMR Spektroskopie (Nuclear Magnetic Resonance Kern-Magnetische Resonanz) Viele Atomkerne besitzen einen von Null verschiedenen Eigendrehimpuls (Spin) p = ħ I, der ganz - oder halbzahlige Werte von ħ betragen
Kernspinresonanz - NMR
Kernspinresonanz - NMR Referent: Pierre Sissol 10. Mai 2010 Seminar in Kern- und Teilchenphysik zum Fortgeschrittenenpraktikum 2 im SoSe 2010 Johannes-Gutenberg-Universität Mainz Betreuer: Dr. Andreas
Christian Geppert (Autor) Methodische Entwicklungen zur spektroskopischen 1H-NMR- Bildgebung
Christian Geppert (Autor) Methodische Entwicklungen zur spektroskopischen 1H-NMR- Bildgebung https://cuvillier.de/de/shop/publications/2537 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier,
Spektroskopie-Seminar SS NMR-Spektroskopie. H-NMR-Spektroskopie. nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie
1 H-NMR-Spektroskopie nuclear magnetic resonance spectroscopy- Kernmagnetresonanzspektroskopie 4.1 Allgemeines Spektroskopische Methode zur Untersuchung von Atomen: elektronische Umgebung Wechselwirkung
Multipuls-NMR in der Organischen Chemie. Puls und FID
Puls und FID Obwohl der Puls eine bestimmte, am NMR-Spektrometer vorab eingestellte Sendefrequenz ν 1 hat, ist er in der Lage, über einen relativ weiten Frequenzbereich von mehreren khz, den gesamten Resonanzbereich
15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne
15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik
Edelgas-polarisierte. NMR- Spektroskopie. Jonas Möllmann Jan Mehlich. SoSe 2005
Edelgas-polarisierte NMR- Spektroskopie Jonas Möllmann Jan Mehlich SoSe 2005 NMR Prinzip Aufspaltung der Kernspins in verschiedene Niveaus durch angelegtes Magnetfeld Messung des Besetzungs- unterschiedes
Molekulare Biophysik. NMR-Spektroskopie (Teil 2)
Molekulare Biophysik NMR-Spektroskopie (Teil 2) 3/96 Folgenden NMR-Parameter sind von Interesse chemische Verschiebung skalare Kopplung dipolare Kopplung Relaxation / NOE-Effekt 4/96 Chemische Verschiebung
Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen
Analytische Methoden in Org. Chemie und optische Eigenschaften von chiralen Molekülen Seminar 5. 0. 200 Teil : NMR Spektroskopie. Einführung und Physikalische Grundlagen.2 H NMR Parameter: a) Chemische
Kernspin-Tomographie. Inhalte. SE+ MED 4. Semester. Werner Backfrieder. Kernspin. Physikalische Grundlagen Lamorfrequenz Relaxation
Kernspin-Tomographie SE+ MED 4. Semester Werner Backfrieder Inhalte Kernspin Phsikalische Grundlagen Lamorfrequen Relaation 90 o Impuls, T1-, T2-Relaation Free Induction Deca (FID) Kontrast Pulssequenen
4.57 ppm 1.45 ppm = 3.12 ppm 3.12 ppm * MHz = Hz Hz = rad/sec
(1) Zwei Signale liegen im Protonenspektrum bei 1.45 und 4.57 ppm, das Spektrometer hat eine Frequenz von 400.13 MHz. Wieweit liegen die Signale in Hz bzw. in rad/sec auseinander? 4.57 ppm 1.45 ppm = 3.12
Chemisches Grundpraktikum II (270002) Kernresonanzspektroskopie. NMR-Spektroskopie
hemisches Grundpraktikum II (270002) Kernresonanzspektroskopie NMR-Spektroskopie (Nuclear Magnetic Resonance). Kählig, SS 2010 Von der Substanz zur Struktur Substanz NMR - Spektren Struktur N N 1 Spektroskopie
Methodische Ansätze zur Strukturaufklärung: Rnt. - Kernmagnetische Resonanzspektroskopie (NMR)
? Methodische Ansäte ur Strukturaufklärung: - Rastersondenmikroskopie (AFM, SPM) SPM - Röntgenbeugung Rnt. - Elektronenspektroskopie (UV-vis) UV-vis - Schwingungsspektroskopie (IR) IR - Massenspektroskopie
Komponenten eines MRT- Systems
Komponenten eines MRT- Systems Komponenten eines MRT- Systems starker Magnet zur Erzeugung des statischen homogenen Magnetfeldes (0,1-4,0 Tesla; zum Vergleich: Erdmagnetfeld 30 µt - 60 µt) Hochfrequenzanlage
1 Physikalische Grundbegriffe
1 Physikalische Grundbegriffe Um die Voraussetzungen der physikalischen Kenntnisse in den nächsten Kapiteln zu erfüllen, werden hier die dafür notwendigen Grundbegriffe 1 wie das Atom, das Proton, das
10. Der Spin des Elektrons
10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms
Bericht zum Versuch Gepulste Kernspinresonanz
Bericht zum Versuch Gepulste Kernspinresonanz Anton Haase, Michael Goerz 22. Januar 27 Freie Universität Berlin Fortgeschrittenenpraktikum Teil A Tutor: M. Brecht Inhalt 1 Einführung 2 1.1 Kernspin................................
8.3 Die Quantenmechanik des Wasserstoffatoms
Dieter Suter - 409 - Physik B3 8.3 Die Quantenmechanik des Wasserstoffatoms 8.3.1 Grundlagen, Hamiltonoperator Das Wasserstoffatom besteht aus einem Proton (Ladung +e) und einem Elektron (Ladung e). Der
15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne
Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern
Magnetisierung der Materie
Magnetisierung der Materie Das magnetische Verhalten unterschiedlicher Materialien kann auf mikroskopische Eigenschaften zurückgeführt werden. Magnetisches Dipolmoment hängt von Symmetrie der Atome und
III. Strukturbestimmung organischer Moleküle
III. Strukturbestimmung organischer Moleküle Röntgenstrukturbestimmung g Spektroskopie UV-VIS IR NMR Massenspektrometrie (MS) Röntgenstruktur eines bakteriellen Kohlenhydrats O O O O O O O C3 Röntgenstruktur
Magnetresonanztomographie
Magnetresonanztomographie 1 Inhalt Geschichtlicher Überblick MRT in Kürze Verfahrensschritte Physikalische Grundlagen der MRT Signal/Messung Bildgebung Vor- und Nachteile der MRT 2 Geschichtlicher Überblick
Magnetresonanztomographie und Kontrastmittel
Magnetresonanztomographie und Kontrastmittel Magnet Resonanz Tomographie altgriechisch λίθος µάγνης líthos magnes Stein aus Magnesia' lat. resonare widerhallen altgriechisch τοµή, tome, Schnitt Magnetresonanztomographie
Elektronenspinresonanz-Spektroskopie
Elektronenspinresonanz-Spektroskopie (ESR-Spektroskopie) engl.: Electron Paramagnetic Resonance Spectroscopy (EPR-Spectroscopy) Stephanie Dirksmeyer, 671197 Inhalt 1. Grundidee 2. physikalische Grundlagen
Atom-, Molekül- und Festkörperphysik
Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 11. Vorlesung, 4.7. 2013 Para-, Dia- und Ferromagnetismus Isingmodell, Curietemperatur,
Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)
Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im
3D NMR Experimente. Pulssequenz des 3D 15N-NOESY-HSQC
3D NMR Experimente Pulssequenz des 3D 15N-NOESY-SQC 1) Zum Beispiel sinnvoll, wenn sich viele Signale in einem 2D Spektrum, z.b. einem 1-1 NOESY oder TOCSY überlagern. 2) Kombination mit einem anderen
Wie funktioniert Kernspintomographie?
Wie funktioniert Kernspintomographie? Vom Radfahren zum Gedankenlesen Hans-Henning Klauss Til Dellmann, Walter Keller, Hannes Kühne, Hemke Maeter, Frank Radtke, Denise Reichel, Göran Tronicke, Institut
15 Kernspintomographie (MRI)
Literatur zu diesem Kapitel Bushberg et al., The essential physics of medical imaging, Kap. 14, 15 McRobbie et al., MRI - From picture to proton, Cambridge Dössel, Bildgebende Verfahren in der Medizin,
MR Magnetresonanz / Kernspin-Tomographie
MR - Magnetresonanz MR Magnetresonanz / MR wer wir sind Kernspin-Tomographie Die MR Geschichte Our market Our portfolio Our focus on clinical fields Our innovations Peter Kreisler Driving clinical and
MRT-GRUNDLAGEN. Dr. Felix Breuer. 64. Heidelberger Bildverarbeitungsforum, Fürth, Fraunhofer
MRT-GRUNDLAGEN Dr. Felix Breuer 64. Heidelberger Bildverarbeitungsforum, Fürth, 07.03.2017 Fraunhofer INHALT NMR (Nuclear Magnetic Resonance) Grundlagen Signalentstehung/Detektion NMR Bildgebung Schichtselektion
Kernmagnetismus und Magnetfelder
Kernmagnetismus und Magnetfelder. Kernspin Die meisten Kerne besitzen einen Eigendrehimpuls oder P ist gequantelt P = h I(I + ) h = h und h: das Plancksche Wirkungsquantum. π I: Kernspinquantenzahl (kurz:
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 06. 07. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 06. 07. 2009
Kernresonanzspektroskopie
Gleich geht s los! Kernresonanzspektroskopie 1. Geschichtliche Entwicklung 2. Physikalische Grundlagen 3. Das NMR-Spektrometer 4. Anwendung der 1 H-NMR-Spektren zur Analyse der Konstitution von Molekülen
Kernmagnetische Resonanzspektroskopie (NMR) Spektroskopische Methoden
Kernmagnetische Resonanzspektroskopie (NMR) Spektroskopische Methoden Grundlagen Die meisten Atomkerne führen eine Drehbewegung um die eigene Achse aus ("Spin"). Da sie geladene Teilchen (Protonen) enthalten,
