Triangulierung von einfachen Polygonen

Größe: px
Ab Seite anzeigen:

Download "Triangulierung von einfachen Polygonen"

Transkript

1 Triangulierung von einfachen Polygonen - Seminarvortrag von Tobias Kyrion - Inhalt: 1.1 Die Problemstellung Quellenangabe

2 1.1 Die Problemstellung Definition Polygon: endlich viele paarweise verschiedene Eckpunkte P 1,..., P n R 2, n N Seiten: Verbindungsstrecken P i P i+1, i = 1,..., n 1 und P n P 1 einfach: Die Seiten schneiden sich paarweise nicht. Sinnvoll: eine Orientierung der Seiten Im Folgenden seien diese immer im Uhrzeigersinn angeordnet.

3 Beispiel 1.1: kein einfaches Polygon Beispiel 1.2: einfaches orientiertes Polygon

4 Definition Diagonale: Verbindungsstrecke von zwei Eckpunkten P k, P l, k, l {1,..., n}, k l, die selbst keine Seite ist, keine andere Seite schneidet und vollständig im Inneren des Polygons verläuft Letzteres bedeutet: Durch Einfügen der Diagonale wird das Polygon in zwei kleinere disjunkte Teilpolygone zerlegt. Die Diagonale ist dann jeweils eine Seite dieser Teilpolygone, welche beide auch einfach sind.

5 Für einfache Polygone existiert mindestens eine Diagonale. Dreiecke sind offenbar Polygone mit kleinstmöglicher Eckenanzahl, die einfach sind und in die man keine Diagonale mehr einsetzen kann. Induktiv beweist man somit, dass für jedes einfache Polygon eine Zerlegung in Dreiecke konstruierbar ist.

6 Solch eine Zerlegung nennt man Triangulation. Problemstellung: Bestimme Triangulation nur durch Hinzunahme von Diagonalen. Beachte: Neue Diagonalen dürfen die bereits eingefügten nicht schneiden, denn es sollen keine inneren (Schnitt-)Punkte generiert werden. Außerdem: Eine Triangulation eines einfachen Polygons mit n N Eckpunkten besteht immer aus n 2 Dreiecken.

7 Wie erzeugt man nun algorithmisch eine Triangulation? Eine mögliche Realisierung bietet der sogenannte ear-clipping-algorithmus.

8 Definition Ecke: zwei (bzgl. der Orientierung) aufeinanderfolgende Seiten, also P i 1 P i P i+1, i = 2,.., n 1 und P n P 1 P 2, P n 1 P n P 1 Innenwinkel: Die Seiten einer Ecke P i 1 P i P i+1 umschließen am mittleren Punkt P i jeweils zwei Winkel (i = 2,.., n 1). In Durchlaufrichtung rechts von den Seiten P i 1 P i und P i P i+1 liegt der Innenwinkel. konvex: Ein konvexer Eckpunkt P i hat einen Innenwinkel kleiner als 180.

9 Definition Ohr: Ecke P i 1 P i P i+1, deren mittlerer Punkt P i konvex ist und bei der das Dreieck P i 1 P i P i+1 keinen von den übrigen Eckpunkten enthält (Entsprechendes definieren wir auch für die beiden Ecken P n P 1 P 2 und P n 1 P n P 1.) P i α P i 1 P i+1 Beispiel 2.1: einfaches Polygon mit Ohr P i 1 P i P i+1 und α < 180

10 Prinzip des ear-clipping-algorithmus: Bei einem Ohr P i 1 P i P i+1 ist die Strecke P i 1 P i+1 eine Diagonale. Durchlaufe solange die Eckpunkte, bis einer dieser als mittlerer Punkt eines Ohres identifiziert wird. Füge die zum gefundenen Ohr gehörende Diagonale ein - das Ohr wird dadurch vom Polygon abgetrennt. Das verbleibende Restpolygon besitzt nun einen Eckpunkt weniger als das Gesamtpolygon. Führe die vorigen Schritte iterativ für die jeweiligen Restpolygone aus, bis das letzte von denen nur noch drei Ecken besitzt.

11 0 P P 2 P 2 P 1 P 4 P 1 P 3 P 1 P 2 P 5 P 4 P 3 P 7 P 6 P 5 P 6 P 5 P P 1 P 1 P 4 P 2 P 3 P 3 Beispiel 2.2: ein Durchlauf des ear-clipping-algorithmus P 2

12 Zur Korrektheit: Alle einfachen Polygone besitzen mindestens ein Ohr. Nach Abtrennen eines Ohres ist das verbleibende Teilpolygon einfach - dieses besitzt somit auch ein Ohr. Bei jedem Abtrennen eines Ohres wird die Eckenanzahl n um 1 verkleinert, d.h. der Algorithmus terminiert nach n gesamt 3 Iterationen.

13 Zur Laufzeit: Prüfen, ob Punkt x in Dreieck abc liegt: O(1) Prüfen, ob aktuelle Ecke P i 1 P i P i+1 ein Ohr ist (liegt einer von den n 3 anderen Eckpunkten in P i 1 P i P i+1?): O(n 3) Die Laufzeitsumme aller Iterationen - also die Gesamtlaufzeit - beträgt höchstens: O( n k=4 (k 3)) = O(n2 ) Der ear-clipping-algorithmus besitzt folglich quadratische Laufzeit.

14 Frage: Gibt es schnellere Algorithmen zur Triangulation? Strategie, um die Laufzeit zu verbessern: 1. Zerlege das einfache Polygon in monotone Polygone, welche in diesem Abschnitt behandelt werden. 2. Trianguliere diese in Linearzeit, was im nächsten Abschnitt gezeigt wird.

15 Definition monoton: Sei g R 2 eine Gerade. Ein einfaches Polygon ist monoton bzgl. g, wenn die Schnittmenge aller Geraden, die orthogonal zu g verlaufen, mit der vom Polygon begrenzten Fläche entweder die leere Menge, ein Punkt, oder eine Strecke ist. Man nennt g dann auch die Monotonieachse. Beispiel 3.1: monotones Polygon mit Monotonieachse g g

16 Definition x-monoton bzw. y-monoton: Ein monotones Polygon ist x-monoton bzw. y-monoton, falls die x-achse bzw. die y-achse des kartesischen Koordinatensystems im R 2 seine Monotonieachse ist. Der nachfolgende Algorithmus zerlegt ein einfaches Polygon in x-monotone Teilpolygone.

17 Er funktioniert nach dem scan-line-prinzip: Lasse eine imaginäre zur y-achse parallele Gerade - die scan-line - von links nach rechts über das gesamte Polygon wandern. Verarbeite stets nur Punkte, die bereits links von der scan-line liegen. Speichere diese Punkte in einer priority-queue. Punkte mit größerer x-koordinate haben dabei höhere Priorität. Suchen, Einfügen oder Löschen von Punkten in der priority-queue ist in O(log(n)) Zeit möglich.

18 Wir stellen fest: Das Polygon besitzt: einen Eckpunkt P l, der von allen Eckpunkten am weitesten links liegt einen Eckpunkt P r, der von allen Eckpunkten am weitesten rechts liegt eine obere Kette (d.h. ein Streckenzug bestehend aus Seiten), die bei P l beginnt und bei P r endet eine untere Kette, die ebenfalls bei P l beginnt und bei P r endet

19 (Zur Vereinfachung nehmen wir an, dass es keine zwei Eckpunkte mit gleichen y-koordinaten gibt.) Alle Eckpunkte der oberen Kette, außer natürlich P l und P r, liegen oberhalb der unteren Kette.

20 Wir wandern nun gleichzeitig entlang der oberen und unteren Kette von links nach rechts. Es kann dabei passieren, dass sich dabei die Durchlaufrichtung von rechts nach links oder links nach rechts ändert. Definition turn-vertex: Eckpunkt, an dem sich die Durchlaufrichtung ändert (d.h. sein Vorgänger und sein Nachfolger haben beide größere bzw. kleinere x-koordinaten als der turn-vertex)

21 Um den Algorithmus zu bewerkstelligen, unterteilen wir die Eckpunkte in 5 Typen - die ersten 4 davon sind turn-vertices: Definition start-vertex: Innenwinkel kleiner als 180, Nachbarn beide rechts end-vertex: Innenwinkel kleiner als 180, Nachbarn beide links split-vertex: Innenwinkel größer als 180, Nachbarn beide rechts merge-vertex: Innenwinkel größer als 180, Nachbarn beide links regular vertex: alle übrigen Eckpunkte

22 start end split merge regular Beispiel 3.2: die 5 Eckpunkttypen

23 Grundidee des Algorithmus: Ein einfaches Polygon ist x-monoton, falls es weder split- noch merge-vertices besitzt. Eliminiere also jeden split- oder merge-vertex durch Einfügen einer geeigneten Diagonale. Dadurch zerfällt das Polygon in zwei Teilpolygone. In beiden Teilpolygonen ist der ursprüngliche split- oder merge-vertex kein split- oder merge-vertex mehr.

24 Einfügen von Diagonalen bei split-vertices: Die scan-line erreiche nun einen split-vertex v i. Wir versuchen an v i eine Diagonale so einzufügen, dass ihr anderer Endpunkt ein Eckpunkt links von v i ist. Die scan-line schneidet das Polygon an zwei Seiten e k, e j unmittelbar oberhalb bzw. unterhalb von v i.

25 Definition helper(e j ): derjenige Eckpunkt in der priority-queue (d.h. links von der scan-line) mit maximaler x-koordinate, dessen Lot auf die Seite e j vollständig im Inneren des Polygons liegt Schließlich muss man nur noch die Diagonale zwischen v i und helper(e j ) einsetzen, um v i zu eliminieren.

26 helper(e j ) e k v i e j Beispiel 3.3: neue Diagonale bei einem split-vertex

27 Einfügen von Diagonalen bei merge-vertices: Der Endpunkt der Diagonale, die wir an einem merge-vertex v i einsetzen, muss rechts von v i liegen. Wir wählen ihn so, dass seine x-koordinate minimal ist. Problem: Wenn die scan-line v i erreicht, sind die Eckpunkte rechts von v i noch unbekannt.

28 Das Problem ist jedoch leichter, als es dem ersten Anschein nach ist: Die scan-line schneidet das Polygon wiederum an zwei Seiten e k, e j unmittelbar oberhalb bzw. unterhalb von v i und v i ist zudem der aktuelle helper(e j ). Die scan-line schreitet weiter nach rechts. Sobald ein neuer helper(e j ) gefunden wird, ist dieser der gesuchte rechte Endpunkt für die neue Diagonale.

29 Falls kein neuer helper(e j ) gefunden wird, so verbinde v i mit dem rechten Endpunkt von helper(e j ). Jedesmal, wenn der helper einer Seite aktualisiert wird, überprüfen wir, ob der alte helper ein merge-vertex war. Falls ja, wird die Verbindungsdiagonale eingesetzt.

30 Beispiel 3.4: vollständige Zerlegung in x-monotone Teilpolygone

31 Zur Korrektheit: Das Eliminieren von split- und merge-vertices durch Hinzufügen von Diagonalen liefert nur x-monotone Teilpolygone. Die helper-eigenschaft wird benutzt, damit sich die Diagonalen nicht schneiden.

32 Zur Laufzeit: Priority-queue-Operationen: O(log(n)) nötige Anzahl an priority-queue-operationen: O(n) Damit ergibt sich die Gesamtlaufzeit: O(n log(n))

33 Wir betrachten nun ein x-monotones Polygon. Es seien P l und P r wiederum die beiden Eckpunkte, die am weitesten links bzw. rechts liegen. Es besitzt auch eine obere und untere Kette, die beide bei P l beginnen und bei P r enden.

34 Wir stellen fest: Da das Polygon keine split- oder merge-vertices besitzt, sind die Ketten geordnet: Eckpunkte auf den Ketten haben stets kleinere x-koordinaten als ihre Nachfolger in den Ketten, wenn man von links nach rechts wandert.

35 Definition monotoner Berg: x-monotones Polygon, dessen obere oder untere Kette nur aus den Eckpunkten P l und P r besteht Definition monotoner Streifen: x-monotones Polygon, dessen Eckpunkte abwechselnd zur oberen oder unteren Kette gehören, wenn man sie nach der Größe ihrer x-koordinaten ordnet

36 Beispiel 3.5: monotone Berge Beispiel 3.6: monotoner Streifen, trianguliert

37 Monotone Berge kann man auf diese Weise triangulieren: Bestimme zunächst alle konvexen Eckpunkte in der längeren Kette und speichere sie in einem Stapel L. Jeder dieser konvexen Eckpunkte ist schon automatisch ein mittlerer Punkt eines Ohres. Entferne den obersten Eckpunkt P i aus dem Stapel und füge die zu seinem Ohr gehörende Diagonale ein. Aktualisiere entsprechend die Innenwinkel des linken und rechten Nachbarpunktes von P i.

38 Falls einer oder beide Nachbarpunkte nun konvex sind und sie nicht mit P l oder P r übereinstimmen, lege sie auf dem Stapel ab. Wiederhole diese Prozedur so lange, bis der Stapel leer ist.

39 0 P 2 P 3 1 P 2 P 3 P 1 P 4 P 1 2 P 2 3 P 1 P 1

40 4 5 P 1 P 1 6 Beispiel 3.7: Triangulierung eines monotonen Berges

41 Zur Korrektheit: Die Verbindungsstrecke vom linken und rechten Nachbarn eines konvexen Eckpunkts in der längeren Kette eines monotonen Berges ist eine Diagonale. Jeder monotone Berg besitzt in der längeren Kette mindestens einen konvexen Eckpunkt. Jedes Restpolygon ist auch ein monotoner Berg und besitzt somit auch mindestens einen konvexen Eckpunkt in seiner längeren Kette. In jeder Iteration wird demnach genau ein Ohr abgeschnitten.

42 Zur Laufzeit: Höchstens n 2 Eckpunkte befinden sich im Stapel. Initialisierung, d.h. prüfen jedes Eckpunktes auf Konvexität und belegen des Stapels: O(n) Entfernen eines Punktes und Einfügen der Diagonale: O(1) Gesamtlaufzeit (d.h. Initialisierung plus Zeit, bis der Stapel leer ist): O(n) Der Algorithmus besitzt also lineare Laufzeit.

43 Die Triangulierung eines monotonen Streifens ist trivial: Verbinde aufsteigend nach der x-koordinate abwechselnd die Eckpunkte aus der oberen und unteren Kette mit Diagonalen. Dieser Algorithmus ist offensichtlich korrekt und hat lineare Laufzeit.

44 Nun zu beliebigen monotonen Polygonen: Jedes monotone Polygon lässt sich in monotone Berge und Streifen zerlegen. Diese sind in Linearzeit triangulierbar. Man kann mit Hilfe dieser Zerlegung beliebige monotone Polygone in linearer Laufzeit triangulieren!

45 Beispiel 3.8: Zerlegung eines monotonen Polygons in Berge und Streifen

46 Initialisiere einen Stapel mit dem Eckpunkt P l. Verwende ferner die beiden Zählvariablen UpCntr und DownCntr vom Typ Integer, die mit dem Wert 0 initialisiert werden. Wandere gleichzeitig auf der oberen und unteren Kette von links nach rechts. Im Folgenden lege jeweils denjenigen nächsten Eckpunkt aus der oberen oder unteren Kette auf den Stapel, welcher die kleinere x-koordinate hat.

47 Ist dieser aus der oberen Kette, so erhöhe UpCntr um 1 und setze DownCntr gleich Null, andernfalls erhöhe DownCntr um 1 und setze UpCntr gleich Null Bevor UpCntr oder DownCntr gleich Null gesetzt werden, können folgende drei Fälle auftauchen: 1. UpCntr bzw. DownCntr = 0 (Initialisierung) 2. UpCntr bzw. DownCntr = 1 3. UpCntr bzw. DownCntr > 1

48 1. Fall: Nichts zu tun. 2. Fall: Die Verbindungsstrecke vom aktuellen Punkt und dem obersten Punkt auf dem Stapel ist eine Diagonale, die zu einem monotonen Streifen gehört. Füge diese ein und ersetze den obersten Punkt auf dem Stapel mit dem aktuellen. 3. Fall: Der aktuelle Punkt ist der rechte Endpunkt P r eines monotonen Berges, der aus den Punkten im Stapel besteht. Trianguliere diesen und leere anschließend den Stapel, bevor dort der aktuelle Punkt abgelegt wird.

49 Zur Korrektheit: Es ist klar, dass die monotonen Streifen direkt trianguliert werden. Der Algorithmus für die monotonen Berge ist korrekt, somit ist die Triangulierung jedes Teilberges ein korrekter Schritt.

50 Zur Laufzeit: Da die monotonen Streifen direkt trianguliert werden, ist die Triangulation aller Streifen insgesamt beschränkt durch: O(n) Das Polygon besitze j N Teilberge. Die Teilberge besitzen n 1,..., n j N Eckpunkte. Es gilt auf jeden Fall: j k=1 n k < 2n Laufzeit zur Triangulierung aller Berge: j k=1 O(n k) = O(n) Gesamtlaufzeit: O(n) Linear!

51 Quellenangabe M. de Berg, O. Cheong, M. van Krefeld, M. Overmars: Computational Geometry, Algorithms and Applications, p webpage/lec/24_triang_ii.pdf

Triangulierung von einfachen Polygonen

Triangulierung von einfachen Polygonen Triangulierung von einfachen Polygonen Tobias Kyrion Inhaltsverzeichnis 1.1 Die Problemstellung....................... 1 2.1 Ein naiver Algorithmus...................... 2 3.1 Zerlegung in monotone Teilpolygone..............

Mehr

6. Triangulation von Polygonen

6. Triangulation von Polygonen 1 6. Triangulation von Polygonen 2 Problemstellung 3 Problemstellung 4 Problemstellung 5 Problemstellung 6 Jedes Polygon lässt sich triangulieren. Wir führen einen Induktionsbeweis nach der Anzahl der

Mehr

2.4. Triangulierung von Polygonen

2.4. Triangulierung von Polygonen Als drittes Problem haben wir in Kapitel 1 die Triangulierung von Polygonen identifiziert, die etwa bei der Überwachung eines Museums durch Kameras auftritt. F70 F71 Definition und Theorie: Definition

Mehr

Algorithmische Geometrie 5. Triangulierung von Polygonen

Algorithmische Geometrie 5. Triangulierung von Polygonen Algorithmische Geometrie 5. Triangulierung von Polygonen JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem

Mehr

Triangulierung von Polygonen und das Museumsproblem

Triangulierung von Polygonen und das Museumsproblem Triangulierung von Polygonen und das Museumsproblem (Literatur: deberg et al., Kapitel 3) 1 Motivation: Das Museumsproblem ein Museum soll durch Kameras überwacht werden wie viele Kameras werden benötigt?

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem

Mehr

Algorithmische Geometrie 3. Schnitte von Liniensegmenten

Algorithmische Geometrie 3. Schnitte von Liniensegmenten Algorithmische Geometrie 3. Schnitte von Liniensegmenten JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.

Mehr

Parallele Algorithmen in der Bildverarbeitung

Parallele Algorithmen in der Bildverarbeitung Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren

Mehr

Polygon Triangulation. robot.scr. "Art Gallery Problem" Sichtbarkeitspolygon. Algorithmische Geometrie - SS 99 - Th. Ottmann

Polygon Triangulation. robot.scr. Art Gallery Problem Sichtbarkeitspolygon. Algorithmische Geometrie - SS 99 - Th. Ottmann Polygon Triangulation "Art Gallery Problem" Sichtbarkeitspolygon robot.scr Triangulation simpler Polygone P w v u Satz: Triangulation existiert und besitzt n-2 Dreiecke Bew.: Induktion über n> 3. Suche

Mehr

Geometrische Algorithmen Voronoi-Diagramme. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Voronoi-Diagramme

Geometrische Algorithmen Voronoi-Diagramme. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Voronoi-Diagramme Folie 1 von 32 Geometrische Algorithmen Voronoi-Diagramme Folie 2 von 32 Voronoi-Diagramme Übersicht Problemstellung Animation zur Konstruktion eines Voronoi-Diagramms Definition, Eigenschaften eines Voronoi-Diagramms

Mehr

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14 KARL-FRANZENS-UNIVERSITÄT GRAZ Seminar aus Reiner Mathematik Die Museumswächter Krupic Mustafa Wintersemester 2013/14 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Einleitung 3 2 Museumswächter-Satz 6 2.1

Mehr

Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem

Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem Geometrische Algorithmen Einige einfache Definitionen: Punkt: im n-dimensionalen Raum ist ein n-tupel (n Koordinaten) Gerade: definiert durch zwei beliebige Punkte auf ihr Strecke: definiert durch ihre

Mehr

Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin

Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin Konvexe Hülle Konvexe Hülle AK der Algorithmik 5, SS 2005 Hu Bin Anwendung: Computergraphik Boundary Kalkulationen Geometrische Optimierungsaufgaben Konvexe Hülle: Definition Mathematik Konvex: Linie zwischen

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung Algorithmische Geometrie): Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische

Mehr

1 Kürzeste Pfade in Graphen

1 Kürzeste Pfade in Graphen Praktikum Algorithmen-Entwurf (Teil 3) 03.11.2011 1 1 Kürzeste Pfade in Graphen Es sei ein gerichteter Graph G = (V, E) mit V = n Knoten, E = m Kanten und Kantengewichten c : E R gegeben. Ein Pfad in G

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.05.2012 Nachtrag: Dynamische Bereichsabfragen Letzte Woche: kd-trees und Range-Trees

Mehr

Die Determinante eines Friesmuster

Die Determinante eines Friesmuster Die Determinante eines Friesmuster Die Determinante eines Friesmuster von Hannah Vogel,??? Einleitung Friesmuster (engl. Frieze Pattern ) gab es schon lange bevor sie in der Mathematik diskutiert wurden.

Mehr

Geometrie 1. Christian Bay Christian Bay Geometrie / 46

Geometrie 1. Christian Bay Christian Bay Geometrie / 46 Geometrie 1 Christian Bay 02.07.2013 Christian Bay Geometrie 1 02.07.2013 1 / 46 Inhaltsverzeichnis Grundlagen CCW Polygone Picks Theorem Konvexe Hülle Christian Bay Geometrie 1 02.07.2013 2 / 46 Geometrie

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 4 FS 15

Datenstrukturen & Algorithmen Lösungen zu Blatt 4 FS 15 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 18. März

Mehr

Punktlokalisation 1. Trapez-Zerlegungen. 2. Eine Suchstruktur. 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung

Punktlokalisation 1. Trapez-Zerlegungen. 2. Eine Suchstruktur. 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung Punktlokalisation 1. Trapez-Zerlegungen 2. Eine Suchstruktur 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung 4. Analyse Punktlokalisation Einteilung in Streifen Anfragezeit:

Mehr

häufige Aufgabe Motivation: Approximation komplizierter Geometrien durch einfachere Dreiecke oft effizienter zu bearbeiten als Polygone

häufige Aufgabe Motivation: Approximation komplizierter Geometrien durch einfachere Dreiecke oft effizienter zu bearbeiten als Polygone Triangulierung häufige Aufgabe Motivation: Approximation komplizierter Geometrien durch einfachere Dreiecke oft effizienter zu bearbeiten als Polygone Problemstellung 1: Gegeben: ein einfaches Polygon

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Algorithmische Geometrie: Schnittpunkte von Strecken

Algorithmische Geometrie: Schnittpunkte von Strecken Algorithmische Geometrie: Schnittpunkte von Strecken Nico Düvelmeyer WS 2009/2010, 3.11.2009 3 Phasen im Algorithmenentwurf 1. Konzentration auf das Hauptproblem 2. Verallgemeinerung auf entartete Eingaben

Mehr

Kapitel 9 Algorithm. Geometrie. Kürzeste Abstände Konvexe Hülle

Kapitel 9 Algorithm. Geometrie. Kürzeste Abstände Konvexe Hülle Kapitel 9 Algorithm. Geometrie Kürzeste Abstände Konvexe Hülle Überblick Teilgebiet der Informatik, in dem es um die Entwicklung effizienter Algorithmen und die Bestimmung der algorithmischen Komplexität

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

Aufgabensammlung zur algorithmischen Geometrie

Aufgabensammlung zur algorithmischen Geometrie 1 Aufgabensammlung zur algorithmischen Geometrie 2012WS Andreas Kriegl 1. Konvexe Hülle als Durchschnitt. Zeige, daß der Durchschnitt konvexer Mengen wieder konvex ist und somit die konvexe Hülle einer

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Thomas Röfer Motivation Scan-line-Prinzip Konvexe Hülle Distanzprobleme Voronoi-Diagramm Rückblick Manipulation von Mengen Vorrangwarteschlange Heap HeapSort swap(a, 0, 4) 1 5

Mehr

Mehrwegbäume Motivation

Mehrwegbäume Motivation Mehrwegbäume Motivation Wir haben gute Strukturen (AVL-Bäume) kennen gelernt, die die Anzahl der Operationen begrenzen Was ist, wenn der Baum zu groß für den Hauptspeicher ist? Externe Datenspeicherung

Mehr

Polygone - Bausteine der Computergrafik

Polygone - Bausteine der Computergrafik Polygone - Bausteine der Computergrafik Schülerseminar Florian Buchegger Johannes Kepler Universität Linz Dez 12, 2014 Wo werden Polygone verwendet? Welche wichtige Algorithmen gibt es? Outline Wo werden

Mehr

Algorithmische Geometrie

Algorithmische Geometrie Algorithmische Geometrie Martin Peternell TU Wien 31. Fortbildungstagung für Geometrie 2010, Strobl 1 Themen der Algorithmische Geometrie Entwurf von Algorithmen für geometrische Fragestellungen betreffend

Mehr

Waben-Sudoku. Günter Aumann und Klaus Spitzmüller. Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen.

Waben-Sudoku. Günter Aumann und Klaus Spitzmüller. Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen. Waben-Sudoku Günter Aumann und Klaus Spitzmüller Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen. Eine Vorüberlegung Reguläre Vierecke und Sechsecke zeichnen sich vor allen anderen

Mehr

M. Pester 29. Ein konvexes d-polytop ist eine begrenzte d-dimensionale polyedrale Menge. (d = 3 Polyeder, d = 2 Polygon)

M. Pester 29. Ein konvexes d-polytop ist eine begrenzte d-dimensionale polyedrale Menge. (d = 3 Polyeder, d = 2 Polygon) M. Pester 29 6 Konvexe Hülle 6.1 Begriffe Per Definition ist die konvexe Hülle für eine Menge S von lich vielen Punkten die kleinste konvexe Menge, die S enthölt (z.b. in der Ebene durch ein umspannes

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Ebene Elementargeometrie

Ebene Elementargeometrie Ebene Elementargeometrie Im Folgenden unterscheiden wir neben Definitionen (Namensgebung) und Sätzen (nachweisbaren Aussagen) so genannte Axiome. Axiome stellen der Anschauung entnommene Aussagen dar,

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche

Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche Folie 1 von 51 Geometrische Algorithmen Punkt-in-Polygon-Suche Folie 2 von 51 Punkt-in-Polygon-Suche Übersicht Praxisbeispiel/Problemstellung Zählen von Schnittpunkten Schnitt einer Halbgerade mit der

Mehr

1 Rotating Calipers. 2 Antipodal und Copodal. 3 Distanzen Rechtecke Eigenschaften

1 Rotating Calipers. 2 Antipodal und Copodal. 3 Distanzen Rechtecke Eigenschaften 1 Rotating Calipers 2 3 Rotating Calipers - Algorithmus Konvexes Polygon mit parallelen Stützgeraden Rotating Calipers - Finder Shamos lässt 1978 zwei Stützgeraden um ein Polygon rotieren Zwei Stützgeraden

Mehr

Geometrie I. Laura Lawniczak Hallo Welt -Seminar - LS 2

Geometrie I. Laura Lawniczak Hallo Welt -Seminar - LS 2 Geometrie I Laura Lawniczak 12.07.2017 Hallo Welt -Seminar - LS 2 Inhalt Grundlagen Abstandsberechnung Punkt-Gerade Punkt-Segment CCW Polygone Punkt in Polygon Pick s Theorem Konvexe Hülle 12.07.2017 Laura

Mehr

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs

Mehr

Computer-Graphik I Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik I Verallgemeinerte Baryzentrische Koordinaten lausthal omputer-raphik I Verallgemeinerte Baryzentrische Koordinaten. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Verallgemeinerungen der baryzentr. Koord. 1. Was macht man im 2D bei

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 5 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 5 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 26. März

Mehr

Algorithmische Geometrie: Lineare Optimierung (I)

Algorithmische Geometrie: Lineare Optimierung (I) Algorithmische Geometrie: Lineare Optimierung (I) Nico Düvelmeyer WS 2009/2010, 17.11.2009 Überblick 1 Geometrie von Gießformen 2 Durchschnitte von Halbebenen 3 Inkrementeller Algorithmus Überblick 1 Geometrie

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Geometrie I. Sebastian Redinger Informatik 2 Programmiersysteme Martensstraße Erlangen

Geometrie I. Sebastian Redinger Informatik 2 Programmiersysteme Martensstraße Erlangen Geometrie I Sebastian Redinger 01.07.2015 Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen CCW Polygone Picks Theorem Konvexe Hülle - Graham Scan - Jarvis March 2 Gliederung

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal spannende Bäume 5. Kürzeste Pfade 6. Traveling Salesman Problem 7. Flüsse

Mehr

Algorithmen und Datenstrukturen Heapsort

Algorithmen und Datenstrukturen Heapsort Algorithmen und Datenstrukturen 2 5 Heapsort In diesem Kapitel wird Heapsort, ein weiterer Sortieralgorithmus, vorgestellt. Dieser besitzt wie MERGE-SORT eine Laufzeit von O(n log n), sortiert jedoch das

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

PROJEKT / SEMINAR DIGITALE FABRIKATION DI

PROJEKT / SEMINAR DIGITALE FABRIKATION DI CONTOURLINES Applikation zur digitalen Fabrikation von Höhenschicht-Modellen PROJEKT / SEMINAR DIGITALE FABRIKATION DI Martin Emmerer Matr.Nr.95 30 952 1 Zielsetzung Höhenlinien, auch Isohypsen, Niveaulinien

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 7. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@informatik.uni-leipzig.de aufbauend auf den Kursen der letzten Jahre von E. Rahm, G. Heyer,

Mehr

Dualität + Quad-trees

Dualität + Quad-trees Übung Algorithmische Geometrie Dualität + Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 30.06.2011 Übersicht Übungsblatt 10 - Dualität

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

21. Die Formel von Pick

21. Die Formel von Pick 21. Die Formel von Pick Ein Polygon P, dessen Ecken bezüglich eines kartesischen Koordinatensystems ganzzahlige Koordinaten besitzen, soll Gitterpolygon heißen. Für geschlossene überschneidungsfreie Gitterpolygone

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken.

Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Abstrakte Datentypen und Datenstrukturen/ Einfache Beispiele Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Datenstruktur (DS): Realisierung

Mehr

1 AVL-Bäume. 1.1 Aufgabentyp. 1.2 Überblick. 1.3 Grundidee

1 AVL-Bäume. 1.1 Aufgabentyp. 1.2 Überblick. 1.3 Grundidee AVL-Bäume. Aufgabentyp Fügen Sie in einen anfangs leeren AVL Baum die folgenden Schlüssel ein:... Wenden Sie hierbei konsequent den Einfüge /Balancierungsalgorithmus an und dokumentieren Sie die ausgeführten

Mehr

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen 4.4 MX-Quadtrees (I) MatriX Quadtree Verwaltung 2-dimensionaler Punkte Punkte als 1-Elemente in einer quadratischen Matrix mit Wertebereich {0,1} rekursive Aufteilung des Datenraums in die Quadranten NW,

Mehr

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein:

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: 1 Aufgabe 8.1 (P) (2, 3)-Baum a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: Zeichnen Sie, was in jedem Schritt passiert. b) Löschen Sie die Zahlen 65, 70 und 100 aus folgendem

Mehr

Punkt-in-Polygon-Suche Übersicht

Punkt-in-Polygon-Suche Übersicht Folie 1 von 19 Punkt-in-Polygon-Suche Übersicht Praxisbeispiel/Problemstellung Zählen von Schnittpunkten Schnitt einer Halbgerade mit der Masche Aufwandsbetrachtung Streifenkarte Vorgehen und Eigenschaften

Mehr

Das Schubfachprinzip

Das Schubfachprinzip Das Schubfachprinzip Norbert Koksch, Dresden Literatur: Beutelspacher/Zschiegner: Diskrete Mathematik für Einsteiger. Vieweg-Verlag. 1. Was ist das Schubfachprinzip? Die folgenden Aussagen sind offenbar

Mehr

Voronoi Diagrams. Christian Wellenbrock. December 1, 2009

Voronoi Diagrams. Christian Wellenbrock. December 1, 2009 December 1, 2009 Das Voronoi Diagramm Problemstellung Gegeben: Menge der Zentren P = {p 1,..., p n } R 2 Das Voronoi Diagramm Problemstellung Gegeben: Menge der Zentren P = {p 1,..., p n } R 2 Gesucht:

Mehr

Etwas Topologie. Thomas Jahn. LV Algebraische Topologie am 1. Dezember 2014

Etwas Topologie. Thomas Jahn. LV Algebraische Topologie am 1. Dezember 2014 Etwas Topologie Thomas Jahn LV Algebraische Topologie am 1. Dezember 214 1 Eulerscher Polyedersatz [2] Satz 1.1 (Eulerscher Polyedersatz). Sei G ein ebener Graph. (Multikanten und Schlingen sind erlaubt,

Mehr

Ausarbeitung. zum Thema. an der. Rheinischen Friedrich Wilhelms Universität Bonn. Leiter: Dr. Elmar Langetepe. Betreuer: Rainer Penninger

Ausarbeitung. zum Thema. an der. Rheinischen Friedrich Wilhelms Universität Bonn. Leiter: Dr. Elmar Langetepe. Betreuer: Rainer Penninger Ausarbeitung zum Thema Rotationsmonotone Polygone an der Rheinischen Friedrich Wilhelms Universität Bonn Leiter: Dr. Elmar Langetepe Betreuer: Rainer Penninger Autor: Stephan Stroucken 1 In dieser Ausarbeitung

Mehr

Geometrie 1. Roman Sommer. Informatik 2 Programmiersysteme Martensstraße Erlangen

Geometrie 1. Roman Sommer. Informatik 2 Programmiersysteme Martensstraße Erlangen Geometrie 1 Roman Sommer Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Grundlagen Punkte, Vektoren Schreibweise: Skalar: Vektor: Komponente: Punkt: (spitzer) Winkel zw. zwei Vektoren:

Mehr

Algorithmen in Zellularautomaten

Algorithmen in Zellularautomaten Algorithmen in Zellularautomaten 9. Sortieren in zweidimensionalen ZA Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Sommersemester 2017 Ziele Problemstellung: Sortieren von

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill Konvexe Hülle Hierbei handelt es sich um ein klassisches Problem aus der Algorithmischen Geometrie, dem Teilgebiet der Informatik, in dem man für geometrische Probleme effiziente Algorithmen bestimmt.

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei

Mehr

1. Übungsblatt zu Algorithmen II im WS 2011/2012

1. Übungsblatt zu Algorithmen II im WS 2011/2012 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Moritz Kobitzsch, Dennis Schieferdecker. Übungsblatt zu Algorithmen II im WS 0/0 http://algo.iti.kit.edu/algorithmenii.php

Mehr

Algorithmische Geometrie 7. Punktsuche (Teil 2)

Algorithmische Geometrie 7. Punktsuche (Teil 2) Algorithmische Geometrie 7. Punktsuche (Teil 2) JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4. Schnitte

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Füllen von Primitiven

Füllen von Primitiven Füllen von Primitiven Basisproblem der 2D-Graphik Anwendung: füllen beliebiger Flächen (Polygone, Freiformkurven) Darstellung von Buchstaben dicke Primitive (Linien, Kreise, Kurven), Teilproblem in der

Mehr

Seminar: Algorithmisches in der Geometrie Ausarbeitung zu Vortrag 9. Triangulierungen im Cayley-Graph und Enden von kontextfreien Gruppen

Seminar: Algorithmisches in der Geometrie Ausarbeitung zu Vortrag 9. Triangulierungen im Cayley-Graph und Enden von kontextfreien Gruppen Seminar: Algorithmisches in der Geometrie Ausarbeitung zu Vortrag 9 Triangulierungen im Cayley-Graph und Enden von kontextfreien Gruppen Stefanie Schindler 25. Juni 2010 Zusammenfassung Zunächst machen

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Amortisierte Analysen

Amortisierte Analysen Amortisierte Analysen 26. Mai 2016 1 Einleitung Es gibt viele Datenstrukturen, bei deren Komplexitätsanalyse das Problem auftaucht, dass die Ausführung mancher Operationen Einfluss auf die Komplexität

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Teil 4. Aufgaben Nr. 14 bis 18 Hier nur Lösung von Nr. 14. Auf der Mathematik-CD befinden sich alle Lösungen

Teil 4. Aufgaben Nr. 14 bis 18 Hier nur Lösung von Nr. 14. Auf der Mathematik-CD befinden sich alle Lösungen Teil 4 Aufgaben Nr. 4 bis 8 Hier nur Lösung von Nr. 4. Auf der Mathematik-CD befinden sich alle Lösungen Parabelfunktionen mit vielen Zusatzaufgaben (Keine Integration) Datei Nr. 405 S Januar 00 Friedrich

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

Algorithmen in Zellularautomaten

Algorithmen in Zellularautomaten Algorithmen in Zellularautomaten 1. Grundlegende Definitionen 2. Berechnungsmächtigkeit von ZA 3. Endliche Muster und Konfigurationen 4. Selbstreproduktion 5. Sortieren in eindimensionalen ZA 6. Einfache

Mehr

Übung Computergrafik 3

Übung Computergrafik 3 Übung Computergrafik 3 1.Übungsblatt: Geometrie Stephan Groß (Dank an Irini Schmidt und Jakob Bärz) Institut für Computervisualistik Universität Koblenz-Landau 6. Juli 2011 Aufgabe 1: Fragezeichen Gegeben:

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (23 Bruder-Bäume, B-Bäume) Prof. Dr. Susanne Albers Balancierte Bäume Eine Klasse von binären Suchbäumen ist balanciert, wenn jede der drei Wörterbuchoperationen

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Jörn Fischer j.fischer@hs-mannheim.de Willkommen zur Vorlesung Grundlagen der Informatik ADS-Teil Page 2 Überblick Inhalt 1 Eigenschaften von Algorithmen Algorithmenbegriff O-Notation Entwurfstechniken

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

Projektionen auf abgeschlossene konvexe Mengen

Projektionen auf abgeschlossene konvexe Mengen Projektionen auf abgeschlossene konvexe Mengen Seminarvortrag von Veronika Pick Seminar Optimierung bei Herrn Prof. Dr. F. Jarre Heinrich-Heine-Universität Düsseldorf SS 2006 1 Vorbemerkung Das Seminarthema

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich für Algorithmen und Datenstrukturen Institut für Computergraphik und Algorithmen Technische Universität Wien Einführung

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr