Inhalt. 3. Spezielle Algorithmen
|
|
|
- Anton Buchholz
- vor 9 Jahren
- Abrufe
Transkript
1 Inhalt 0. Rechner und Programmierung für Kommunikationstechniker und Mechatroniker 1. Algorithmen - Wesen, Eigenschaften, Entwurf 2. Darstellung von Algorithmen mit Struktogrammen und Programmablaufplänen 3. Spezielle Algorithmen Peter Sobe Spezielle Algorithmen Im folgenden Abschnitt sollen ausgewählte Algorithmen, die spezielle Konstrukte des algorithmischen Paradigmas, wie - Selektion, Mehrfachselektion - Zyklen verschiedener Formen enthalten, entwickelt und besprochen werden. In einem weiteren Abschnitt werden dann Algorithmen mit Prozeduren behandelt und schließlich werden rekursive Algorithmen dargestellt. Peter Sobe 37
2 Algorithmen mit Selektion Algorithmen, die nur die Konstrukte Sequenz und Selektion (einschließlich Mehrfachselektion) enthalten sind eigentlich sehr einfache Algorithmen, wenn man einmal ausschließt, dass Prozeduren aufgerufen werden. Die meisten anspruchsvollen Algorithmen enthalten Zyklen. Beispiel 1 - Berechnung Flächeninhalt eines Dreiecks Ein Dreieck mit den Seiten a,b,c hat einen Flächeninhalt f= mit s=(a+b+c)/2 s* ( s a)*( s b)*( s c) Vorab ist zu prüfen, ob mit den Seiten wirklich ein Dreieck gebildet werden kann. Ein Dreieck ist nur bildbar, falls a+b>c und a+c>b und b+c>a gilt. Peter Sobe 38 Algorithmen mit Selektion Beispiel 1 - Berechnung Flächeninhalt eines Dreiecks Eingabe: a,b,c (a+b>c)&&(a+c>b)&&(b+c>a) ja s=(a+b+c)/2 f=sqrt(s*(s-a)*(s-b)*(s-c)) Ausgabe: "Fläche= ",f Ausgabe: " Dreieck existiert nicht" nein Peter Sobe 39
3 Algorithmen mit Selektion Beispiel 2 Prüfen eines Datums Es ist ein Algorithmus aufzustellen, der ein gegebenes Datum, bestehend aus den drei Größen t für Tag, m für Monat und j für Jahr, überprüft, ob es sich um ein gültiges Datum aus dem Zeitraum 1583 bis 2100 handelt! Lösung: Mitschrift, Vorbereitung für Übungsaufgabe (Berechnung der Tageszahl aus dem Datum) Peter Sobe 40 Algorithmen mit Selektion und Zyklen Beispiel 3 Entscheidung über Teiler Geben Sie einen Algorithmus an, der von 2 natürlichen Zahlen x und y ermittelt, ob die eine ein Teiler der anderen ist! Lösung: Mitschrift Peter Sobe 41
4 Algorithmen mit Selektion und Zyklen Beispiel 4 Minimum einer Zahlenfolge (Basisalgorithmus mit Zählschleife) Es ist ein Algorithmus zur Bestimmung des Minimums einer Zahlenfolge a 1, a 2,... a n aufzustellen. Lösung: Mitschrift Beispiel 5 Sortierung einer Zahlenfolge (Basisalgorithmus mit geschachtelten Zählschleifen) Es ist eine Weiterentwicklung des Algorithmus 4 vorzunehmen, der eine gegebene Zahlenfolge sortiert, indem er das Minimum bestimmt, an die erste Position setzt und dann mit dem Rest (ab Position 2) wieder das Minimum bestimmt, usw. Lösung: Mitschrift Peter Sobe 42 Algorithmen mit Prozeduren Prozeduren dienen der Übersichtlichkeit, indem Teilalgorithmen als Prozeduren verpackt werden und unter einem Namen aufgerufen werden. Prozeduren sind immer dann sinnvoll, wenn gleiche oder nur ganz gering variierende Teile in Algorithmen mehrmals vorkommen. Diese Teile müssen dann nur einmal aufgeschrieben werden und können an verschiedenen Stellen im Algorithmus aufgerufen werden. Beispiel 6 Differenz in Tagen von zwei Tagesangaben als Datum 1 und Datum 2 Für Datum 1 (t1,m1,j1) und Datum 2 (t2,m2,j2) ist jeweils die Tagesnummer zu berechnen (siehe Übungsaufgabe). Mit den zwei Tagesnummern ist die Tagesdifferenz zu bilden. Lösung: Mitschrift Peter Sobe 43
5 Rekursive Algorithmen In der Mathematik sind viele Funktionen rekursiv definiert. Der Begriff der Rekursion beinhaltet, dass zur Definition einer Funktion diese selbst wieder mit benutzt wird, allerdings mit anderen Argumenten. Eine rekursive Definition benötigt stets eine (nichtrekursive) Anfangs- bzw. Abbruchbedingung. Beispiel: Fakultät rekursive Definition : fak(n) = n * fak(n-1) Anfangsbedingung: fak(0) = 1 Peter Sobe 44 Rekursive Algorithmen - Charakteristika Eine solche Definition ist in der Regel kurz und übersichtlich. Man erkennt sofort die Grundstruktur des Algorithmus. Eine solche rekursive Definition lässt sich auch sehr leicht unter Verwendung rekursiver Prozeduren ( Funktionen) implementieren. Allerdings ist der implementierte Algorithmus häufig ineffizient, d.h. mit einem hohen Ressourcenverbrauch (Speicher und Rechenzeit) verbunden. Bestimmte rekursive Algorithmen lassen sich in iterative Algorithmen umschreiben und damit effizienter implementieren. Dies trifft insbesondere auf eine sogenannte endständige Rekursion zu, wie z.b. bei der Fakultät. Peter Sobe 45
6 Rekursive Algorithmen - Fakultät Das folgende Struktogramm enthält die Umsetzung der rekursiven Definition: fak(n) Eingangsgröße: n Ausgangsgröße: Rückkehrwert if (n==0) return 1 then else return (n*fak(n-1)) Peter Sobe 46 Rekursive Algorithmen Fibonacci-Zahlen Rekursive Definition der Fibonacci-Zahlen: fibo(n) = fibo(n-1) + fibo(n-2) Anfangsbedingung: fibo(0)=0, fibo(1)=1 Das folgende Struktogramm enthält die Umsetzung der rekursiven Definition: fibo(n) Eingangsgröße: n Ausgangsgröße: Rückkehrwert if (n<2) then return n else return (fibo(n-1)+fibo( n-2)) Peter Sobe 47
7 Rekursive Algorithmen Turm von Hanoi Das Problem beim Turm von Hanoi besteht in der folgenden Aufgabe: 1. Gegeben ist ein Turm auf einem Standplatz A aus n Scheiben, die übereinander liegen, und zwar immer eine kleinere auf einer größeren Scheibe. 2. Der Turm soll auf einen zweiten Platz B umgesetzt werden, wobei aber beim Umsetzen immer nur eine kleinere auf eine größere Scheibe gelegt werden darf. 3. Bei der Umsetzung darf ein dritter Hilfsplatz C mitbenutzt werden. Das C-Programm für dieses Problem wird in der Vorlesung vorgeführt. Es dient als Experimentierprogramm für einen Turm mit einer wählbaren Scheibenanzahl zum Studium der Aufgabenstellung. Peter Sobe 48 Rekursive Algorithmen Turm von Hanoi Analysiert man das Problem beim Turm von Hanoi so erkennt man, dass man beim Umsetzen des Turms von n Scheiben vom Platz A zum Platz B erst einmal den Turm von n-1 Scheiben über der größten Scheibe von A nach dem Hilfsplatz C umsetzen muss, um einen Zug der größten Scheibe vom Platz A zum Platz B vornehmen zu können. Danach muss der Turm von n-1 Scheiben vom Platz C wieder auf den Platz B umgesetzt werden. Peter Sobe 49
8 Rekursive Algorithmen Turm von Hanoi Platz A Platz B Platz C Ausgangssituation Turm soll nach Platz B umgesetzt werden Peter Sobe 50 Rekursive Algorithmen Turm von Hanoi Platz A Platz B Platz C Turm mit n-1 Scheiben über der größten Scheibe muss auf Hilfsplatz C umgesetzt werden. Peter Sobe 51
9 Rekursive Algorithmen Turm von Hanoi Platz A Platz B Platz C Größte Scheibe kann jetzt durch einen Zug vom Platz A zum Platz B befördert werden. Peter Sobe 52 Rekursive Algorithmen Turm von Hanoi Platz A Platz B Platz C Turm mit n-1 Scheiben kann jetzt vom Hilfsplatz C zum Platz B umgesetzt werden. P. Sobe 53
10 Rekursive Algorithmen Turm von Hanoi Algorithmus rekursiv: Umsetz(n,A,B) = Umsetz(n-1,A,C), Zug (n,a,b), Umsetz(n-1,C,B) Die Rolle des Hilfsplatzes C wechselt von Ebene zu Ebene. Hilfsplatz ist immer der Platz, der in der Umsetzung nicht genannt ist. Bei Umsetz(...,A,C) ist es in der nächsten Ebene der Platz B usw.. Bezeichnet man den Platz A mit der Ziffer 0, den Platz B mit der Ziffer 1, und den Platz C mit der Ziffer 2, so kann der freie Platz immer mit 3-A-B bezeichnet werden. Peter Sobe 54 Rekursive Algorithmen Turm von Hanoi Struktogramm rekursiv: umsetz (n, a, b) ja / n = 0? k = 3 - a - b umsetz (n-1, a, k) zug (n, a, b) umsetz (n-1, k, b) nein zug( n, a, b) Ausgabe: "snr=",n,"von ",p[a],"->",p[b] Peter Sobe 55
11 Rekursive Algorithmen Prinzip Teile und Herrsche Das Prinzip Teile und Herrsche (engl. divide and conquer bzw. lat. divide et impera) ist für die Verwendung rekursiver Algorithmen zugeschnitten. Man versucht den Grundbereich an Eingangsdaten für den Algorithmus in meist zwei Teile (die nicht unbedingt gleich groß sein müssen) aufzuteilen. Danach wird der eigentliche Algorithmus auf die erzeugten Teile nacheinander angewandt (Herrsche). Der Algorithmus teilt nun wieder die Teile in weitere Teile und bearbeitet diese weiter, was weitere rekursive Aufrufe zur Folge hat. Der rekursive Algorithmus, muss also die Teilung selbst mit enthalten. Peter Sobe 56 Rekursive Algorithmen Quicksort (1) Das Prinzip Teile und Herrsche wird für einen schnellen Sortieralgorithmus (Quicksort) angewandt. Die Aufteilung des Grundbereichs wird in einen linken und in einen rechten Teil durch eine Funktion(Prozedur) grupp vorgenommen. grupp (a[], l, r) while ( l < r) a[l+1] < a[l] ja tausch( a[l+1], a[l] ) tausch( a[l+1], a[r] ) l = l + 1 r = r - 1 return l nein Peter Sobe 57
12 Rekursive Algorithmen Quicksort (2) Der Quicksort-Algorithmus benutzt nun diesen Teile-Algorithmus als wesentlichen Bestandteil und hat als Herrsche-Teil den rekursiven Aufruf von sich selbst. quicksort (a[], links, rechts) Teile in links und rechts ja pos = grupp (a, links, rechts) quicksort (a, links, pos-1) quicksort (a, pos+1, rechts) rechts > links nein Peter Sobe 58 Rekursive Algorithmen Quicksort (3) Beispiel: Sortiere die Zahlenfolge 8,5,6,3,4,1, deren Elemente in a[0] bis a[5] gespeichert sind. Quicksort(a,0,5) pos=grupp(a,0,5) , l=0, r=5: Bedingung a[l+1]<a[l] zutreffend, tausche a[0], a[1], setze l=l+1= , l=1, r=5: Bedingung a[l+1]<a[l] zutreffend, tausche a[1], a[2], setze l=l+1= , l=2, r=5: Bedingung a[l+1]<a[l] zutreffend, tausche a[2], a[3], setze l=l+1= , l=3, r=5: Bedingung a[l+1]<a[l] zutreffend, tausche a[3], a[4], setze l=l+1= , l=4, r=5: Bedingung a[l+1]<a[l] zutreffend, tausche a[4], a[5], setze l=l+1= , l=r=5: Bedingung l<r nicht mehr zutreffend, Zyklus beenden, pos = 5 Rekursiver Aufruf: Quicksort(a,0,4), Quicksort(a,6,5) Peter Sobe 59
13 Rekursive Algorithmen Quicksort (4) Fortsetzung: Quicksort(a,0,4) pos=grupp(a,0,4) , l=0, r=4: Bedingung a[l+1]<a[l] nicht zutreffend, tausche a[1], a[4], setze r=r-1= , l=0, r=3: Bedingung a[l+1]<a[l] zutreffend, tausche a[0], a[1], setze l=l+1= , l=1, r=3: Bedingung a[l+1]<a[l] zutreffend, tausche a[1], a[2], setze l=l+1= , l=2, r=3: Bedingung a[l+1]<a[l] zutreffend, tausche a[2], a[3], setze l=l+1= , l=r=3: Bedingung l<r nicht mehr zutreffend, Zyklus beenden, pos = 3 Rekursiver Aufruf: Quicksort(a,0,2), Quicksort(a,4,4) Peter Sobe 60 Rekursive Algorithmen Quicksort (5) Fortsetzung: Quicksort(a,0,2) pos=grupp(a,0,2) , l=0, r=2: Bedingung a[l+1]<a[l] nicht zutreffend, tausche a[1], a[2], setze r=r-1= , l=0, r=1: Bedingung a[l+1]<a[l] zutreffend, tausche a[1], a[1], setze l=l , l=r=1: Bedingung l<r nicht mehr zutreffend, Zyklus beenden, pos = 0 Rekursiver Aufruf: Quicksort(a,0,-1), Quicksort(a,1,2) Quicksort(a,1,2) pos=grupp(a,1,2) , l=1, r=2: Bedingung a[l+1]<a[l] zutreffend, tausche a[1], a[2], setze l=l+1= , l=r=2: Bedingung l<r nicht mehr zutreffend, Zyklus beenden, pos = 2 Rekursiver Aufruf: Quicksort(a,1,1), Quicksort(a,3,2) Ende Peter Sobe 61
14 Sortieren durch Iteration (1) Quicksort (als rekursiver Algorithmus) ist ein sehr schneller Sortieralgorithmus, aber ist nicht einfach zu durchschauen. Im folgenden soll ein sehr einfacher intuitiver Sortieralgorithmus angegeben werden. Bubble Sort Eingabe: feld a mit Elementen a[1] bis a[n], Feldlänge n Ausgabe: feld a mit sortierten Elementen Idee: (1) Durchlaufe Feld mit aufsteigendem Index und vertausche benachbarte Felder, falls Sie nicht der geforderten Sortierreihenfolge entsprechen. Wiederhole (1) solange, bis keine Vertauschungen mehr nötig sind Peter Sobe 62 Sortieren durch Iteration (2) Bubble Sort PAP Start tausch=false i = 1 i<n? ja a[i]>a[i+1]? nein nein ja tmp = a[i] a[i] = a[i+1] tausch ==true? nein ja a[i+1] = tmp tausch = true Stop i = i+1 Peter Sobe 63
Inhalt. 3. Spezielle Algorithmen
Inhalt 0. Rechner und Programmierung für Kommunikationstechniker und Mechatroniker 1. Algorithmen - Wesen, Eigenschaften, Entwurf 2. Darstellung von Algorithmen mit Struktogrammen und Programmablaufplänen
Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele.
1. Einführung in die Informatik Inhalt 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele Peter Sobe 1 Beispiele für Algorithmen Im folgenden Abschnitt sollen ausgewählte
Einschub: Anweisungen und Bedingungen für PAP und Struktogramme (1)
Einschub: Anweisungen und Bedingungen für PAP und Struktogramme (1) Anweisungen: Eingabeanweisungen, z.b. Eingabe: x Ausgabeanweisungen, z.b. Ausgabe: Das Maximum ist, max Die Symbole x und max werden
Rekursive Algorithmen
Rekursive Algorithmen In der Mathematik sind viele Funktionen rekursiv definiert. Der Begriff der Rekursion beinhaltet, dass zur Definition einer Funktion diese selbst wieder mit benutzt wird, allerdings
1. Grundlagen der Informatik
1. Grundlagen der Informatik Inhalt Organisation und Architektur von Rechnern Boolesche Algebra / Aussagenlogik Zahlensysteme und interne Informationsdarstellung Algorithmen, Darstellung von Algorithmen,
Informatik. Teil 1 - Sommersemester Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik
Informatik Teil 1 - Sommersemester 2011 Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Dieser Foliensatz wurde z.t. von Herrn Prof. Grossmann übernommen Inhalt 0. Rechner und Programmierung
einseitige Selektion zweiseitige Selektion
einseitige Selektion / Die einseitige Selektion gestattet die Ausführung einer eisung (welche wiederum eine Sequenz sein kann), wenn die angegebene wahr () ist. 19 zweiseitige Selektion _1 _2 _1 _2 Die
Übung zu Algorithmen und Datenstrukturen (für ET/IT)
Übung zu Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Jakob Vogel Computer-Aided Medical Procedures Technische Universität München Komplexität von Programmen Laufzeit kann näherungsweise
Interne Sortierverfahren
Angewandte Datentechnik Interne Sortierverfahren Interne Sortierverfahren Ausarbeitung einer Maturafrage aus dem Fach A n g e w a n d t e D a t e n t e c h n i k Andreas Hechenblaickner 5CDH HTBLA Kaindorf/Sulm
Speicher und Adressraum
Linearer Speicher (Adressraum) Technische Universität München Speicher und Adressraum Freie Speicherhalde (Heap) Freier Speicherstapel (Stack) Globale Variablen Bibliotheksfunktionen Laufzeitsystem Programmcode
Beispiel 1: Fakultät
16. Rekursion Beispiel 1: Fakultät Rekursive Definition der Fakultät (Mathematik) n! = 1 falls n=0 n*(n-1)! falls n>0 Programmierung mittels einer rekursiven Funktion in C++ double fakultaet(int n) if
9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion
Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen
Programmierung mit C Algorithmen
Programmierung mit C Algorithmen Informationen /7/ Robert Sedgewick Algorithmen in C. 742 Seiten, ISBN 3-827-37182-1. /8/ Kyle Loudon Algorithmen mit C, ISBN 3-4897-211653-0. Online-Buch "C von A bis Z",
Übung zu Algorithmen und Datenstrukturen (für ET/IT)
Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Rüdiger Göbl, Mai Bui Computer Aided Medical Procedures Technische Universität München Fibonacci Zahlen Fibonacci Folge Die Fibonacci
Informatik. Teil 1 Wintersemester 2011/2012. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik
Informatik Teil 1 Wintersemester 2011/2012 Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Dieser Foliensatz wurde z.t. von Herrn Prof. Grossmann übernommen Inhalt 1. Algorithmen -
Vorkurs Informatik WiSe 17/18
Java Rekursion Dr. Werner Struckmann / Stephan Mielke, Nicole Naczk, 10.10.2017 Technische Universität Braunschweig, IPS Überblick Einleitung Türme von Hanoi Rekursion Beispiele 10.10.2017 Dr. Werner Struckmann
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Vorrechnen von Aufgabenblatt 1. Wohlgeformte Klammerausdrücke 3. Teile und Herrsche Agenda 1.
2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017
2. Algorithmische Methoden 2.1 Rekursion 18. April 2017 Rekursiver Algorithmus Ein rekursiver Algorithmus löst ein Problem, indem er eine oder mehrere kleinere Instanzen des gleichen Problems löst. Beispiel
2. Algorithmenbegriff
2. Algorithmenbegriff Keine Algorithmen: Anleitungen, Kochrezepte, Wegbeschreibungen,... Algorithmus: Berechnungsvorschrift, die angibt, wie durch Ausführung bestimmter Elementaroperationen aus Eingabegrößen
FHZ. K13 Rekursion. Lernziele. Hochschule Technik+Architektur Luzern Abteilung Informatik, Fach Programmieren. Inhalt
Inhalt 1. Einführung 1. Beispiel: Fakultät 2. Beispiel: Zahlenfolge 3. Beispiel: Formale Sprache 4. Unterschied Iteration/Rekursion 2. Rekursive Methoden 1. Beispiel: Fakultät 2. Beispiel: "Türme
II.3.1 Rekursive Algorithmen - 1 -
1. Grundelemente der Programmierung 2. Objekte, Klassen und Methoden 3. Rekursion und dynamische Datenstrukturen 4. Erweiterung von Klassen und fortgeschrittene Konzepte II.3.1 Rekursive Algorithmen -
Abschnitt: Algorithmendesign und Laufzeitanalyse
Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 27.10.2011 [email protected] 1 Wiederholung Wir vergleichen Algorithmen anhand des ordnungsmäßigen Wachstums von T(n), S(n), Asymptotische Schranken: O-Notation:
Informatik I: Einführung in die Programmierung
Informatik I: Einführung in die Programmierung 7. Albert-Ludwigs-Universität Freiburg Bernhard Nebel 31. Oktober 2014 1 31. Oktober 2014 B. Nebel Info I 3 / 20 Um zu, muss man zuerst einmal. Abb. in Public
4 Rekursionen. 4.1 Erstes Beispiel
4 Rekursionen Viele Algorithmen besitzen sowohl eine iterative als auch eine rekursive Lösung. Sie unterscheiden sich darin, dass die iterative Version meist einen etwas längeren Kode besitzt, während
Einstieg in die Informatik mit Java
1 / 20 Einstieg in die Informatik mit Java Rekursion Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 20 1 Überblick 2 Rekursion 3 Rekursive Sortieralgorithmen 4 Backtracking
Algorithmen I. Tutorium 1-3. Sitzung. Dennis Felsing
Algorithmen I Tutorium 1-3. Sitzung Dennis Felsing [email protected] www.stud.uni-karlsruhe.de/~ubcqr/algo 2011-05-02 Überblick 1 Sortieren und Suchen 2 Mastertheorem 3 Datenstrukturen 4 Kreativaufgabe
Sortieralgorithmen. Selection Sort
intuitivster Suchalgorithmus Sortieralgorithmen Selection Sort In jedem Schritt wird das kleinste Element im noch unsortierten Array gesucht und ans Ende des bisher sortierten Teilarrays gehangen 3 1 4
Wiederholung. Divide & Conquer Strategie
Wiederholung Divide & Conquer Strategie Binäre Suche O(log n) Rekursives Suchen im linken oder rechten Teilintervall Insertion-Sort O(n 2 ) Rekursives Sortieren von a[1..n-1], a[n] Einfügen von a[n] in
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 [email protected] 1 Kapitel 2 Algorithmische [email protected] 2 2. Algorithmische 1) Iterative Algorithmen 2) Rekursive Algorithmen
Abschnitt 19: Sortierverfahren
Abschnitt 19: Sortierverfahren 19. Sortierverfahren 19.1 Allgemeines 19.2 Einfache Sortierverfahren 19.3 Effizientes Sortieren: Quicksort 19.4 Zusammenfassung 19 Sortierverfahren Informatik 2 (SS 07) 758
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 9. Sortieren
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 9 Sortieren Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69, A-4040 Linz Sortieren :: Problemstellung
Institut fu r Informatik
Technische Universita t Mu nchen Institut fu r Informatik Lehrstuhl fu r Bioinformatik Einfu hrung in die Programmierung fu r Bioinformatiker Prof. B. Rost, L. Richter WS 2013/14 Aufgabenblatt 5 2. Dezember
Flussdiagramm / Programmablaufplan (PAP)
Flussdiagramm / Programmablaufplan (PAP) Basissysmbole Grenzstelle (Anfang, Zwischenhalt oder Ende des Programms/Algorithmus) Verbindung Zur Verdeutlichung der Ablaufrichtung werden Linien mit einer Pfeilspitze
Heapsort. Dr. Michael Brinkmeier (TU Ilmenau) Algorithmen und Datenstrukturen / 50
Heapsort Dr. Michael Brinkmeier (TU Ilmenau) Algorithmen und Datenstrukturen 27.6.2007 / 50 Heapsort - Wiederholung Definition Array A[..n] mit Einträgen aus (U,
Aufgabe 8. 1 Arbeitsweise illustrieren. 2 Korrektheitsbeweis führen. 3 Laufzeitanalyse durchführen.
Aufgabe 8 Betrachten Sie den folgenden Algorithmus namens Bubble-Sort. Bubble-Sort(A[1..n]): 1 for i 1 to length(a) 1 2 do for j length(a) downto i + 1 3 do if A[j 1] > A[j] 4 then A[j 1] A[j] 1 Arbeitsweise
Algorithmenbegriff: Berechenbarkeit. Algorithmenanalyse. (Berechnung der Komplexität)
Über-/Rückblick Algorithmenbegriff: Berechenbarkeit Turing-Maschine RAM µ-rekursive Funktionen Zeit Platz Komplexität Algorithmentechniken Algorithmenanalyse (Berechnung der Komplexität) Rekursion Iteration
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Sortierverfahren 1. Schreibtischtest 2. Stabilität 3. Sortierung spezieller Arrays 4. Untere
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen
Algorithmen und Datenstrukturen Heapsort
Algorithmen und Datenstrukturen 2 5 Heapsort In diesem Kapitel wird Heapsort, ein weiterer Sortieralgorithmus, vorgestellt. Dieser besitzt wie MERGE-SORT eine Laufzeit von O(n log n), sortiert jedoch das
Grundlagen: Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010
Sortierverfahren. Sortierverfahren für eindimensionale Arrays
Sortierverfahren Sortierverfahren Sortieren durch Einfügen Sortieren durch Auswählen Sortieren durch Vertauschen (Bubblesort) Quicksort Sortierverfahren für eindimensionale Arrays 1 Gegeben ist eine beliebige
Übung zu Algorithmen und Datenstrukturen (für ET/IT)
Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Rüdiger Göbl, Mai Bui Computer Aided Medical Procedures Technische Universität München Administratives Zentralübung (Mittwoch, 09:45
6 Quicksort. die mittlere Laufzeit Θ(n log n) beträgt und. die in der asymptotischen Notation verborgenen Konstanten sehr klein sind.
Algorithmen und Datenstrukturen 132 6 Quicksort In diesem Abschnitt wird Quicksort, ein weiterer Sortieralgorithmus, vorgestellt. Trotz einer eher langsamen Worst-Case Laufzeit von Θ(n 2 ) ist Quicksort
Folge 13 - Quicksort
Für Abiturienten Folge 13 - Quicksort 13.1 Grundprinzip des Quicksort Schritt 1 Gegeben ist ein unsortierter Array von ganzen Zahlen. Ein Element des Arrays wird nun besonders behandelt, es wird nämlich
Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:
Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls
Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen
Kapitel 10 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Klausur - Informatik I SS 05. Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel
Klausur - Informatik I SS 05 Aufgabe 1 2 3 4 Punkte 40 30 40 10 Gesamtpunkte (max. 120): Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel Tragen Sie als erstes Ihren vollständigen Namen und Ihre Matrikelnummer
Vorkurs Informatik WiSe 16/17
Java Rekursion Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 11.10.2016 Technische Universität Braunschweig, IPS Überblick Einleitung Beispiele 11.10.2016 Dr. Werner Struckmann / Stephan Mielke,
7. Sortieren Lernziele. 7. Sortieren
7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche
Kasparov versus Deep Blue. Till Tantau. Institut für Theoretische Informatik Universität zu Lübeck
Kasparov versus Deep Blue Institut für Theoretische Informatik Universität zu Lübeck 18. Vorlesung zu Informatik A für MLS 14. Dezember 2006 Die Lernziele der heutigen Vorlesung und der Übungen. 1 Das
Stack. Seniorenseminar Michael Pohlig
Stack Seniorenseminar 21.06.2013 Michael Pohlig ([email protected]) Übersicht 1. Axiomatik eins Kellers und seine Software- Realisierung 2. Bedeutung der Rekursion in der Mathematik 3. Rekursive Programmierung.
Inhalt Kapitel 2: Rekursion
Inhalt Kapitel 2: Rekursion 1 Beispiele und Definition 2 Partialität und Terminierung 3 Formen der Rekursion Endständige Rekursion 4 Einbettung 29 Beispiele und Definition Rekursion 30 Man kann eine Funktion
Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren
Rekursion Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Mathematische Rekursion o Viele mathematische Funktionen sind sehr natürlich rekursiv definierbar, d.h. o die
Rekursion. Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren
Rekursion Rekursive Funktionen, Korrektheit, Terminierung, Rekursion vs. Iteration, Sortieren Mathematische Rekursion o Viele mathematische Funktionen sind sehr natürlich rekursiv definierbar, d.h. o die
Sortieralgorithmen. Jan Pöschko. 18. Januar Problemstellung Definition Warum Sortieren?... 2
Jan Pöschko 18. Januar 2007 Inhaltsverzeichnis 1 Problemstellung 2 1.1 Definition................................... 2 1.2 Warum Sortieren?.............................. 2 2 Einfache Sortieralgorithmen
Übung zu Algorithmen und Datenstrukturen (für ET/IT)
Übung zu Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Matthias Wieczorek Computer-Aided Medical Procedures Technische Universität München Administratives Zentralübung (Mittwoch, 09:45
3.2. Divide-and-Conquer-Methoden
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE 3.2. Divide-and-Conquer-Methoden Divide-and-Conquer-Methoden Einfache Sortieralgorithmen reduzieren die Größe des noch
Folgen und Funktionen in der Mathematik
Folgen und Funktionen in der Mathematik Anhand von einigen exemplarischen Beispielen soll die Implementierung von mathematischen Algorithmen in C/C++ gezeigt werden: Reelle Funktionen in C/C++ Diese wird
3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen.
Das Suchproblem Gegeben Menge von Datensätzen. 3. Suchen Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle Jeder Datensatz hat einen Schlüssel k. Schlüssel sind vergleichbar: eindeutige Antwort auf
Arrays. Arrays werden verwendet, wenn viele Variablen benötigt werden. Der Vorteil in Arrays liegt darin, dass man nur eine Variable deklarieren muss
Arrays FTI 41 2005-09-09 Arrays werden verwendet, wenn viele Variablen benötigt werden. Der Vorteil in Arrays liegt darin, dass man nur eine Variable deklarieren muss z.b. Dim Werte(x) As Single. Wobei
Anweisungen und Kontrollstrukturen
Anweisungen und Kontrollstrukturen Anweisungen werden im Programm nacheinander als Sequenz abgearbeitet, wenn nichts anderes angegeben ist. Einzelne Anweisung mit einer Zuweisung, zum Beispiel: A = 2*r*r;
Sortieren & Co. KIT Institut für Theoretische Informatik
Sortieren & Co KIT Institut für Theoretische Informatik 1 Formaler Gegeben: Elementfolge s = e 1,...,e n Gesucht: s = e 1,...,e n mit s ist Permutation von s e e 1 n für eine Totalordnung ` ' KIT Institut
Rekursion. Dr. Philipp Wendler. Zentralübung zur Vorlesung Einführung in die Informatik: Programmierung und Softwareentwicklung
Dr. Philipp Wendler Zentralübung zur Vorlesung Einführung in die Informatik: Programmierung und Softwareentwicklung WS18/19 https://www.sosy-lab.org/teaching/2018-ws-infoeinf/ Divide et Impera im Römischen
Programmieren 1 C Überblick
Programmieren 1 C Überblick 1. Einleitung 2. Graphische Darstellung von Algorithmen 3. Syntax und Semantik 4. Einstieg in C: Einfache Sprachkonstrukte und allgemeiner Programmaufbau 5. Skalare Standarddatentypen
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Vorstellen des vierten Übungsblatts 2. Vorbereitende Aufgaben für das vierte Übungsblatt
JAVA - Suchen - Sortieren
Übungen Informatik I JAVA - Suchen - Sortieren http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 Inhalt Suchen/Sortieren binary search mergesort bubblesort Übungen Informatik
C++ - Kontrollstrukturen Teil 2
C++ - Kontrollstrukturen Teil 2 Reiner Nitsch 8417 [email protected] Schleife und Verzweigung kombiniert SV initialisieren while(b1) if(b2) w f V1 V2 SV Richtung Ziel verändern Wichtiger Baustein vieler
2. Programmierung in C
2. Programmierung in C Inhalt: Überblick über Programmiersprachen, Allgemeines zur Sprache C C: Basisdatentypen, Variablen, Konstanten Operatoren, Ausdrücke und Anweisungen Kontrollstrukturen (Steuerfluss)
Beim rekursiven Aufruf einer Funktion wird jeweils ein Duplikat der gesamten Funktion im Speicher abgelegt.
Rekursion Unter Rekusion verstehen wir eine Funktion, die sich selbst aufruft. Da sie das nicht immerzu tun kann (das Programm würde ewig laufen) benötigt jeder rekursive Aufruf eine Abbruchbedingung!
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Elementare Datenstrukturen Array Linked List Stack Queue Tree (Feld) (Verkettete Liste) (Stapel) (Warteschlange) (Baum) Einschub:
11. Rekursion, Komplexität von Algorithmen
11. Rekursion, Komplexität von Algorithmen Teil 2 Java-Beispiele: Power1.java Hanoi.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 23. Nov. 2015 Anwendung der Rekursion Rekursiv
BUBBLE SORT. Können wir die gefundenen Algorithmen auch auf Listen mit mehr als drei Elementen ausdehnen?
BUBBLE SORT Voraussetzungen der Schüler: Die Schüler besuchen bereits das zweite Jahr den Informatikunterricht und sollten den Umgang mit Feldern und Unterprogrammen mittlerweile beherrschen. Im ersten
Stabiles Sortieren. Dieses Prinzip lässt sich natürlich auf beliebiege andere Zahlensystem oder auch komplett anders gestaltete Mengen übertragen.
Prof. Thomas Richter 3. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg [email protected] Material zur Vorlesung Algorithmische Mathematik II am 27.04.2017 Stabiles
Informatik II Übung 10. Pascal Schärli
Informatik II Übung 0 Pascal Schärli [email protected] 09.0.0 Was gibts heute? Best-of Vorlesung: Teile und Herrsche Türme von Hanoi Mergesort O-Notation Vorbesprechung: U0A, - Mergesort U0A Türme
14. Sortieren II Heapsort. Heapsort. [Max-]Heap 7. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften
Heapsort, Quicksort, Mergesort 14. Sortieren II 14.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 397 398 Heapsort [Max-]Heap 7 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum
1. Die rekursive Datenstruktur Liste
1. Die rekursive Datenstruktur Liste 1.3 Rekursive Funktionen Ideen zur Bestimmung der Länge einer Liste: 1. Verwalte ein globales Attribut int laenge. Fügt man ein Element zur Liste oder löscht es, wird
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Sortieralgorithmen Einleitung Heapsort Quicksort 2 Motivation Sortieren ist Voraussetzung für viele Anwendungen Nach
Rekursive Funktionen
Um Rekursion zu verstehen, muss man vor allem Rekursion verstehen. http://www2.norwalk-city.k12.oh.us/wordpress/precalc/files/2009/05/mona-lisa-jmc.jpg Rekursive Funktionen OOPM, Ralf Lämmel Was ist Rekursion?
