Vortrag: Prüfzeichencodierung. Michael Gläser

Größe: px
Ab Seite anzeigen:

Download "Vortrag: Prüfzeichencodierung. Michael Gläser"

Transkript

1 Vortrag: Prüfzeichencodierung Michael Gläser

2 Prüfzeichencodierung (Inhalt): 1. Definition und allgemeine Eigenschaften 2. Prüfziffercodierung 3. ISBN-Codierung 4. EAN-Codierung

3 1. Definition und allgemeine Eigenschaften - Erkennung von Fehlern bei der Eingabe - keine automatische Korrektur, sondern erneute Eingabe - Beispiele solcher Codierungen: ISBN-Nr., EAN-Nr., Banknotenkennzeichnung, Kartennr. - Spezialfall der Prüfzeichencodierung: Prüfzifferncodierung Warum Prüfzeichencodierung? Dies hängt mit der Art und Häufigkeit der Eingabefehler zusammen. Fehlerklassifikation nach Verhoeff: Fehlertyp Typ Häufigkeit Einzelfehler a b 79 % Nachbartransposition (Zahlendreher) ab ba 10,2 % Sprungtransposition abc cba 0,8 % Zwillingsfehler aa bb 0,6 % phonetische Fehler (dreißig statt dreizehn) a0 1a 0,5 % Sprung-Zwillingsfehler aca bcb 0,3 % Rest 8,6 % Definition: Sei A ein Alphabet und G = (A, *) eine Gruppe über A. Eine Prüfzeichencodierung P G = (π 1,..., π n ; c) über G ist gegeben durch n Permutationen π 1,..., π n von A sowie der Kontrollgleichung n π 1 (x 1 ) *... * π n (x n ) = π i (x i ) = c i = 1 die für alle x 1,..., x n G erfüllt ist. Aus der Kontrollgleichung sind verschiedene Folgerungen erkennbar. Sei eine Prüfzeichencodierung P G = (π 1,..., π n ; c) über der Gruppe G = (A, *) gegeben. Dann gilt: a) jede Menge {x 1,..., x n } {x i } A bestimmt eindeutig x i, 1 i n b) P G erkennt alle Einzelfehler c) P G erkennt eine Nachbartransposition, falls x * π i+1 (π i -1 (y)) y * π i+1 (π i -1 (x)) für alle x, y G, x y, und für alle i gilt d) P G erkennt eine Sprungtransposition, falls x * y * π i+2 (π i -1 (z)) z * y * π i+2 (π i -1 (x)) für alle x, y, z G, x z, und für alle i gilt e) P G erkennt einen Zwillingsfehler, falls x * π i+1 (π i -1 (x)) y * π i+1 (π i -1 (y)) für alle x, y G, x y, und für alle i gilt

4 2. Prüfziffercodierung in additiven Restklassen - Spezialfall der Prüfzeichencodierung Festlegung: 1. Gruppe G = Z m, d. h. die additive Restklassengruppe modulo m mit den Elementen A = {0, 1, 2,..., m-1} 2. n Zahlen (Gewichte) w 1,..., w n mit ggt(w i, m) = 1 Dann ist jede Abbildung π i : A A, 1 i n definiert durch π i (x) = w i x eine Permutation von A 3. c = 0 als Prüfziffer und w n = 1 oder w n = -1 daraus und aus der Kontrollgleichung aus der Definition folgt w 1 x w n-1 x n-1 ± x n = 0 oder x n = ± w i x i modulo m, da Z m i=1 n-1 Beispiele für Prüfziffercodierungen sind die ISBN-Nr. und die EAN-Nr.

5 3. ISBN-Codierung ISBN-Nr Land Verlag Buchnr. Prüfziffer modulo 11 in diesem Beispiel: c = 1*3 + 2*5 + 3*2 + 4*8 + 5*0 + 6*3 + 7*1 + 8*4 + 9*7 c = 171 modulo 11 c = 6 korrekt! 2. Beispiel: X c = 219 modulo 11 c = 10 zweistellige Zahlen sind nicht vorgesehen, man schreibt dafür ein X ISBN ist demzufolge eine Prüfzifferncodierung über Z 11 mit n = 10 w i = i, 1 i 9, w 10 = 1 Die ISBN-Nr. x = x 1,..., x 10 ist genau dann korrekt, wenn xh T = 0 gilt H T = Kontrollmatrix, dazu muss ISBN-Nr. als Linearcode über Z 11 betrachtet werden: H = ( ) Um Einzelfehler entdecken zu können erweitern wir die Kontrollmatrix zu H = ( ) ( ) Dazu sei x = x 1,..., x 10 und xh T = S 1 S 2 S 1 = ix i S 2 = x i i=1 i=1 x ist eine korrekte ISBN-Nr., wenn S 1 = 0 und S 2 = 0 Beispiel: S 1 = 231 modulo 11 S 2 = 33 modulo 11 S 1 = 0 S 2 = 0 Fehlererkennung: Annahme: Fehler bei Ziffer i y i = x i + e, e 0 für ein i 1 i 10 S 1 = x 1 + 2x iy i x 10 S 1 = x 1 + 2x i(x i + e) x 10 S 1 = x 1 + 2x ix i + ie x 10 S 1 = x 1 + 2x x 10 + ie S 1 = 0 + ie S 1 = ie = 0 S 2 = x 1 + x y i + + x 10 S 2 = x 1 + x (x i + e) + + x 10 S 2 = x 1 + x x i + + x 10 + e = 0 S 2 = 0 + e S 2 = e

6 S 1 = ie S 2 = e S 1 = i S 2 i = S 1 S 2-1 falls S 1 0 und S 2 0 ist, kann i eindeutig bestimmt werden (da wir uns in Z 11 in einem Primkörper befinden); daraus folgt: y i = x i + e = x i + S 2 x i = y i S 2 Berechnung eines Fehlers in einem ISBN-Code: x = x 1,..., x 10 eingegeben y = y 1,..., y 10 gelesen 1. Berechne yh T = S 1 S 2 2. Ist S 1 = 0 und S 2 = 0, dann kann man die Korrektheit des ISBN-Codes annehmen 3. Ist S 1 0 und S 2 0, dann berechne i = S 1 S 2-1 und decodiere x = y 1... y i -S 2... y Ist entweder S 1 = 0 oder S 2 = 0, dann liegen mindestens zwei Fehler vor, eine Decodierung ist dann nicht mehr möglich Beispiel: S 1 = 213 modulo 11 S 1 = 4 S 2-1 = 8-1 = 7 -S 2 = -8 = 3 S 2 = 30 modulo 11 S 2 = 8 i = S 1 S 2-1 = 4*7 = 6 x 6 = y 6 -S 2 = 1+3 =

7 4. EAN-Codierung Europäische Artikel-Nummer (Strichcode) - besteht aus 13 Ziffern - erste Ziffer steht für das Ursprungsland - letzte Ziffer ist die Prüfziffer Berechnung der Prüfziffer: x 13 = -(1x 1 + 3x 2 + 1x 3 + 3x x x 12 ) modulo 10 m = 10, n = 13 w i = { 1 i ungerade 1 i n { 3 i gerade Eine Ziffernfolge x = x 1,..., x 13 ist eine korrekte EAN-Nummer, wenn die Gleichung 10 S(x) = w i x i = 0 i=1 Beispiel: erfüllt ist. S = 7*1 + 6*3 + 1*1 + 0*3 + 1*1 + 0*3 + 3*1 + 1*3 + 7*1 + 3*3 + 8*1 + 7*3 + 2*1 S = 80 modulo 10 S = 0 Nummer ist korrekt! Für den EAN-Code gilt: 1.) Jeder Einzelfehler wird erkannt: sei x = x 1,..., x 13 korrekt und y = x 1,... x j + e... x 13 0 < e 9 für ein j 1 j 13 für ein ungerades j gilt: S(y) = S(x) + e S(x) da e > 0 Fehler erkannt Für ein ungerades j gilt: S(y) = S(x) + 3e GgT(3, 10) = 1 daraus folgt eine Permutation 3e für die Folge <0 9> <0, 3, 6, 9, 2, 5, 8, 1, 4, 7> Da in der Permutation alle Elemente verschieden sind, werden auch hier alle Einzelfehler erkannt. 2.) Nicht alle Nachbartranspositionen werden erkannt z. B. sind 0 und 5 benachbart, gilt nach Berechnungsvorschrift: 1*0 + 3*5 = 5 1*5 + 3*0 = 5 Ihre Vertauschung bleibt in der Kontrollsumme S unbemerkt, da sie in jeder Reihenfolge denselben Beitrag zur Summe liefern.

8 Bestimmung weiterer Ziffernpaare deren Transposition nicht erkannt wird: setzen a = x i und b = x i + 1 suchen a und b, so dass 1a + 3b = 3a + 1b 2a = 2b 2 ist in Z 10 allerdings nicht invertierbar. Wir suchen nun ein c mit a = b + c, so dass 2a = 2b ist: 2(b + c) = 2b 2b + 2c = 2b 2c muss 0 sein, um die Gleichung zu erfüllen c = 5 Die gesuchten Paare sind die, für die a = b + 5 gilt: (0, 5), (1, 6), (2, 7), (3, 8), (4, 9), sowie deren Umkehrungen Das sind etwa 11% von allen verschiedenen Paaren

9 Literaturverzeichnis: K.-U. Witt: Grundlagen der Informatik. Zahlen, Strukturen, Codierung, Verschlüsselung.

Pädagogische Hochschule Karlsruhe

Pädagogische Hochschule Karlsruhe Die Diedergruppe D und deren Anwendung bei der Numerierung bundesdeutscher DM-Geldscheine Pädagogische Hochschule Karlsruhe Institut für Mathematik und Informatik Vorlesung: Codierung und Kryptographie

Mehr

EDI. Electronic Data Interchange (Elektronischer Datenaustausch) H. Werntges, FB Informatik, FH Wiesbaden 1. Exkurse

EDI. Electronic Data Interchange (Elektronischer Datenaustausch) H. Werntges, FB Informatik, FH Wiesbaden 1. Exkurse Fachhochschule Wiesbaden - Fachbereich Informatik EDI Electronic Data Interchange (Elektronischer Datenaustausch) 25.03.2003 H. Werntges, FB Informatik, FH Wiesbaden 1 Fachhochschule Wiesbaden - Fachbereich

Mehr

Arbeitsblatt I. 5. Welche Arten von Fehlern könnten bei der Eingabe noch auftreten?

Arbeitsblatt I. 5. Welche Arten von Fehlern könnten bei der Eingabe noch auftreten? Arbeitsblatt I 1. Sind folgende EAN gültig? a. 3956966784248 b. 3900271934004 2. Berechne händisch die Prüfziffer zu folgender Nummer: 100311409310 Tipp: Du kannst dir die Sache einfacher machen, wenn

Mehr

Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017

Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017 Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017 Lineare Codes (Ausarbeitung von Benjamin Demes) 1) Was sind lineare Codes

Mehr

Ι. Einführung in die Codierungstheorie

Ι. Einführung in die Codierungstheorie 1. Allgemeines Ι. Einführung in die Codierungstheorie Codierung: Sicherung von Daten und Nachrichten gegen zufällige Fehler bei der Übertragung oder Speicherung. Ziel der Codierung: Möglichst viele bei

Mehr

Kap. III Fehlererkennende und fehlerkorrigierende Codes

Kap. III Fehlererkennende und fehlerkorrigierende Codes 8. Prüfzeichen-Verfahren 55 Kap. III Fehlererkennende und fehlerkorrigierende Codes In diesen Kapitel gehen wir zunächst auf Prüfzeichen-Verfahren für dezimale Wörter ein, also für solche über dem Alphabet

Mehr

Didaktische Grundlagen Arithmetik - Vertiefung Übungen 3

Didaktische Grundlagen Arithmetik - Vertiefung Übungen 3 Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Didaktische Grundlagen Arithmetik - Vertiefung Übungen 3 Die Mathematik ist eine Art Spielzeug,

Mehr

Frohe Feiertage und ein erfolgreiches Neues Jahr!

Frohe Feiertage und ein erfolgreiches Neues Jahr! Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Wintersemester 2009/10 Arithmetik Übungen 9 Von allen, die bis jetzt nach Wahrheit forschten,

Mehr

Kapitel 5. Kapitel 5 Fehlererkennende Codes

Kapitel 5. Kapitel 5 Fehlererkennende Codes Fehlererkennende Codes Inhalt 5.1 5.1 Grundlagen: Was Was sind sind Vehler? 5.2 5.2 Vertuaschungsfehler 5.3 5.3 Der Der ISBN-Code 3-406-45404-6 5.4 5.4 Der Der EAN-Code ( Strichcode ) Seite 2 5.1 Grundlagen:

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie 11. Dezember 2007 Ausblick Einführung und Definitionen 1 Einführung und Definitionen 2 3 Einführung und Definitionen Code: eindeutige Zuordnung von x i X = {x 1,.., x k } und y j Y = {y 1,..., y n } Sender

Mehr

WAS HEISST MODULO? MODULO. Zahlentheorie und Codierung

WAS HEISST MODULO? MODULO. Zahlentheorie und Codierung WAS HEISST MODULO? 1.Was hat das modulo-rechnen mit dem Dividieren zu tun? 2.Begründe folgende Teilbarkeitsregeln: a)eine Zahl ist genau dann durch 3 teilbar, wenn ihre Ziffernsumme durch 3 teilbar ist.

Mehr

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN?

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? 13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? Autor Alexander Souza, Universität Freiburg Schon faszinierend, was man so alles mit Algorithmen machen kann: CDs schnell in Regalen

Mehr

Algebraische Grundlagen der Informatik

Algebraische Grundlagen der Informatik Kurt-Ulrich Witt Algebraische Grundlagen der Informatik Zahlen - Strukturen - Codierung - Verschlüsselung vieweg Vorwort Abbildungssverzeichnis V VII XIII I Grundlagen 1 1 Mengen und Einführung in die

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie Einführung in die Codierungstheorie Monika König 11.12.2007 Inhaltsverzeichnis 1 Einführung und Definitionen 2 2 Fehlererkennende Codes 3 2.1 Paritycheck - Code............................... 3 2.2 Prüfziffersysteme................................

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 16. November 2017 1/35 Modulare Arithmetik Modulare Arithmetik Definition 3.33 Es sei

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Einführung in die. Kryptographie WS 2016/ Lösungsblatt

Einführung in die. Kryptographie WS 2016/ Lösungsblatt Technische Universität Darmstadt Fachgebiet Theoretische Informatik Prof. Johannes Buchmann Thomas Wunderer Einführung in die Kryptographie WS 6/ 7. Lösungsblatt 8..6 Ankündigungen Arithmetik modulo n

Mehr

Codierungstheorie Teil 1: Fehlererkennung und -behebung

Codierungstheorie Teil 1: Fehlererkennung und -behebung Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 Modul Diskrete Mathematik WiSe / Ergänzungsskript zum Kapitel 3.4. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung besuchen

Mehr

Warum darf sich der Laser irren? Vortrag von Ralph-Hardo Schulz Sommeruniversität an der FU Berlin,

Warum darf sich der Laser irren? Vortrag von Ralph-Hardo Schulz Sommeruniversität an der FU Berlin, Warum darf sich der Laser irren? Vortrag von Ralph-Hardo Schulz Sommeruniversität an der FU Berlin, 28724 1 Prüfzeichensysteme zur Fehlererkennung 11 Europäische Artikel Nummer (EAN) Die EAN ist eine 13

Mehr

6-1 Elementare Zahlentheorie Zahlen, die sich als Summe zweier Quadrate schreiben lassen.

6-1 Elementare Zahlentheorie Zahlen, die sich als Summe zweier Quadrate schreiben lassen. 6-1 Elementare Zahlentheorie 6 Summen von Quadraten Wir interessieren uns hier für die Frage, ob sich eine Zahl n als Summe von sagen wir t Quadraten ganzer Zahlen schreiben lässt, oder auch, genauer,

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt:

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt: 1 Körper Sie kennen bereits 2 Beispiele von Zahlkörpern: (Q, +, ) (R, +, ) die rationalen Zahlen mit ihrer Addition und Multiplikation die reellen Zahlen mit ihrer Addition und Multiplikation Vielleicht

Mehr

Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I

Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I Von Strichcode bis ASCII 9 Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I von Anita Dorfmayr, Wien An Hand der einfachen Codes EAN Strichcode und ISBN können schon in der Sekundarstufe

Mehr

Inhalt s Verzeichnis. Einleitung 1

Inhalt s Verzeichnis. Einleitung 1 Inhalt s Verzeichnis Einleitung 1 I Vier motivierende Probleme - ein Schnupperkurs 5 1 Sicherheit in der Apotheke 5 2 Verblüffende Summendarstellungen 9 3 Ein ungelöstes Problem 13 4 Primzahlen - eine

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

2.7 Der Shannon-Fano-Elias Code

2.7 Der Shannon-Fano-Elias Code 2.7 Der Shannon-Fano-Elias Code Die Huffman-Codierung ist ein asymptotisch optimales Verfahren. Wir haben auch gesehen, dass sich die Huffman-Codierung gut berechnen und dann auch gut decodieren lassen.

Mehr

Responsorium Mathematik für alle. Klausuren im Modul Fachübergreifende Methoden. Löwenanteil heute. Klausurform Responsorium Mathematik für alle

Responsorium Mathematik für alle. Klausuren im Modul Fachübergreifende Methoden. Löwenanteil heute. Klausurform Responsorium Mathematik für alle Responsorium 14 Mathematik für alle 1. Fragen zur 1. Wie sehen die Klausurbögen aus? 2. Welche Aufgabentypen (einfach, mehrfach, frei)? 3. Wie wird gewertet? 4. Wie ist es mit Bildern und Formeln? 2. Fragen

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

Pädagogische Hochschule Schwäbisch Gmünd

Pädagogische Hochschule Schwäbisch Gmünd Pädagogische Hochschule Schwäbisch Gmünd Institut für Mathematik und Informatik Albrecht: Vorkurs Arithmetik/Algebra uebung_0_arith.docx: EAN Die European Article Number (EAN) ist die Bezeichnung für die

Mehr

6 Ü B E R S E T Z U N G E N U N D C O D I E R U N G E N. 6.1 von wörtern zu zahlen und zurück Dezimaldarstellung von Zahlen Num 10

6 Ü B E R S E T Z U N G E N U N D C O D I E R U N G E N. 6.1 von wörtern zu zahlen und zurück Dezimaldarstellung von Zahlen Num 10 6 Ü B E R S E T Z U N G E N U N D C O D I E R U N G E N 6.1 von wörtern zu zahlen und zurück 6.1.1 Dezimaldarstellung von Zahlen Num 10 Num10(ε) = 0 (6.1) für jedes w Z 10 für jedes x Z 10 Num 10 (wx)

Mehr

Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp

Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Fakultät für Mathematik und Informatik Universität of Bremen Übersicht des Vortrags 1 Einfache Kryptosysteme 2 Einmalschlüssel

Mehr

33 D Codes und Prüfziffern. Impuls 1. a b c d e f g h i j. k l m n o p q r s t. u v w x y z ss st au eu. ei äu ä ö ü ie ch sch , ; :.?!

33 D Codes und Prüfziffern. Impuls 1. a b c d e f g h i j. k l m n o p q r s t. u v w x y z ss st au eu. ei äu ä ö ü ie ch sch , ; :.?! Codes und Prüfziffern 33 1 5 Impuls 1 Blindenschrift als spezielle Verschlüsselung a b c d e f g h i j k l m n o p q r s t u v w x y z ss st au eu ei äu ä ö ü ie ch sch, ; :.?! ( ) - 1 2 3 4 5 6 7 8 9

Mehr

Form der Äquivalenzklassen

Form der Äquivalenzklassen Form der Äquivalenzklassen Anmerkung: Es gilt a = a ± m = a ± 2m =... = a + km mod m für alle k Z. Wir schreiben auch {x Z x = a + mk, k Z} = a + mz. Es gibt m verschiedene Äquivalenzklassen modulo m:

Mehr

6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238

6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 Erinnerung: Der Vektorraum F n 2 Schreiben {0, 1} n als F n 2 Definition

Mehr

Aufgabensammlung Theo Inf I 1

Aufgabensammlung Theo Inf I 1 Aufgabensammlung Theo Inf I 1 1 Grundlagen Aufgabe 1.1 Bestimmen Sie w und w b für w = abacbba. Aufgabe 1.2 Bestimmen Sie alle a) Teilworte der Länge 3 b) Präfixe c) Suffixe des Wortes w = abacbba. Aufgabe

Mehr

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF.

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. (GITTENBERGER) Wien, am 5. Februar 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Mathematik für alle. Löwenanteil heute. 1. Fragen zur Klausurform

Mathematik für alle. Löwenanteil heute. 1. Fragen zur Klausurform Responsorium 14 Mathematik für alle 1. Fragen zur Klausurform 1. Wie sehen die Klausurbögen aus? 2. Welche Aufgabentypen (einfach, mehrfach, frei)? 3. Wie wird gewertet? 4. Wie ist es mit Bildern und Formeln?

Mehr

Erweiterter Euklidischer Algorithmus

Erweiterter Euklidischer Algorithmus Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Error detection and correction

Error detection and correction Referat Error detection and correction im Proseminar Computer Science Unplugged Dozent Prof. M. Hofmann Referent Pinto Raul, 48005464 Datum 19.11.2004 Error detection and correction 1. Fehlererkennung

Mehr

Übung zur Zahlentheorie, SoSe 2007, Aufgabenblatt 03

Übung zur Zahlentheorie, SoSe 2007, Aufgabenblatt 03 Aufgabe 1: In der Vorlesung wurde das Lemma von Euklid angegeben: Lemma (von Euklid). Ist p eine Primzahl, so folgt aus p n 1 n 2, p n 1 oder p n 2. Es gilt auch die Umkehrung: Lemma. Falls für eine natürliche

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 3 (7

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Permutationen und symmetrische Gruppe

Permutationen und symmetrische Gruppe Permutationen und symmetrische Gruppe Für eine beliebige Menge M bilden die Bijektionen von M in M, versehen mit der Komposition von Abbildungen als Operation, eine Gruppe, die sogenannte symmetrische

Mehr

Fehlererkennende und fehlerkorrigierende Codes

Fehlererkennende und fehlerkorrigierende Codes Fehlererkennende und fehlerkorrigierende Codes Claudiu-Vlad URSACHE, 5AHITN Inhalt 1. Codes... 2 2. Hammingdistanz... 3 3. Fehlererkennende Codes... 4 4. Fehlerkorrigierende Codes... 5 1. Codes a 2 a 00

Mehr

Zyklische Codes Rechnernetze Übung SS2010

Zyklische Codes Rechnernetze Übung SS2010 Zyklische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Durch

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. B

Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. B 90 Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. Binom zum Kopfrechnen? Für was kann man das 3. Binom

Mehr

Schubfachprinzip. Lea Jacobs. November 9, 2015

Schubfachprinzip. Lea Jacobs. November 9, 2015 Schubfachprinzip Lea Jacobs November 9, 2015 Inhalt 1. Definition und Beweis 2. Haare zählen 3. Beispiel mit Differenz 4. Abbildungseigenschaften 5. Grade in ungerichteten Graphen 6. Teilbarkeit 7. Summen

Mehr

Wiederholungsblatt zur Gruppentheorie

Wiederholungsblatt zur Gruppentheorie Wiederholungsblatt zur Gruppentheorie von Christian Elsholtz, TU Clausthal, WS 1999/2000 Um Ihnen zu helfen, die Gruppentheorie zu wiederholen, stelle ich hier einige wichtige Beispiele und einige Lösungen

Mehr

Ringe. Kapitel Einheiten

Ringe. Kapitel Einheiten Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n.

Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n. 1 Die Determinante Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n. a) Ein Fehlstand von π ist ein Paar (i, j) mit 1 i < j n und π(i)

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 3: Kodierung 1 Motivation 2 Exkurs Grundlagen formaler Sprachen 3 Grundlagen 4 Beispielkodierungen FM2 (WS 2014/15,

Mehr

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr

Verlauf Material LEK Glossar Lösungen. EAN, ISBN und andere Prüfziffern und Prüfverfahren kennenlernen. Klaus Wolthaus, Dülmen VORSCHAU

Verlauf Material LEK Glossar Lösungen. EAN, ISBN und andere Prüfziffern und Prüfverfahren kennenlernen. Klaus Wolthaus, Dülmen VORSCHAU Reihe 34 S 1 Verlauf Material LEK Glossar Lösungen EAN, ISBN und andere Prüfziffern und Prüfverfahren kennenlernen Klaus Wolthaus, Dülmen Beltz und Gelberg, Weinheim und Basel Wie findet der Buchhändler

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Kanonische Primfaktorzerlegung Jede natürliche Zahl Form kann auf eindeutige Weise in der geschrieben werden, wobei, für und Primzahlen sind. Dies ist die kanonische Primfaktorzerlegung von. Mathematik

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware Codierung Codierung Haydn: Streichquartett op 54.3 aus Largo, Violine I 1 2 Ziffern 1 und 2 codieren das Hersteller-Land Ziffer 2 bis 12 codieren Händler und Ware Die letzte Ziffer ist eine Prüfziffer

Mehr

PO Mathematik 1 für Informatiker Vorlesung von Ao. Univ. Prof. Dr. Günther Karigl

PO Mathematik 1 für Informatiker Vorlesung von Ao. Univ. Prof. Dr. Günther Karigl PO Mathematik 1 für Informatiker Vorlesung von Ao. Univ. Prof. Dr. Günther Karigl 23. Juni 2004 25.06.2002 Siehe auch http://www.algebra.tuwien.ac.at/institut/inf/inf_karigl/index1. html. 1. In nachstehendem,

Mehr

Permutation = Anordnung aller Elemente einer Menge, Kombination = Auswahl von einigen aus vielen Elementen, Variation = Auswahl und Anordnung.

Permutation = Anordnung aller Elemente einer Menge, Kombination = Auswahl von einigen aus vielen Elementen, Variation = Auswahl und Anordnung. Kombinatorik Was ist Kombinatorik? Die 92 natürlichen chemischen Elemente sind die mathematischen Elemente der Menge chemisches Periodensystem. Ebenso sind die zehn Ziffern 0 9 eine Menge, jede Ziffer

Mehr

Diskrete Mathematik. Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom

Diskrete Mathematik. Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom Institut für Informatik @ UIBK Sommersemester 2017 Zusammenfassung Zusammenfassung der letzten

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie 1 Elementare Zahlentheorie Die Mathematik ist die Königin der Wissenschaften, die Zahlentheorie ist die Königin der Mathematik (C. F. Gauss) Dieses Kapitel handelt von den Eigenschaften der ganzen Zahlen

Mehr

Waben-Sudoku. Günter Aumann und Klaus Spitzmüller. Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen.

Waben-Sudoku. Günter Aumann und Klaus Spitzmüller. Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen. Waben-Sudoku Günter Aumann und Klaus Spitzmüller Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen. Eine Vorüberlegung Reguläre Vierecke und Sechsecke zeichnen sich vor allen anderen

Mehr

5-1 Elementare Zahlentheorie

5-1 Elementare Zahlentheorie 5-1 Elementare Zahlentheorie 5 Summen von Quadraten Wir interessieren uns hier für die Frage, ob sich eine (natürlich positive) Zahl n als Summe von sagen wir t Quadraten ganzer Zahlen schreiben lässt,

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  13. September 2003 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y 6 Permutationen Seien und B Mengen. Eine bbildung von nach B ist eine Vorschrift f, die jedem Element x ein eindeutig bestimmtes Element y = f(x) B zuordnet. Schreibe f : B, x f(x) Beispiele: a) f : R

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

Einleitung. Kapitel 1

Einleitung. Kapitel 1 Kapitel 1 Einleitung In diesem Abschnitt geben wir einen kurzen Überblick über den Inhalt der Vorlesung. Wir werden kurz die wesentlichen Probleme erläutern, die wir ansprechen wollen. Wir werden auch

Mehr

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014 Universität Innsbruck WS 013/014 Brückenkurs Formale Konzepte 3. Auflage Harald Zankl 15. Januar 014 Institut für Informatik Innsbruck, Österreich Inhaltsverzeichnis 1 Definition, Satz, Beweis 1.1 Aufgaben................................

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 11. Januar 2018 1/32 Erinnerung: Eine Gruppe ist eine algebraische Struktur (G, )

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N

Mehr

5 Sortieren in eindimensionalen Zellularautomaten

5 Sortieren in eindimensionalen Zellularautomaten 5 Sortieren in eindimensionalen Zellularautomaten 5.1 Für alle x A und w A bezeichne im folgenden N x (w) die Anzahl der Vorkommen des Symboles x in dem Wort w. 5.2 Problem. (Eindimensionales Sortieren

Mehr

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 31. März 016 Aufgabe 1. Man bestimme alle positiven ganzen Zahlen k und n, die die Gleichung erfüllen. k 016 = 3

Mehr

3. Lösungsblatt

3. Lösungsblatt TECHNISCHE UNIVERSITÄT DARMSTADT FACHGEBIET THEORETISCHE INFORMATIK PROF JOHANNES BUCHMANN NABIL ALKEILANI ALKADRI Einführung in die Kryptographie WS 7/ 8 3 Lösungsblatt 67 P Matrizen und Determinanten

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

THIA - Übungsblatt 2.

THIA - Übungsblatt 2. THIA - Übungsblatt 2. Aufgabe 12 (Eine einfache Sprache). Endliche Ziffernfolgen, die mit einer 0 beginnen, auf die mindestens eine weitere Ziffer folgt, wobei nur die Ziffern 0,..., 7 vorkommen, sollen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y.

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y. Determinanten Motivation: Man betrachte das lineare Gleichungssystem [ [ [ a b x u = (1) c d y v Sei obda a und c Dann ist (1) äquivalent zu [ [ ca cb x = ac ad y und ferner zu [ [ ca cb x ad cb y Falls

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

Trellis Diagramme und Viterbi-Decoder

Trellis Diagramme und Viterbi-Decoder Trellis Diagramme und Viterbi-Decoder Michael Dienert. März Fehlertolerante Datenübertragung bei Gigabit-Ethernet Um MBit/s auf Kat Kupferkabeln übertragen zu können, sind eine Reihe technischer Kunstgriffe

Mehr

2. Tutorium Digitaltechnik und Entwurfsverfahren

2. Tutorium Digitaltechnik und Entwurfsverfahren 2. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Rationale Zahlen und rationale Funktionen: Was ist ihnen gemeinsam? Wie werden sie dargestellt?

Rationale Zahlen und rationale Funktionen: Was ist ihnen gemeinsam? Wie werden sie dargestellt? Rationale Zahlen und rationale Funktionen: Was ist ihnen gemeinsam? Wie werden sie dargestellt? Franz Pauer, Florian Stampfer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck

Mehr

Barcode-Informationen

Barcode-Informationen Barcode-Informationen Einführung Der Barcode ist leicht zu erstellen und mit einfachen Geräten zu lesen und zu entschlüsseln. Man findet ihn direkt auf Umverpackungen oder auf Etiketten aller Art. In einigen

Mehr

Haydn: Streichquartett op 54.3 aus Largo, Violine I

Haydn: Streichquartett op 54.3 aus Largo, Violine I Codierung Haydn: Streichquartett op 54.3 aus Largo, Violine I 1 Codierung 2 EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land Ziffer 2 bis 12 codieren Händler und Ware Die letzte

Mehr