Aktionspotential Na + -Kanal
|
|
|
- Jutta Holtzer
- vor 9 Jahren
- Abrufe
Transkript
1 Aktionspotential Na + -Kanal
2 VL.2 Prüfungsfragen: Unter welchen Bedingungen entsteht ein Ruhepotential in einer Zelle? Wie ist ein Neuron im Ruhezustand geladen und welchen Wert (mit Benennung) hat das Ruhepotential? Erklären Sie was eine Depolarisation ist. Erklären Sie was eine Hyperpolarisation ist. Nennen Sie die Nernst-Gleichung und erklären Sie was sie beschreibt. Welche intrazelluläre Konzentration hat Calcium in einem nicht erregten Neuron? Ist die Kaliumionenkonzentration intrazellulär im Neuron höher als extrazellulär? Ist die Natriumionenkonzentration intrazellulär im Neuron höher als extrazellulär? Ist die Calciumionenkonzentration intrazellulär im Neuron höher als extrazellulär? Welche Kräfte steuern den Ionenfluß über die Membran eines Neurons? Zeichnen sie die Strom-Spannungskennlinie eines Natriumkanals. Wo etwa liegt das Umkehrpotential eines Kaliumkanals?
3 GLIEDERUNG - Passive elektrische Membran-Eigenschaften - Ströme des APs - Weiterleitung des APs
4 Die elektrische Ladung ist eine fundamentale Eigenschaft der Materie, man weiß nicht warum/wieso sie entstanden ist, man kann nur beschreiben, wie sie sich verhält Physik!
5 Glasstab an Seide reiben: Glasstab positiv geladen Plastikstab an Fell reiben: Plastikstab negativ geladen 10 (ca. 10 Elektroden vom Fell auf den Stab übergegangen) Elektronen besitzen negative Elementarladung: -e Protonen besitzen positive Elementarladung: +e -19 e = 1,60 x 10 C
6 Durch Ionenkanäle biologischer Membranen fließen Ionen (Michael Faraday: cations anions), nicht Elektronen! Salze, wie NaCl und KCl dissoziieren in der wässrigen Lösung unserer Körperflüssigkeiten
7 Elektrische Phänomene entstehen, wenn Ladungen entgegengesetzten Vorzeichens voneinander getrennt werden. Der dabei entstehende Stromfluss (I) wird in Ampere (1A = 1 Coulomb/sec) gemessen. I = Q / t Stromfluss = Ladungsmenge pro Zeit Membranen trennen Ladungen! Die Membran kann als Widerstand beschrieben werden, verhält sich aber auch wie ein Kondensator, da sie Ladungen speichert.
8 Die potentielle Energie eines Teilchens in einem elektrischen Feld ist proportional zur Ladungsmenge (Q; Einheit: Coulomb) Q = C x U Ladungsmenge = Kapazität mal Spannung (Einheit: V) Q = I x t = Stromstärke (Einheit: A) mal Zeit C = Kapazität ist ein Proportionalitätsfaktor, gibt an wieviel Ladungen pro Spannung vom Kondensator gespeichert werden können
9 Im Gleichgewichtszustand haben Neurone ein Ruhepotential. Sie sind hyperpolarisiert (= innen negativ geladen).
10 Das Ruhepotential liegt in der Nähe des Kalium- Gleichgewichtpotentials. Es entsteht in einer Zelle, die große Anionen enthält, die nicht durch die Membran diffundieren können (semipermeable Membran), durch das Öffnen von Kaliumkanälen.
11 Die Nernst-Gleichung beschreibt das Gleichgewichtspotential für ein Ion, das durch eine semipermeable Membran ungleich verteilt ist. E K = (R T / n F) x ln ([K]o / [K]i) E K = 2,303 (RT/nF) x log10( [K]o / [K]i)
12 Die Goldmann-Gleichung beschreibt das Gleichgewichts-Potential für mehrere, durch eine semipermeable Membran, ungleich verteilte Ionen. Eions = (RT/nF) ln { (pk [K+]o + pna [Na+]o + pcl [Cl-]i) / (pk [K+]i + pna [Na+]i + pcl [Cl-]o)
13 Die Potentialdifferenz U = der Spannungsabfall zwischen zwei Punkten. Die Stromstärke I ist proportional zur Potentialdifferenz zwischen den Enden eines Leiters Ohmsches Gesetz R = U / I I = U / R I = Strom [1 Ampere A = 1 Coulomb pro sec I = Q / t (Ladungen pro Zeit)] G = Leitfähigkeit = 1/R [1 Siemens] R = Widerstand [ 1 Ohm] U = Spannung [1 Volt]
14 Stromfluss wird definiert als Bewegung positiver Ladungen (Kationen) zur negativen Elektrode (Katode) MERKE: Stromfluss immer von Plus nach Minus! In der Biologie fliessen immer Ionen, nicht Elektronen! Ionen sind Salze, die in wässrigen Lösungen, den Körperflüssigkeiten des Organismus dissoziieren
15 Passive elektrische Eigenschaften von Membranen Der Membranwiderstand (resistance = R) ist ein Mass für die Undurchlässigkeit gegenüber Ionen, während die Leitfähigkeit (conductance = g = 1/R) ein Mass für die Durchlässigkeit gegenüber Ionen ist. Vm = I x R Das Ohmsche Gesetz Vm = der Spannungsabfall (in Volt = V) über einer Membran I = der Strom (in Ampere = A) der über eine Membran fließt R = der Widerstand (in Ohm = ) g = die Leitfähigkeit (in Siemens = S)
16 der spezifische Widerstand (Rm) einer Membran ist direkt proportional zur Membranfläche (A). Rm = R x A
17 Eine Membran verhält sich auch wie ein Kondensator, da die Lipid-Doppelschicht innere und äußere Elektrolyte voneinander isoliert. C = Q / E C = die Kapazität (in Farad = F) gibt an wieviel Ladung (Q) von einer Kondensator- Platte zu der anderen transferiert werden muss, um eine bestimmte Potentialdifferenz ( E) aufzubauen. Q = die Ladungsmenge (in Coulomb = C) wobei die Elementarladung eines Protons -19 qe = 1,6 x 10 C E = Potential 2 die spezifische Membrankapazität = 1,0 µf/µm
18
19 Tafelbild: equivalent circuit of cell membrane Eckert pp 150; Hille pp 11;
20 Die Membrankapazität verlangsamt den Spannungsabfall (= de / dt) über der Membran, beim Fluss von Ionen durch Ionenkanäle. de / dt = Ic / C = - E / RxC de/dt Ic I = Spannungsabfall über der Membran = der Strom der den Kondensator aufläd, = Stromstärke = Q/t =Ladung pro Zeit E = Eoe -t/rc
21 E = Eoe -(t/rc) Zu einem Zeitpunkt 0 ist der Kondensator mit einem Potential von Eo aufgeladen. Dann beginnt er sich durch einen parallelen Widerstand zu entladen. Ladung und Spannung fallen exponential ab. Alle RxC Sekunden fallen sie auf 1/e (= 0,367) ihres vorhergehenden Wertes ab.
22 Für biologische Membranen gilt: das Produkt von Membran- Widerstand und Membrankapazität (= RMCM) wird die Membran-Zeitkonstante = M genannt. M = 10 µs bis zu 1s, abhängig von der Anzahl der offenen Ionenkanäle im Ruhezustand
23 Membran-Kondensator wird durch Strominjektion aufgeladen: die Membran-Zeitkonstante (RC) gibt die Zeit in sec an, nach der die Amplitude des Membranpotentials auf ca. 37% des Ausgangswertes abgesunken ist.
24 Die Längskonstante (λ; cm) der Membran gibt an, nach welcher Strecke das Membranpotential auf den e-ten Teil (37%) des Ausgangswertes abgefallen ist Ux = U0 e -(x/λ)
25
26 Längskonstante = Lambda (λ; cm) a = Radius λ = rm / ri + ra λ = π a Rm / Ri 2π a
27 a = Radius der Faser Rm = spezifischer (Trans-) Membranwiderstand Ri = spezifischer (Innen-) Widerstand des Cytoplasmas Kreisumfang = 2 a π Kreisfläche = a a π
28 Zusammenfassung: Die passiven elektrischen Eigenschaften einer Membran können durch einen Schaltkreis beschrieben werden, in dem ein Widerstand und ein Kondensator parallel geschaltet sind. Zusammen bewirken sie, dass die Zelle auf Strominjektion eine charakteristische, zeitabhängige Antwort zeigt, die vom Membranwiderstand und der Kapazität abhängen und von der Zeitkonstante und der Längskonstante (Lamda) der Membran beschrieben werden.
29 Das Aktionspotential
30
31 Das Aktionspotential absolute Refraktärzeit relative Refraktärzeit
32 1. aktivierbar geschlossen (Ruhezustand) 2. offen (aktiviert) depolarisiert hyperpolarisiert 1 ms Der spannungsabhängige Na + -Kanal 3. refraktär (inaktiviert) Kandel et al (2000) Principles of Neural Science
33 Der spannungsgesteuerte Na-Kanal kommt in drei Zuständen vor: 1. aktivierbar geschlossen (Ruhezustand, m-gate closed) 2. bei Depolarisation > - 40 mv: offen (m-gate open) 3. (< 1 ms) inaktiv, refraktär, (h-gate closed)
34 MERKE: der inaktivierte Na-Kanal kann erst nach einer Hyperpolarisation wieder in den Ruhezustand (geschlossen aktivierbar) übergehen!
35 Der Na + -Kanal Kandel et al. (1996) Neurowissenschaften
36 Na + -Kanal Ca 2+ -Kanal K + -Kanal (Untereinheit) Kandel et al. (1996) Neurowissenschaften
37 Aktionspotentiale verschiedener Präparate Penzlin (2005) Lehrbuch der Tierphysiologie
38 Unterteilung von Wirbeltiernervenfasern nach Leitungsgeschwindigkeit A-Fasern (myelinisiert) (alpha) 13 μm m/s (beta) 8 μm (gamma) 5 μm (delta) <3 μm B-Fasern (myelinisiert) 3 μm 3-15 C-Fasern (nicht myeelinisiert) <1 μm 0,5-2
39 Na+-Kanal-Blocker: Tetrodotoxin (TTX) aus inneren Organen des japanischen Kugelfisches; Saxitoxin (STX) aus marinen Dinoflagellaten, in Muscheln (Saxidomus) konzentriert; Lidocain = Lokalanästhetikum Veratridin blockt die Inaktivierung des Na+-Kanals
40 Skorpiongifte Na+-Kanalaktivierung, Schmerzrezeptoren aktiviert, Katecholaminfreisetzung: adrenerge und cholinerge Rezeptoren stimuliert Heterometrus scaber: wenig giftig Centruroides sculpturratus sehr giftig Deutsches Ärzteblatt 1999 Je kräftiger der Schwanz im Vergleich zu den Scheren, desto giftiger ist der Skorpion
Dynamische Systeme in der Biologie: Beispiel Neurobiologie
Dynamische Systeme in der Biologie: Beispiel Neurobiologie Caroline Geisler [email protected] April 18, 2018 Elektrische Ersatzschaltkreise und Messmethoden Wiederholung: Membranpotential Exkursion in die
Ionenkanäle Ionenpumpen Membranruhepotential. username: tierphys Kennwort: tierphys09
Ionenkanäle Ionenpumpen Membranruhepotential username: tierphys Kennwort: tierphys09 Tutorium: Ragna-Maja v. Berlepsch Dienstag 16:15-18:15 Uhr Raum 2298 Prüfungsfragen VL 1: - Welche generellenfunktionen
Einige Grundbegriffe der Elektrostatik. Elementarladung: e = C
Einige Grundbegriffe der Elektrostatik Es gibt + und - Ladungen ziehen sich an Einheit der Ladung 1C Elementarladung: e = 1.6.10-19 C 1 Abb 14.7 Biologische Physik 2 Parallel- und Serienschaltung von Kondensatoren/Widerständen
Membranpotential bei Neuronen
Membranpotential bei Neuronen J. Almer 1 Ludwig-Thoma-Gymnasium 9. Juli 2012 J. Almer (Ludwig-Thoma-Gymnasium ) 9. Juli 2012 1 / 17 Gliederung 1 Aufbau der Neuronmembran 2 Ruhepotential bei Neuronen Diffusion
Prof. Dr. Stefan Schuster Lehrstuhl für Tierphysiologie
Prof. Dr. Stefan Schuster Lehrstuhl für Tierphysiologie Tierphysiologie = Wie Tiere funktionieren Welche Anpassungen. Leistungen, Moleküle etc sie einsetzen um zu leben und möglichst am Leben zu beiben
Intra- und extrazelluläre Ionenkonzentrationen
Neurophysiologie Neurophysiologie Intra- und extrazelluläre Ionenkonzentrationen intrazellulär extrazellulär Na + 8-30 145 K + 100-155155 5 Ca 2+ 0.0001 2 Cl - 4-30 120 HCO 3-8-15 25 große Anionen 100-150
Physiologische Grundlagen. Inhalt
Physiologische Grundlagen Inhalt Das Ruhemembranpotential - RMP Das Aktionspotential - AP Die Alles - oder - Nichts - Regel Die Klassifizierung der Nervenfasern Das Ruhemembranpotential der Zelle RMP Zwischen
Peter Walla. Die Hauptstrukturen des Gehirns
Die Hauptstrukturen des Gehirns Die Hauptstrukturen des Gehirns Biologische Psychologie I Kapitel 4 Nervenleitung und synaptische Übertragung Nervenleitung und synaptische Übertragung Wie werden Nervensignale
Elektrotechnik Formelsammlung v1.2
Inhaltsverzeichnis 3. Das Coulombsches Gesetz...2 3.. Elementarladung...2 32. Elektrische Arbeit...2 33. Elektrische Feldstärke...2 34. Elektrische Spannung...3 34.. Ladung Q...3 34... Kondensatoren-Gesetz...3
2. Elektrostatik und Ströme
2. Elektrostatik und Ströme 2.1. elektrische Ladung, ionische Lösungen Wir haben letztes Semester angeschnitten, dass die meisten Wechselwirkungen elektrischer Natur sind. Jetzt wollen wir elektrische
Das Ruhemembranpotential eines Neurons
Das Ruhemembranpotential eines Neurons Genaueres zu den 4 Faktoren: Faktor 1: Die so genannte Brown sche Molekularbewegung sorgt dafür, dass sich Ionen (so wie alle Materie!) ständig zufällig bewegen!
Eine typische Zelle hat ein Volumen von m 3 und eine Oberfläche von m 2
ÜBUNGSBEISPIELE Beispiel 1. Wieviele Ladungen sind für das Ruhepotentialpotential von -70 mv nötig?? Zusatzinfo: Membrankondensator 0.01F/m 2 Wieviele K Ionen sind dies pro m 2?? Eine typische Zelle hat
Einleitung: Der Versuchstag befasst sich mit der Simulation von Aktionspotentialen mittels des Hodgkin-Huxley- Modells.
Einleitung: Der Versuchstag befasst sich mit der Simulation von Aktionspotentialen mittels des Hodgkin-Huxley- Modells. Viele Einzelheiten über die elektrische Aktivität von Nerven resultierten aus Experimenten
Grundlagen neuronaler Erregung. -Membranpotenzial -Ionenkanäle -Aktionspotenzial - Erregungsleitung
Grundlagen neuronaler Erregung -Membranpotenzial -Ionenkanäle -Aktionspotenzial - Erregungsleitung Membranpotenzial / Ruhepotenzial Einstich in die Zelle extrazelluläre intrazelluläre Elektrode Extrazelluläres
Vorlesung Neurophysiologie
Vorlesung Neurophysiologie Detlev Schild Abt. Neurophysiologie und zelluläre Biophysik [email protected] Vorlesung Neurophysiologie Detlev Schild Abt. Neurophysiologie und zelluläre Biophysik [email protected]
(9.00 Uhr, Hörsaal Pflanzenphysiol. Königin-Luise-Str )
Klausurtermine: Für das Modul Verhaltens- und Neurobiologie (Mono- und Kombibachelor) 27.2.2008 (9.00 Uhr, Hörsaal Pflanzenphysiol. Königin-Luise-Str. 12-16) Wiederholungsklausur 26.3.2008 (9.00, Ort wie
Membran- und Donnanpotentiale. (Zusammenfassung)
Membranund Donnanpotentiale (Zusammenfassung) Inhaltsverzeichnis 1. Elektrochemische Membranen...Seite 2 2. Diffusionspotentiale...Seite 2 3. Donnanpotentiale...Seite 3 4. Zusammenhang der dargestellten
Membranen und Potentiale
Membranen und Potentiale 1. Einleitung 2. Zellmembran 3. Ionenkanäle 4. Ruhepotential 5. Aktionspotential 6. Methode: Patch-Clamp-Technik Quelle: Thompson Kap. 3, (Pinel Kap. 3) 2. ZELLMEMBRAN Abbildung
Vorkurs Physik des MINT-Kollegs
www.mint-kolleg.de Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales
winter-0506/tierphysiologie/
Die Liste der Teilnehmer der beiden Kurse für Studenten der Bioinformatik finden Sie auf unserer web site: http://www.neurobiologie.fu-berlin.de/menu/lectures-courses/ winter-0506/tierphysiologie/ Das
1 Bau von Nervenzellen
Neurophysiologie 1 Bau von Nervenzellen Die funktionelle Einheit des Nervensystems bezeichnet man als Nervenzelle. Dendrit Zellkörper = Soma Zelllkern Axon Ranvier scher Schnürring Schwann sche Hüllzelle
Chemisches Potential und Nernstgleichung Carsten Stick
Chemisches Potential und Nernstgleichung Carsten Stick Definition der mechanischen Arbeit: Kraft mal Weg W = F! ds W = Arbeit oder Energie; F = Kraft; s = Weg Diese Definition lässt sich auch auf die Kompression
In der Membran sind Ionenkanäle eingebaut leiten Ionen sehr schnell (10 9 Ionen / s)
Mechanismen in der Zellmembran Abb 7.1 Kandel Neurowissenschaften Die Ionenkanäle gestatten den Durchtritt von Ionen in die Zelle. Die Membran (Doppelschicht von Phosholipiden) ist hydrophob und die Ionen
ÜBUNGSBEISPIELE Beispiel 1.
ÜBUNGSBEISPIELE Beispiel 1. Wieviele Ladungen sind für das Ruhepotentialpotential von -70 mv nötig?? Zusatzinfo: Membrankondensator 0.01F/m 2 a) Wieviele K + Ionen sind dies pro m 2?? Eine typische Zelle
Das Ruhemembran-Potenzial RMP
Erregbarkeit der Axon Das Ruhemembran-Potenzial RMP - + Nervenzellen sind von einer elektrisch isolierenden Zellwand umgeben. Dadurch werden Intrazellularraum und Extrazellularraum voneinander getrennt.
Bemerkung zu den Texten und Bildern, die in der Vorlesung gezeigt wurden:
Bemerkung zu den Texten und Bildern, die in der Vorlesung gezeigt wurden: Aus urheberrechtlichen Gründen könne die aus Büchern kopierten Abbildungen hier nicht eingeschlossen werden. Sie sind jeweils zitiert
Ruhemebranpotenzial. den 17 November Dr. Emőke Bódis
Ruhemebranpotenzial den 17 November 2016 Dr. Emőke Bódis Prüfungsfrage Die Struktur und die Eigenschaften der Zellmembran. Das Ruhemembranpotenzial. Bernstein Kalium Hypothese, Nernst- Gleichung, Donnan-
1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität
1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute
Herzleistung. Pumpleistung Liter/Tag 400 millionen Liter. Erkrankungen: Herzfrequenz: 100 Jahre lang
Herzleistung Pumpleistung 5l/min *5 bei Belastung 7500 Liter/Tag 400 millionen Liter Volumen: 1km*40m*10m 10m Erkrankungen: 30% aller Todesfälle Herzfrequenz: Schlägt 100 000 mal/tag 100 Jahre lang Regulation
Aufgaben zur Elektrizitätslehre
Aufgaben zur Elektrizitätslehre Elektrischer Strom, elektrische Ladung 1. In einem Metalldraht bei Zimmertemperatur übernehmen folgende Ladungsträger den Stromtransport (A) nur negative Ionen (B) negative
Vorlesung Neurobiologie SS10
Vorlesung Neurobiologie SS10 1 Das Neuron, Invertebraten NS Ko 13.4 10h 2 Vertebraten NS Ko 16.4 8h 3 Membranpotential, Aktionspotential, Ko 20.4 10h Erregungsleitung 4 Sehen 1: Optik, Transduktion Ko
Funktion der Sinnesrezeptoren, Aktionspotenzial.
Funktion der Sinnesrezeptoren, Aktionspotenzial. den 17 November 2016 Dr. Emőke Bódis Prüfungsfrage Ionenkanäle. Die Funktion und Klassifizierung der Sinnesrezeptoren. Die Phasen des Aktionspotenzials.
Elektrizität. = C J m. Das Coulomb Potential φ ist dabei:
Elektrizität Die Coulombsche potentielle Energie V einer Ladung q im Abstand r von einer anderen Ladung q ist die Arbeit, die aufgewendet werden muss um die zwei Ladungen aus dem Unendlichen auf den Abstand
Vorlesung #2. Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung. Alexander Gottschalk, JuProf. Universität Frankfurt
Vorlesung #2 Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung Alexander Gottschalk, JuProf Universität Frankfurt SS 2010 Elektrische Eigenschaften von Neuronen Elektrische Eigenschaften
SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Gymnasium Jahrgangstufe 11 (Physik)
SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Gymnasium Jahrgangstufe 11 (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität
Biophysik der Zelle Erregung der Nervenmembran Aktionspotential, Huxley-Hodgkins Gleichung, spannungsabhängige Ionenkanäle
01.07. Erregung der Nervenmembran Aktionspotential, Huxley-Hodgkins Gleichung, spannungsabhängige Ionenkanäle Biophysik der Zelle aussen C m g K g Na g Cl V m V0,K + - V0,Na + - V0,Cl + - innen (a) 1 w.
Unterschied zwischen aktiver und passiver Signalleitung:
Unterschied zwischen aktiver und passiver Signalleitung: Passiv: Ein kurzer Stromimpuls wird ohne Zutun der Zellmembran weitergeleitet Nachteil: Signalstärke nimmt schnell ab Aktiv: Die Zellmembran leitet
Elektrostatik. 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab
Elektrostatik 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab Beschreibe und erkläre die Exp. stichpunkartig. Ergebnis: - Es gibt
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov [email protected] Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus
Erregbarkeit von Zellen. Ein Vortrag von Anne Rath
Erregbarkeit von Zellen Ein Vortrag von Anne Rath Gliederung(1) 1.Das Hodgkin-Huxley Modell 1.1 Spannungs- und Zeitabhängigkeit der Leitfähigkeit 1.1.1 Die Kalium-Leitfähigkeit 1.1.2 Die Natrium-Leitfähigkeit
1. Elektroanalytik-I (Elektrochemie)
Instrumentelle Analytik SS 2008 1. Elektroanalytik-I (Elektrochemie) 1 1. Elektroanalytik-I 1. Begriffe/Methoden (allgem.) 1.1 Elektroden 1.2 Elektrodenreaktionen 1.3 Galvanische Zellen 2 1. Elektroanalytik-I
Grundlagen der neuronalen Signal-Fortleitung
Grundlagen der neuronalen Signal-Fortleitung Voraussetzung zur Informationsverarbeitung/-Weiterleitung: Ruhepotential Grundlagen der neuronalen Signal-Fortleitung Voraussetzung zur Informationsverarbeitung/-Weiterleitung:
Modul Neurobiologie. Dr. Peter Machnik Prof. Dr. Stefan Schuster. Lehrstuhl für Tierphysiologie
Modul Neurobiologie Dr. Peter Machnik Prof. Dr. Stefan Schuster Lehrstuhl für Tierphysiologie 1 Literatur Nicholls, Martin, Wallace, Fuchs: From Neuron to Brain Kandel, Schwartz: Principles of Neural Science
Heute werden nochmals Skripten für den Kurs verkauft (5,- ). Alle brauchen ein Skript!!
Abbildungen der Vorlesung finden Sie unter: http://www.neurobiologie.fu-berlin.de/menu/lectures-courses/ winter-0506/23%20113%20tierphysiologie/themenliste23113.html Heute werden nochmals Skripten für
Elektro výuková prezentace. Střední průmyslová škola Ostrov
Elektro výuková prezentace Střední průmyslová škola Ostrov 1. r Strom 2. r Widderstand 3. e Ladung 4. e Spannung 5. e Stromstärke 6. e Stromrichtung 7. s Feld 8. e Stromquelle 9. s Gesetz náboj proud pole
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger
+ Proteine = Bioelektrische Erscheinungen: Einführung. Bioelektrische Erscheinungen: Membrane. Aufbau der biologischen Membranen
Bioelektrische Erscheinungen: Einführung Grundlagen der Erregungsprozesse Ruhepotential, Aktionspotential psychophysikalische Gesetze Bioelektrische Erscheinungen: Ruhepotential (Potential des intrazellulären
BK07_Vorlesung Physiologie 29. Oktober 2012
BK07_Vorlesung Physiologie 29. Oktober 2012 1 Schema des Membrantransports Silverthorn: Physiologie 2 Membranproteine Silverthorn: Physiologie Transportproteine Ionenkanäle Ionenpumpen Membranproteine,
Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010
Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010 ----------------------------------------------------------------------------------------------------- Wie definiert man elektrische
BK07_Vorlesung Physiologie. 05. November 2012
BK07_Vorlesung Physiologie 05. November 2012 Stichpunkte zur Vorlesung 1 Aktionspotenziale = Spikes Im erregbaren Gewebe werden Informationen in Form von Aktions-potenzialen (Spikes) übertragen Aktionspotenziale
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14,
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14, 20.05.2009 Vladimir Dyakonov Experimentelle Physik VI [email protected] Professor Dr. Vladimir
Neuronale Signalverarbeitung
neuronale Signalverarbeitung Institut für Angewandte Mathematik WWU Münster Abschlusspräsentation am 08.07.2008 Übersicht Aufbau einer Nervenzelle Funktionsprinzip einer Nervenzelle Empfang einer Erregung
Grundlagen der Erregungsprozesse Ruhepotential, Aktionspotential psychophysikalische Gesetze
Aufbau der biologischen Membranenen Grundlagen der Erregungsprozesse Ruhepotential, Aktionspotential psychophysikalische Gesetze http://de.wikipedia.org/wiki/biomembran Lipid Doppel-Schicht (hauptsächlich
VL. 3 Prüfungsfragen:
VL. 3 Prüfungsfragen: - Wie entsteht ein Aktionspotential (AP)? - Welche Ionenkanäle sind am AP beteiligt? - Skizzieren Sie in einem Achsensystem den Verlauf eines APs. Benennen Sie wichtige Potentiale.
Nanostrukturphysik II Michael Penth
16.07.13 Nanostrukturphysik II Michael Penth Ladungstransport essentiell für Funktionalität jeder Zelle [b] [a] [j] de.academic.ru esys.org giantshoulders.wordpress.com [f] 2 Mechanismen des Ionentransports
Physikalische Grundlagen Inhalt
Physikalische Grundlagen Inhalt Das Atommodell nach Bohr Die Gleichspannung Der Gleichstrom Der Stromfluss in Metallen Der Stromfluss in Flüssigkeiten Die Elektrolyse Die Wechselspannung Der Wechselstrom
abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung
abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung Bau Nervenzelle Neuron (Nervenzelle) Dentrit Zellkörper Axon Synapse Gliazelle (Isolierung) Bau Nervenzelle Bau Nervenzelle Neurobiologie
Passive und aktive elektrische Membraneigenschaften
Aktionspotential Passive und aktive elektrische Membraneigenschaften V m (mv) 20 Overshoot Aktionspotential (Spike) V m Membran potential 0-20 -40 Anstiegsphase (Depolarisation) aktive Antwort t (ms) Repolarisation
Das elektrische Potential
Das elektrische Potential Wir gehen nun genauso wie in der Mechanik vor: nachdem wir die elektrische Kraft diskutiert und durch eine Feldgröße beschrieben haben (das elektrische Feld E), betrachten wir
Probeklausur. Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis bereit.
PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Probeklausur Probeklausur Name: Matrikelnummer: Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis
Einführung in die Elektrochemie
Einführung in die Elektrochemie > Grundlagen, Methoden > Leitfähigkeit von Elektrolytlösungen, Konduktometrie > Elektroden Metall-Elektroden 1. und 2. Art Redox-Elektroden Membran-Elektroden > Potentiometrie
Vorlesung Einführung in die Biopsychologie. Kapitel 4: Nervenleitung und synaptische Übertragung
Vorlesung Einführung in die Biopsychologie Kapitel 4: Nervenleitung und synaptische Übertragung Prof. Dr. Udo Rudolph SoSe 2018 Technische Universität Chemnitz Grundlage bisher: Dieser Teil nun: Struktur
BMT301. Grundlagen der Medizinischen Messtechnik. Ergänzende Folien EF2. Prof. Dr. rer. nat. Dr. rer. med. Daniel J. Strauss
BMT301 Grundlagen der Medizinischen Messtechnik Prof. Dr. rer. nat. Dr. rer. med. Daniel J. Strauss Ergänzende Folien EF2 die Hauptbestandteile einer Nervenzelle Aufbau einer Zellmembran Dicke einer Zellmembran:
Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop
Reizleitung in Nervenzellen Nervenzelle unter einem Rasterelektronenmikroskop Gliederung: 1. Aufbau von Nervenzellen 2. Das Ruhepotential 3. Das Aktionspotential 4. Das Membranpotential 5. Reizweiterleitung
Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0.
Physik GK ph,. Kursarbeit Elektromagnetismus Lösung.04.05 Aufgabe : Stromkreise / Ohmsches Gesetz. Durch einen Widerstand R 0 fließt bei einer Spannung von U 0 =0V ein Strom von I 0 =ma. Berechne R 0.
Elektrotechnik für MB
Elektrotechnik für MB Gleichstrom Elektrische und magnetische Felder Wechsel- und Drehstrom Grundlagen und Bauelemente der Elektronik Studium Plus // IW-MB WS 2015 Prof. Dr. Sergej Kovalev 1 Ziele 1. Gleichstrom:
Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für
+ Kapitel 4 KAPAZITÄT und ENERGIE 4. Kondensator Ein Kondensator besteht typischerweise aus zwei Leiterplatten, die sich in einem kleinen Abstand voneinander befinden. Meist liegt zwischen den Elektroden
Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.
16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der
Physik für Mediziner und Zahnmediziner
Physik für Mediziner und Zahnmediziner Vorlesung 13 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Membranspannung: stationärer Zustand Feldstrom Diffusionsstrom im stationären
Beziehung zwischen Strom und Spannung
Beziehung zwischen Strom und Spannung Explizit kein Ohm sches Verhalten; keine elektrische Leitfähigkeit im üblichen Sinne Beschleunigte Elektronen im Vakuum (Kathodenstrahlröhre) Elektronentransfer in
1. Grundlagen. 2. Signalleitungs-Qualität. 3. Signalleitungs-Geschwindigkeit
1. Grundlagen 2. Signalleitungs-Qualität 3. Signalleitungs-Geschwindigkeit Beschreibung der Zellmembran mitsamt Kanälen und Na-K- Pumpe durch ein Ersatzschaltbild Dieses wird je nach Anwendung vereinfacht.
Der Elektrik-Trick für die Mittelstufe. Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her.
Der Kondensator 1. Aufbau Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her. In der Elektrotechnik handelt es sich bei einem Kondensator um ein Bauelement,
Grundwissen. Physik. Jahrgangsstufe 7
Grundwissen Physik Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Seite 1 1. Aufbau der Materie 1.1 Atome Ein Atom besteht aus dem positiv geladenen Atomkern und der negativ geladenen Atomhülle aus
Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz
KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,
Übertragung zwischen einzelnen Nervenzellen: Synapsen
Übertragung zwischen einzelnen Nervenzellen: Synapsen Kontaktpunkt zwischen zwei Nervenzellen oder zwischen Nervenzelle und Zielzelle (z.b. Muskelfaser) Synapse besteht aus präsynaptischen Anteil (sendendes
1.2 Stromkreis Stromquelle Batterie
1.2 Stromkreis 1 + + + Stromquelle Batterie + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - Pluspol: Positiv geladene Atome warten sehnsüchtig auf Elektronen. Minuspol:
Elektrischen Phänomene an Zellmembranen
Konzeptvorlesung 17/18 1. Jahr Block 1 Woche 4 Physikalische Grundlagen der Bioelektrizität Physik PD Dr. Hans Peter Beck Laboratorium für Hochenergiephysik der niversität Bern HPB11 1 Elektrischen Phänomene
= Dimension: = (Farad)
Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:
Grundstrukturen des Nervensystems beim Menschen
Grundstrukturen des Nervensystems beim Menschen Die kleinste, funktionelle und strukturelle Einheit des Nervensystems ist die Nervenzelle = Neuron Das menschl. Gehirn besteht aus ca. 100 Mrd Neuronen (theor.
Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.
Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu
Maßeinheiten der Elektrizität und des Magnetismus
Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange
Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1
Bitte schreiben Sie Ihre Antworten direkt auf das Übungsblatt. Falls Sie mehr Platz brauchen verweisen Sie auf Zusatzblätter. Vergessen Sie Ihren Namen nicht! Abgabe der Übung bis spätestens 21. 04. 08-16:30
11. Elektrischer Strom und Stromkreise
nhalt 11. Elektrischer Strom und Stromkreise 11.1 Elektrischer Strom und Stromdichte 11.2 Elektrischer Widerstand 11.3 Elektrische Leistung in Stromkreisen 11.4 Elektrische Schaltkreise 11.5 Amperemeter
Physik LK 12, Klausur 02 Elektrisches Feld und Kondensator Lösung
Konstanten: Elementarladung e=,602 0 9 2 As 2 C. Elektrische Feldkonstante: 8,8542 0 N m 2 Dielektrizitätszahl: r Luft = Aufgabe : Eine studentische Hilfskraft wurde eingestellt, um acht Stunden lang Ladungen
2 Der elektrische Strom
2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke Stromstärke: I dq dt Einheit: 1 Ampere = C/s PTB Auf dem Weg zum Quantennormal für die Stromstärke Als Ladungsträger kommen vor:
Physik. Abiturwiederholung. Das Elektrische Feld
Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,
C07 Membranmodell und Signalausbreitung C07
1. ZIELE In diesem Versuch werden Sie den Transport von elektrischen Signalen in Nervenzellen mit einem Modell simulieren. Die Ausbreitung dieser Signale wird allein durch die elektrischen Eigenschaften
Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her.
3.1 Aufbau Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her. In der Elektrotechnik handelt es sich bei einem Kondensator um ein Bauelement, dass in
r = F = q E Einheit: N/C oder V/m q
1 Wiederholung: Elektrische Ladung: Einheit 1 Coulomb = 1 C (= 1 As) Elementarladung e = 1.6 10 19 C Kraft zwischen zwei elektrischen Ladungen: r F ' Q1 Q = f 2 r 2 r e r f ' = 8.99 10 9 Nm 2 C 2 Elektrische
v q,m Aufgabensammlung Experimentalphysik für ET
Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz
Versuch 1 zu Physikalisches Praktikum für Mediziner
Versuch 1 zu Physikalisches Praktikum für Mediziner......... c Claus Pegel 7. November 2007 1 VERSUCH 1 1 LADUNGEN sind gequantelt, d.h. sie kommen nur in ganzen Vielfachen der ELEMENTARLADUNG vor. Der
Ferienkurs Sommersemester 2011
Ferienkurs Sommersemester 2011 Experimentalphysik II Elektrostatik - Übung Steffen Maurus 1 1 Elektrostatik Eine primitive Möglichkeit Ladungen zu messen, ist sie auf 2 identische leitende Kugeln zu verteilen,
E2: Wärmelehre und Elektromagnetismus 14. Vorlesung
E2: Wärmelehre und Elektromagnetismus 14. Vorlesung 07.06.2018 Wissenschaftliche Instrumente aus dem 18. und 19. Jahrhundert aus der Sammlung des Teylers Museum in Haarlem, Niederlande http://www.teylersmuseum.nl
1. Statisches elektrisches Feld
. Statisches elektrisches Feld. Grundlagen der Elektrizitätslehre.. Elektrizität in Natur, Technik und Alltag Altertum: Bernstein reiben Staubteilchen und Wollfasern werden angezogen 794 Coulomb: Gesetz
