Algorithmen in Zellularautomaten
|
|
|
- Kurt Schmitt
- vor 9 Jahren
- Abrufe
Transkript
1 Algorithmen in Zellularautomaten 1. Grundlegende Definitionen 2. Berechnungsmächtigkeit von ZA 3. Endliche Muster und Konfigurationen 4. Selbstreproduktion 5. Sortieren in eindimensionalen ZA 6. Einfache Techniken für ZA 7. Synchronisation 8. Anführerauswahl 9. Sortieren in zweidimensionalen ZA 10. Das Sandhaufenmodell 11. Diskretisierung kontinuierlicher Systeme 12. ZA-Modelle mit wenigen Zuständen
2 Algorithmen in Zellularautomaten 9. Sortieren in zweidimensionalen ZA
3 Ziele Was ist ein sortiertes Quadrat? Algorithmus Shearsort in Zeit Θ( n log n) Algorithmus von Schnorr und Shamir in Zeit Θ( n)
4 Unklar: Was ist zweidimensionales Sortieren? So: ? oder so: ? oder so: ? oder so: ?
5 Unklar: Was ist zweidimensionales Sortieren? So: ? oder so: ? oder so: ? oder so: ?
6 Problemstellung A endlich und total geordnet. Gesucht: zweidimensionaler Zellularautomat, der jedes Muster e : N m N m A in das sortierte Muster s : N m N m A überführt, wobei gilt: 1. Für alle a A ist N a (e) = N a (s). 2. Falls i N m ungerade, gilt für j N m 1 : s(i, j) s(i, j + 1). 3. Falls i N m gerade, gilt für j N m 1 : s(i, j) s(i, j + 1). 4. Falls i N m 1 ungerade, gilt s(i, n) s(i + 1, n). 5. Falls i N m 1 gerade, gilt s(i, 1) s(i + 1, 1). Das ist Sortieren in Schlangenlinienform.
7 Algorithmus (Shearsort) log n Phasen: ungerade Phasen: jede Zeile für sich sortieren, und zwar ungerade Zeilen nach rechts aufsteigend und gerade Zeilen nach links aufsteigend. gerade Phasen: jede Spalte für sich sortieren, und zwar kleine Werte nach oben.
8
9
10
11
12
13
14
15
16 Lemma Algorithmus Shearsort leistet das Gewünschte und benötigt O( n log n) Schritte. Beachte Es ist nicht selbstverständlich, dass der Algorithmus funktioniert! Ändert man SHEARSORT so ab, dass in allen Zeilen in die gleiche Richtung aufsteigend sortiert wird, dann erhält man nicht einen Algorithmus, der so sortiert, dass die Konkatenation aller Zeilen ein sortiertes Feld ergibt.
17 Lemma Algorithmus Shearsort leistet das Gewünschte und benötigt O( n log n) Schritte. Beachte Es ist nicht selbstverständlich, dass der Algorithmus funktioniert! Ändert man SHEARSORT so ab, dass in allen Zeilen in die gleiche Richtung aufsteigend sortiert wird, dann erhält man nicht einen Algorithmus, der so sortiert, dass die Konkatenation aller Zeilen ein sortiertes Feld ergibt.
18 Beweis Das 0-1-Sortierlemma ist anwendbar. Betrachte eine Konfiguration nach einer geraden Anzahl von Phasen: ganz oben einige reine 0-Zeilen dann einige gemischte Zeilen ganz unten einige reine 1-Zeilen Zeige: Durch zwei aufeinanderfolgende Phasen wird die Anzahl gemischter Zeilen mindestens halbiert.
19 Beweis Das 0-1-Sortierlemma ist anwendbar. Betrachte eine Konfiguration nach einer geraden Anzahl von Phasen: ganz oben einige reine 0-Zeilen dann einige gemischte Zeilen ganz unten einige reine 1-Zeilen Zeige: Durch zwei aufeinanderfolgende Phasen wird die Anzahl gemischter Zeilen mindestens halbiert.
20 Korrektheit von Shearsort 1 Betrachte zwei aufeinanderfolgende Zeilen. Nach Zeilensortierphase eine der folgenden Situationen (oder Spiegelbild davon): Anschließend erfolgt eine Spaltensortierung: Die Anzahl x der gemischten Zeilen sinkt um mindestens x 1 2.
21 Korrektheit von Shearsort 2 Anfangs maximal n gemischte Zeilen. Also bleibt nach log n Zeilen- und Spaltenphasen höchstens eine gemischte Zeile übrig, die in der letzten Zeilenphase sortiert wird. Jede Phase kann in Θ( n) Schritten erledigt werden. Insgesamt Zeitbedarf also Θ( n log n) = Θ( n log n).
22 Korrektheit von Shearsort 2 Anfangs maximal n gemischte Zeilen. Also bleibt nach log n Zeilen- und Spaltenphasen höchstens eine gemischte Zeile übrig, die in der letzten Zeilenphase sortiert wird. Jede Phase kann in Θ( n) Schritten erledigt werden. Insgesamt Zeitbedarf also Θ( n log n) = Θ( n log n).
23 Korrektheit von Shearsort 2 Anfangs maximal n gemischte Zeilen. Also bleibt nach log n Zeilen- und Spaltenphasen höchstens eine gemischte Zeile übrig, die in der letzten Zeilenphase sortiert wird. Jede Phase kann in Θ( n) Schritten erledigt werden. Insgesamt Zeitbedarf also Θ( n log n) = Θ( n log n).
24 Korrektheit von Shearsort 2 Anfangs maximal n gemischte Zeilen. Also bleibt nach log n Zeilen- und Spaltenphasen höchstens eine gemischte Zeile übrig, die in der letzten Zeilenphase sortiert wird. Jede Phase kann in Θ( n) Schritten erledigt werden. Insgesamt Zeitbedarf also Θ( n log n) = Θ( n log n).
25 Algorithmus (von Schnorr und Shamir) Anzahl der zu sortierenden Elemente: n = k 8 quadratische Muster der Größe m m = n n = k 4 k 4 Algorithmus in neun Phasen
26 Phase 0 Teile das Muster in k k Blöcke der Größe k 3 k 3. (k = 4 m = 8 n)
27 Phase 1 Sortiere jeden Block in Schlangenlinienform.
28 Phase 2 Verteile die vollen Spalten jeder Spalte von Blöcken gleichmäßig auf alle Spalten von Blöcken.
29 Spaltenumsortierung für eine volle Zeile von Blöcken im Fall k = 3
30 Phase 2 Verteile die vollen Spalten jeder Spalte von Blöcken gleichmäßig auf alle Spalten von Blöcken.
31 Phase 3 Sortiere jeden Block in Schlangenlinienform.
32 Phase 4 Sortiere jede volle Spalte (kleine Werte nach oben).
33 Phase 5 Sortiere in jeder Spalte von Blöcken die Blöcke 1 + 2, 3 + 4,... jeweils gemeinsam in Schlangenlinienform.
34 Phase 6 Sortiere in jeder Spalte von Blöcken die Blöcke 2 + 3, 4 + 5,... jeweils gemeinsam in Schlangenlinienform.
35 Phase 7 Sortiere jede volle Zeile (in ungeraden kleine Werte nach links, in geraden nach rechts)
36 Phase 8 Führe auf der gesamten Schlangenlinie 2k 3 Odd-Even-Transposition-Sort-Schritte durch.
37 Satz Der Algorithmus von Schnorr und Shamir sortiert quadratische n n-muster in Θ( n) Schritten. Hier sollte endgültig klar sein, wie nützlich Knuths 0-1-Sortierlemma ist!
38 Beweis Korrektheit: Das 0-1-Sortierlemma ist anwendbar. Es gilt nach Phase 1: In jedem Block gibt es höchstens eine gemischte Zeile, d.h. zwei Spalten des gleichen Blockes unterscheiden sich um höchstens eine 1. Phase 2: Da jeder Block aus jedem anderen (der gleichen Zeile von Blöcken) mindestens eine Spalte bekommen hat, unterscheiden sich zwei Blöcke der gleichen Zeile von Blöcken in der Anzahl Einsen um höchstens k. Phase 3: Da k < k 3 ist, gibt es in jeder Zeile von Blöcken höchstens zwei gemischte volle Zeilen. Phase 4: In jeder Spalte von Blöcken gibt es höchstens k gemischte Zeilen.
39 Beweis 2 Korrektheit: Phasen 5+6: Jede Spalte von Blöcken in Schlangenlinienform. Da in Phasen 3 6 kein Austausch zwischen verschiedenen Spalten von Blöcken vorgenommen wurde, gilt wie schon nach Phase 2: Je zwei ganze Spalten von Blöcken unterscheiden sich in der Anzahl Einsen um höchstens k 2. Wegen k 2 < k 3 gibt es folglich nach Phase 6 insgesamt nur noch höchstens zwei gemischte volle Zeilen. Phase 7: Es gibt insgesamt nur noch höchstens zwei gemischte volle Zeilen: die eine enthält lauter Nullen und am höheren Ende höchstens k2 k = k 3 Einsen, die andere lauter Einsen und am niedrigeren Ende höchstens k 2 k = k 3 Nullen. Es bedarf also k 3 + k 3 Sortierschritten entlang der großen Schlangenlinie um den Rest zu sortieren. Daher gilt nach Phase 8: Alles ist sortiert.
40 Beweis 3 Zeitbedarf bei Verwendung von Shearsort für die Blöcke: k 4 + k 3 log k 3 + k 4 + k 3 log k 3 + k 4 + k 3 log k 3 + k 3 log k 3 + k 4 + k 3 Θ( n) da k 4 = n.
41 Lemma Jeder Algorithmus für das zweidimensionale Sortieren in Schlangenlinienform benötigt mindestens 3 n o( n) Schritte.
42 Beweis 1 Betrachte anfängliche Werteverteilung im oberen linken Dreieck nur die Werte 0 und n im Rest jeder der Werte 1 bis n 2 n genau einmal Wert x: nach 2 n 2 4 n 3 Schritten im rechten unteren Eck x zu diesem Zeitpunkt noch nicht von grauen Anfangswerten beeinflusst
43 Beweis 2 Es sei C(m) die Nummer der Spalte, in der sich x am Ende der Sortierung befinden wird, wenn im grauen Dreieck zu Beginn genau m mal der Wert n vorkommt. Erhöhung von m bewirkt Änderung der Spaltennummer um 1 da 0 < x < n. (Richtung?!) Dreiecksgröße ist 2 n, also gibt es ein m, so dass C(m ) = 1. Für diese Wanderung werden noch weitere n 1 Schritte benötigt.
44 Zusammenfassung In eindimensionalen Zellularautomaten kann man n Datenelemente in Zeit O(n) sortieren. Im Zweidimensionalen ist die Schlangenlinie eine sinnvolle Sortierreihenfolge, weil in der Sortierung benachbarte Datenelemente am Ende auch in benachbarten Zellen liegen sollen. Sortieren von n = n n Elementen in Schlangenlinienform ist in Zeit O ( n ) möglich. Dabei ist 3 n o( n) untere Zeitschranke.
Algorithmen in Zellularautomaten
Algorithmen in Zellularautomaten 9. Sortieren in zweidimensionalen ZA Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Sommersemester 2017 Ziele Problemstellung: Sortieren von
1 Sortieren in zweidimensionalen Zellularautomaten
1 Sortieren in zweidimensionalen Zellularautomaten Der Einfachheit halber beschränken wir uns in diesem Kapitel auf das Sortieren quadratischer Muster. Mit n bezeichnen wir immer die Anzahl zu sortierender
5 Sortieren in eindimensionalen Zellularautomaten
5 Sortieren in eindimensionalen Zellularautomaten 5.1 Für alle x A und w A bezeichne im folgenden N x (w) die Anzahl der Vorkommen des Symboles x in dem Wort w. 5.2 Problem. (Eindimensionales Sortieren
7. Parallele Algorithmen für FPGA-Implementierungen
7. Parallele Algorithmen für FPGA-Implementierungen Odd-Even-Transposition-Sort für 8 Elemente Ein sinnvolles Werkzeug bei der Entwicklung und dem Beweis von Sortierverfahren ist das 0-1-Pinzip. 0-1-Prinzip
Tag der Mathematik 2016
Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16
Algorithms & Data Structures 2
Algorithms & Data Structures Digital Sorting WS B. Anzengruber-Tanase (Institute for Pervasive Computing, JKU Linz) (Institute for Pervasive Computing, JKU Linz) WIEDERHOLUNG :: UNTERE SCHRANKE FÜR SORTIEREN
8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.
8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.
Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =.
2. Der Blum-Floyd-Pratt-Rivest-Tarjan Selektions-Algorithmus Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n
Runde 3. Gemischte Runde (95 Minuten)
Namen eintragen: Runde Gemischte Runde.00. ( Minuten) Nr. Rätsel Restzeit.. Minuten 0 Standard Sudoku Standard Sudoku Circle Sudoku Rossini Sudoku Sudoku V Anti Knight Sudoku 0 Kropki Sudoku Next to Nine
String - Matching. Kapitel Definition
Kapitel 1 String - Matching 1.1 Definition String - Matching ( übersetzt in etwa Zeichenkettenanpassung ) ist die Suche eines Musters ( Pattern ) in einem Text. Es findet beispielsweise Anwendung bei der
Randomisierte Algorithmen 2. Erste Beispiele
Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest
Einführung in das Invarianzprinzip
15.03.2016 Motivation Betrachtet diesen Kreis, der in sechs Sektoren eingeteilt ist. Wir erlauben, die Zahl in je zwei benachbarten Feldern um jeweils 1 zu erhöhen. In welcher Reihenfolge muss man die
Algorithmen und Datenstrukturen 1
Algorithmen und Datenstrukturen 1 6. Vorlesung Martin Middendorf / Universität Leipzig Institut für Informatik [email protected] [email protected] Merge-Sort Anwendbar für
Kapitel 2. Weitere Beispiele Effizienter Algorithmen
Kapitel 2 Weitere Beispiele Effizienter Algorithmen Sequentielle Suche Gegeben: Array a[1..n] Suche in a nach Element x Ohne weitere Zusatzinformationen: Sequentielle Suche a[1] a[2] a[3] Laufzeit: n Schritte
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Wintersemester 2012/13 17. Vorlesung Nächstes Paar Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Problem: Gegeben: Menge P von n Punkten in der Ebene, jeder Punkt
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Komplexität von Algorithmen:
Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine
5. Übungsblatt zu Algorithmen I im SoSe 2016
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Lukas Barth, Lisa Kohl 5. Übungsblatt zu Algorithmen I im SoSe 2016 https://crypto.iti.kit.edu/index.php?id=algo-sose16
Grundlegende Sortieralgorithmen
Grundlegende Sortieralgorithmen Martin Wirsing in Zusammenarbeit mit Michael Barth, Philipp Meier und Gefei Zhang 01/05 2 Ziele Grundlegende Sortieralgorithmen auf Reihungen kennen lernen 3 Klassifizierung
WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3)
WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
2.2 Allgemeine (vergleichsbasierte) Sortierverfahren
. Allgemeine (vergleichsbasierte) Sortierverfahren Vergleichsbaum: Der Aufbau des Verbleichsbaum ist für jeden Algorithmus und jede Eingabelänge n gleich. Jede Permutation der Eingabe, muss zu einem anderen
Abschnitt 19: Sortierverfahren
Abschnitt 19: Sortierverfahren 19. Sortierverfahren 19.1 Allgemeines 19.2 Einfache Sortierverfahren 19.3 Effizientes Sortieren: Quicksort 19.4 Zusammenfassung 19 Sortierverfahren Informatik 2 (SS 07) 758
Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).
8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame
Universität Trier. Fachbereich IV. Wintersemester 2004/2005. Wavelets made easy. Kapitel 2 Mehrdimensionale Wavelets und Anwendungen
Universität Trier Fachbereich IV Wintersemester 2004/2005 Wavelets made easy Kapitel 2 Mehrdimensionale Wavelets und Anwendungen Thomas Queckbörner 16.11.2004 Übersicht des Kapitels: 1. Einführung 2. Zweidimensionale
8. Woche Quadratische Reste und Anwendungen. 8. Woche: Quadratische Reste und Anwendungen 163/ 238
8 Woche Quadratische Reste und Anwendungen 8 Woche: Quadratische Reste und Anwendungen 163/ 238 Quadratische Reste Ḋefinition Quadratischer Rest Sei n N Ein Element a Z n heißt quadratischer Rest in Z
Einführung in das Schubfachprinzip
30.03.2017 Einfache Beispiele Klar: 2 Personen gleichen Geschlechts Wähle 3 Personen. 2 Personen, die im selben Monat Geburtstag haben Wähle 13 Personen. Gleichfarbiges Sockenpaar aus Schublade mit 3 Sockenfarben
JAVA - Suchen - Sortieren
Übungen Informatik I JAVA - Suchen - Sortieren http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 Inhalt Suchen/Sortieren binary search mergesort bubblesort Übungen Informatik
Triangulierung von einfachen Polygonen
Triangulierung von einfachen Polygonen - Seminarvortrag von Tobias Kyrion - Inhalt: 1.1 Die Problemstellung Quellenangabe 1.1 Die Problemstellung Definition Polygon: endlich viele paarweise verschiedene
Elementare Sortierverfahren
Algorithmen und Datenstrukturen I Elementare Sortierverfahren Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 18.03.2018 18:16 Inhaltsverzeichnis Sortieren.......................................
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Sortieralgorithmen Einleitung Heapsort Quicksort 2 Motivation Sortieren ist Voraussetzung für viele Anwendungen Nach
Schleifeninvarianten. Dezimal zu Binär
Schleifeninvarianten Mit vollstandiger Induktion lasst sich auch die Korrektheit von Algorithmen nachweisen. Will man die Werte verfolgen, die die Variablen beim Ablauf eines Algorithmus annehmen, dann
Inhaltsverzeichnis. Ingo R. Dölle / 15.02.2016 Seite 1 von 5
Inhaltsverzeichnis Inhaltsverzeichnis... 1 Daten sortieren und filtern... 2 Tabellen nach Zellinhalten sortieren... 2 Sortierreihenfolgen... 2 Nach den Zellinhalten einer Spalte sortieren... 2 Ursprüngliche
5. Bäume und Minimalgerüste
5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein
Algorithmen und Datenstrukturen 1
Algorithmen und Datenstrukturen 1 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] 4. Sortierverfahren Elementare Sortierverfahren - Sortieren durch
Der euklidische Algorithmus für ganze Zahlen
Der euklidische Algorithmus für ganze Zahlen Ein unverzichtbares Verfahren in der Kryptographie ist der euklidische Algorithmus. In diesem Kapitel stellen wir die erste Version für ganze Zahlen vor. Sei
7. Sortieren Lernziele. 7. Sortieren
7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche
Datenstrukturen und Algorithmen D-INFK
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck
Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach
Interne Sortierverfahren
Angewandte Datentechnik Interne Sortierverfahren Interne Sortierverfahren Ausarbeitung einer Maturafrage aus dem Fach A n g e w a n d t e D a t e n t e c h n i k Andreas Hechenblaickner 5CDH HTBLA Kaindorf/Sulm
Suchen und Sortieren
Ideen und Konzepte der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn (viele Folien von Kostas Panagiotou) Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?
2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}
1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n
Algorithmen und Datenstrukturen
1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind
Das Schubfachprinzip
Das Schubfachprinzip Norbert Koksch, Dresden Literatur: Beutelspacher/Zschiegner: Diskrete Mathematik für Einsteiger. Vieweg-Verlag. 1. Was ist das Schubfachprinzip? Die folgenden Aussagen sind offenbar
Landeswettbewerb Mathematik
Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen. Runde 010/011 Aufgabe 1 In einem 10x10-Gitter mit quadratischen Feldern werden 10 Spielsteine so gesetzt, dass in jeder Spalte und jeder Zeile
Parallele Algorithmen
Parallele Algorithmen bereits behandelt: paralleles Sortieren mit Ranksort parallele Matrixmultiplikation nach Gentleman numerisches Iterationsverfahren nach Jacobi Matrixmultiplikation im Hypercube (DNS-Verfahren)
Von Labyrinthen zu. Algorithmen
Von Labyrinthen zu 4 Gerald Futschek Charakterisierung Algorithmus Ein Algorithmus ist ein schrittweises Verfahren ist exakt beschrieben liefert nach endlich vielen Schritten das Ergebnis (terminiert)
Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):
Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische
Vervollständigung Lateinischer Quadrate
Vervollständigung Lateinischer Quadrate Elisabeth Schmidhofer 01.12.2013 Inhaltsverzeichnis 1 Vorwort 3 2 Einleitung 4 2.1 Beispele.............................................. 4 3 Lateinische Quadrate
Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element
Problemstellung Banale smethode : das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:
Gierige Algorithmen Interval Scheduling
Gierige Algorithmen Interval Scheduling IntervalScheduling(s,f). n length[s] 2. A {} 3. j 4. for i 2 to n do 5. if s[i] f[j] then 6. A A {i} 7. j i 8. return A Gierige Algorithmen Interval Scheduling Beweisidee:
Grundlegende Sortieralgorithmen
Grundlegende Sortieralgorithmen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch Sortieren in Java Man kann Sortierverfahren in einem imperativem oder einem objektorientierten Stil programmieren.
Triangulierung von einfachen Polygonen
Triangulierung von einfachen Polygonen Tobias Kyrion Inhaltsverzeichnis 1.1 Die Problemstellung....................... 1 2.1 Ein naiver Algorithmus...................... 2 3.1 Zerlegung in monotone Teilpolygone..............
Einführung in die Informatik I Kapitel II.3: Sortieren
1 Einführung in die Informatik I Kapitel II.3: Sortieren Prof. Dr.-Ing. Marcin Grzegorzek Juniorprofessur für Mustererkennung im Institut für Bildinformatik Department Elektrotechnik und Informatik Fakultät
Effiziente Algorithmen 2
Effiziente Algorithmen 2 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen
Kürzeste-Wege-Algorithmen und Datenstrukturen
Kürzeste-Wege-Algorithmen und Datenstrukturen Institut für Informatik Universität zu Köln SS 2009 Teil 1 Inhaltsverzeichnis 1 Kürzeste Wege 2 1.1 Voraussetzungen................................ 2 1.2
KV Logik als Arbeitssprache. Christoph Hörtenhuemer LVA-Nummer: LVA-Leiterin: Wolfgang Windsteiger. Agnes Schoßleitner
KV Logik als Arbeitssprache LVA-Nummer: 326.014 LVA-Leiterin: Wolfgang Windsteiger Abgabedatum: 02. 06. 2004 Christoph Hörtenhuemer 0355958 Agnes Schoßleitner 0355468 Inhaltsverzeichnis Kurzbeschreibung...
Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:
Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf
Wettspiele auswerten
Benötigte Hard- oder Software Tabellenkalkulationsprogramm Anmerkung: Die Anleitung ist optimiert für Microsoft Excel 07 Ziel Mit Hilfe einer Excel-Tabelle Wettspiele auswerten können Aufträge Von deiner
Parallele Algorithmen in der Bildverarbeitung
Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren
Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.
3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls
(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.)
Fachbereich Mathematik Tag der Mathematik 12. November 2011 Klassenstufen 9, 10 (Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Aufgabe 1 (5+5+10 Punkte). Wir betrachten sechzehn Punkte
Algorithmen und Datenstrukturen Heapsort
Algorithmen und Datenstrukturen 2 5 Heapsort In diesem Kapitel wird Heapsort, ein weiterer Sortieralgorithmus, vorgestellt. Dieser besitzt wie MERGE-SORT eine Laufzeit von O(n log n), sortiert jedoch das
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie
13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei
Programmierung mit C Algorithmen
Programmierung mit C Algorithmen Informationen /7/ Robert Sedgewick Algorithmen in C. 742 Seiten, ISBN 3-827-37182-1. /8/ Kyle Loudon Algorithmen mit C, ISBN 3-4897-211653-0. Online-Buch "C von A bis Z",
Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode.
Effiziente Algorithmen Flußprobleme 81 Laufzeit Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{ V 1, V 2 }.
Kapitel 9 Algorithm. Geometrie. Kürzeste Abstände Konvexe Hülle
Kapitel 9 Algorithm. Geometrie Kürzeste Abstände Konvexe Hülle Überblick Teilgebiet der Informatik, in dem es um die Entwicklung effizienter Algorithmen und die Bestimmung der algorithmischen Komplexität
Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III
Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Text: Hinnerk van Bruinehsen - Grafiken: Jens Fischer powered by SDS.mint SoSe 2011 1 Teil
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung
6 Einige grundlegende Techniken für Zellularautomaten
6 Einige grundlegende Techniken für Zellularautomaten Ziel dieses Kapitels ist es, einige Techniken und Konzepte vorzustellen, die bei der Konstruktion von Algorithmen für ZA immer wieder auftauchen. Dazu
Sudoku und andere reguläre Strukturen. Universitätsprofessor Dr. Hans-Dietrich Gronau Institut für Mathematik 28. Oktober 2008
Sudoku und andere reguläre Strukturen Universitätsprofessor Dr. Hans-Dietrich Gronau Institut für Mathematik 28. Oktober 2008 1 7 8 1 4 8 9 2 5 6 3 8 7 9 6 4 5 2 2 2 5 6 9 3 1 4 7 8 3 9 4 5 8 7 6 1 2 7
Prof. Dr. Margarita Esponda
Algorithmen und Programmieren II Sortieralgorithmen imperativ Teil I Prof. Dr. Margarita Esponda Freie Universität Berlin Sortieralgorithmen Bubble-Sort Insert-Sort Selection-Sort Vergleichsalgorithmen
1 Zahlentheorie. 1.1 Kongruenzen
3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern
WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2)
WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14
Suchen und Sortieren
Ideen und Konzepte der Informatik Suchen und Sortieren Ordnung ist das halbe Leben Antonios Antoniadis (Basierend auf Folien von Kurt Mehlhorn und Konstantinos Panagiotou) 6. November 2017 6. November
Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen
Kapitel 10 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Tutoraufgabe 1 (Sortieralgorithmus):
Prof. aa Dr. Ir. Joost-Pieter Katoen Datenstrukturen und Algorithmen SS Tutoriumslösung - Übung 4 (Abgabe 2..2) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Sortieralgorithmus):
Aufgabe S 1 (4 Punkte)
Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks
Wann sind Codes eindeutig entschlüsselbar?
Wann sind Codes eindeutig entschlüsselbar? Definition Suffix Sei C ein Code. Ein Folge s {0, 1} heißt Suffix in C falls 1 c i, c j C : c i = c j s oder 2 c C und einen Suffix s in C: s = cs oder 3 c C
Lösung zur Aufgabe Würfel färben von Heft 20
Lösung zur Aufgabe Würfel färben von Heft 20 (1) Jedes der 24 Teilquadrate grenzt an genau eine der acht Ecken. Da nach unserer Vorschrift die drei Teilquadrate an jeder Ecke unterschiedlich gefärbt sein
Determinanten. I. Permutationen
Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch
( ) werden einerseits wie üblich mit einer festen Zahl moduliert,
Hans Walser, [20100612a] Binomialkoeffizienten modulo eine Zahl 1 Worum geht es? n Die Binomialkoeffizienten k ( ) werden einerseits wie üblich mit einer festen Zahl moduliert, andererseits aber auch mit
Musteraufgabe Austauschverfahren: Invertieren einer (3,3)-Matrix
Musteraufgabe 1 ATV: Invertieren einer reg (3,3)-Matrix Seite 1 von 14 Musteraufgabe Austauschverfahren: Invertieren einer (3,3)-Matrix Aufgabe: Zu berechne man die Inverse - falls diese existiert! Vorab:
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:
Inhaltsverzeichnis. Figuren aus Dreiecken ein kleines Puzzle- Problem. Anna-Lena Berger und Anna Catharina Zanoth. Zoe Harder
zeitung für mathematik am mpg trier / heft 37 / februar 2016 Inhaltsverzeichnis Seite Figuren aus Dreiecken ein kleines Puzzle- Problem Stühle stellen kein Problem Ein Spiel mit einem Quadrat Anna-Lena
Känguru der Mathematik 2004 Gruppe Benjamin (5. und 6. Schulstufe)
1 Känguru der Mathematik 2004 Gruppe Benjamin (5. und 6. Schulstufe) 18.3.2004-3 Punkte Beispiele - 1) Wie viel ist 1000 100+10 1? A) 111 B) 900 C) 909 D) 990 E) 999 1000 100 + 10 1 = 900 + 9 = 909 2)
Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,
Känguru der Mathematik 2006 Gruppe Benjamin (5. und 6. Schulstufe) Österreich
Känguru der Mathematik 2006 Gruppe Benjamin (5. und 6. chulstufe) Österreich - 6.3.2006-3 Punkte Beispiele - ) 3 2006 = 2005 + 2007 +?. Welche Zahl fehlt? A) 2005 B) 2006 C) 2007 D) 2008 E) 2009 3 2006
Vorlesung Informatik 2 Algorithmen und Datenstrukturen
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (23 Bruder-Bäume, B-Bäume) Prof. Dr. Susanne Albers Balancierte Bäume Eine Klasse von binären Suchbäumen ist balanciert, wenn jede der drei Wörterbuchoperationen
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität
