6. Triangulation von Polygonen
|
|
|
- Tomas Stieber
- vor 9 Jahren
- Abrufe
Transkript
1 1 6. Triangulation von Polygonen
2 2 Problemstellung
3 3 Problemstellung
4 4 Problemstellung
5 5 Problemstellung
6 6 Jedes Polygon lässt sich triangulieren. Wir führen einen Induktionsbeweis nach der Anzahl der Eckpunkte n und Anzahl der Löcher h. Induktionsanfang: n = 3 und h = 0
7 7 Jedes Polygon lässt sich triangulieren. Induktionsschritt: Wir bestimmen die Ecke v mit der kleinsten x Koordinate und deren Vorgänger u und Nachfolger w. w v u
8 8 Jedes Polygon lässt sich triangulieren. 1. Fall: Die Strecke zwischen u und w verläuft innerhalb des Polygons. w v u
9 9 Jedes Polygon lässt sich triangulieren. 2. Fall: Die Strecke zwischen u und w verläuft nicht innerhalb des Polygons. w w v v u u
10 10 Jedes Polygon lässt sich triangulieren. Wir bestimmen die Ecke r im Inneren des Dreiecks uvw mit kleinster x Koordinate. w w v r v r u u
11 11 Jedes Polygon lässt sich triangulieren. Wir zerlegen das Polygon entlang der Diagonale vr.
12 12 Bemerkungen Der Induktionsbeweis führt unmittelbar zu einem Algorithmus mit Laufzeit O n 2. Ferner gilt: SORTIEREN O n TRIANGULIEREN Der Beweis benutzt allerdings Polygone mit Löchern.
13 13 Beobachtung Beim Triangulieren geht es offenbar darum, möglichst effizient Diagonalen im Polygon zu finden.
14 14 Benutzung der Trapezzerlegung Wir betrachten die Trapezzerlegung für die Kanten des Polygons.
15 15 Benutzung der Trapezzerlegung Alle Trapeze außerhalb des Polygons werden entfernt.
16 16 Benutzung der Trapezzerlegung Wir gehen die verbleibenden Trapeze durch und fügen wo immer möglich Diagonalen ein.
17 17 Beobachtung Die so erhaltenen Teilpolygone haben scheinbar alle die Eigenschaft, dass der Schnitt mit jeder senkrechten Geraden eine Strecke, ein Punkt oder leer ist. Man nennt solche Polygone x monoton.
18 18 Beweis der beobachteten Eigenschaft Angenommen ein Teilpolygon wäre nicht x monoton.
19 19 Triangulation von x monotonen Polygonen Wenn das Polygon schon x monoton ist, dann liegt es nahe, die Ecken nach wachsenden x Koordinaten abzuarbeiten.
20 20 Triangulation von x monotonen Polygonen Wenn das Polygon schon x monoton ist, dann liegt es nahe, die Ecken nach wachsenden x Koordinaten abzuarbeiten.
21 21 Triangulation von x monotonen Polygonen Wenn das Polygon schon x monoton ist, dann liegt es nahe, die Ecken nach wachsenden x Koordinaten abzuarbeiten.
22 22 Triangulation von x monotonen Polygonen Wenn das Polygon schon x monoton ist, dann liegt es nahe, die Ecken nach wachsenden x Koordinaten abzuarbeiten.
23 23 Triangulation von x monotonen Polygonen Leider lässt sich nicht jede Ecke sofort verarbeiten. Deshalb verwenden wir einen Stapel zur Verwaltung dieser aufgeschobenen Ecken.
24 24 Triangulation von x monotonen Polygonen Leider lässt sich nicht jede Ecke sofort verarbeiten. Deshalb verwenden wir einen Stapel zur Verwaltung dieser aufgeschobenen Ecken.
25 25 Triangulation von x monotonen Polygonen Leider lässt sich nicht jede Ecke sofort verarbeiten. Deshalb verwenden wir einen Stapel zur Verwaltung dieser aufgeschobenen Ecken.
26 26 Triangulation von x monotonen Polygonen Leider lässt sich nicht jede Ecke sofort verarbeiten. Deshalb verwenden wir einen Stapel zur Verwaltung dieser aufgeschobenen Ecken.
27 27 Triangulation von x monotonen Polygonen Leider lässt sich nicht jede Ecke sofort verarbeiten. Deshalb verwenden wir einen Stapel zur Verwaltung dieser aufgeschobenen Ecken.
28 28 Triangulation von x monotonen Polygonen Leider lässt sich nicht jede Ecke sofort verarbeiten. Deshalb verwenden wir einen Stapel zur Verwaltung dieser aufgeschobenen Ecken.
29 29 Triangulation von x monotonen Polygonen Der Stapel wird am Anfang mit den ersten beiden Ecken initialisiert. Es gilt auch später immer: Die Ecken im Stapel bilden eine reflexe Kette und das unterste Element ist die Ecke mit kleinster x Koordinate im Restpolygon.
30 30 Triangulation von x monotonen Polygonen Bei der Bearbeitung der nächsten Ecke gibt es drei Fälle. 1.Fall: Die nächste Ecke verlängert die reflexe Kette.
31 31 Triangulation von x monotonen Polygonen 2.Fall: Die nächste Ecke verlängert die reflexe Kette nicht und liegt auf der gleichen Seite wie die reflexe Kette.
32 32 Triangulation von x monotonen Polygonen Die reflexe Kette wird entsprechend gekürzt und die bearbeitete Ecke anschließend auf den Stapel gelegt.
33 33 Triangulation von x monotonen Polygonen 3.Fall: Die nächste Ecke verlängert die reflexe Kette nicht und liegt nicht auf der gleichen Seite wie die reflexe Kette.
34 34 Triangulation von x monotonen Polygonen Alle Ecken auf dem Stapel werden abgearbeitet. Dann wird der Stapel mit den beiden ersten Ecken im Restpolygon initialisiert.
35 35 Analyse der Laufzeit Berechnung der Trapezzerlegung: Entfernen der äußeren Trapeze: Zerlegung in x monotone Polygone: Triangulation der x monotonen Polygone: O(nlogn) O(n) O(n) O(n) Gesamtlaufzeit: O(nlogn)
Triangulierung von einfachen Polygonen
Triangulierung von einfachen Polygonen - Seminarvortrag von Tobias Kyrion - Inhalt: 1.1 Die Problemstellung Quellenangabe 1.1 Die Problemstellung Definition Polygon: endlich viele paarweise verschiedene
Triangulierung von einfachen Polygonen
Triangulierung von einfachen Polygonen Tobias Kyrion Inhaltsverzeichnis 1.1 Die Problemstellung....................... 1 2.1 Ein naiver Algorithmus...................... 2 3.1 Zerlegung in monotone Teilpolygone..............
2.4. Triangulierung von Polygonen
Als drittes Problem haben wir in Kapitel 1 die Triangulierung von Polygonen identifiziert, die etwa bei der Überwachung eines Museums durch Kameras auftritt. F70 F71 Definition und Theorie: Definition
7. Triangulation von einfachen Polygonen
1 7. Triangulation von einfachen Polygonen 2 Ziel Bessere Laufzeit als O(n log n) durch schnelleres Berechnen der Trapezzerlegung des Polygons. 3 Idee Finde Methode, den Anfangspunkt einer Strecke in der
Übersicht. Begriffserklärung Motivation / Anwendungen Drei Algorithmen Zusammenfassung Fragen Quellen. Triangulierung von Steffen Ernst 2
Triangulierung Übersicht Begriffserklärung Motivation / Anwendungen Drei Algorithmen Zusammenfassung Fragen Quellen Triangulierung von Steffen Ernst 2 Begriffserklärung Ein Graph ist trianguliert, wenn
Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone
Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer
Algorithmische Geometrie 5. Triangulierung von Polygonen
Algorithmische Geometrie 5. Triangulierung von Polygonen JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.
Es sei P ein einfaches Polygon in der Ebene; P habe n Ecken. Hilfssatz: Zu jedem einfachen Polygon mit mehr als 3 Ecken existiert eine Diagonale.
6. Polygontriangulierung: Wie bewacht man eine Kunstgalerie? 6.1. Grundlegendes zu Polygonen Es sei P ein einfaches Polygon in der Ebene; P habe n Ecken. Definition: Hilfssatz: Zu jedem einfachen Polygon
KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14
KARL-FRANZENS-UNIVERSITÄT GRAZ Seminar aus Reiner Mathematik Die Museumswächter Krupic Mustafa Wintersemester 2013/14 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Einleitung 3 2 Museumswächter-Satz 6 2.1
Seminar. Algorithmische Geometrie
Seminar Algorithmische Geometrie WS 2000/2001 Thema: Konvexe Hülle Mirko Dennler 21439 Inhaltsverzeichnis Konvexe Hülle 1. Problemstellung 3 2. GRAHAMS SCAN 4-5 3. JARVIS' MARCH 5-6 4. QUICK HULL 6-7 5.
Polygontriangulierung
Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem
Polygontriangulierung
Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem
Algorithmische Geometrie: Delaunay Triangulierung (Teil 1)
Algorithmische Geometrie: Delaunay Triangulierung (Teil 1) Nico Düvelmeyer WS 2009/2010, 26.1.2010 Überblick 1 Motivation Interpolation von Höhendaten 2 Triangulierungen von ebenen Punktmengen 3 Delaunay
Übungsblatt 7 - Voronoi Diagramme
Karlsruher Institut für Technologie Algorithmische Geometrie Fakultät für Informatik Sommersemester 2012 ITI Wagner Martin Nöllenburg/Andreas Gemsa Übungsblatt 7 - Voronoi Diagramme 1 Voronoi-Zellen Sei
Triangulierung von Polygonen und das Museumsproblem
Triangulierung von Polygonen und das Museumsproblem (Literatur: deberg et al., Kapitel 3) 1 Motivation: Das Museumsproblem ein Museum soll durch Kameras überwacht werden wie viele Kameras werden benötigt?
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen Lerneinheit : Kürzeste Pfade in Graphen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 016.6.01 Einleitung Diese Lerneinheit beschäftigt
Das Problem der Museumswächter
Das Problem der Museumswächter Laura Wartschinski November 15, 2015 Definition Gegeben sei eine polygonale Fläche G mit Rand G, interpretiert als Grundriss eines Museums. Wähle nun möglichst wenige Punkte
Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene
Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander
Cell Decomposition & Potential Field
Seminar EXRPR Cell Decomposition & Potential Field Gruppe 2: Thomas Janu Martin Koch Adrian J. Merkl Matthias Schneider Cell Decomposition & Potential Field 20.06.2005 Gruppe 2 Gliederung (1) 1.Cell Decomposition
Punkt-in-Polygon-Suche Übersicht
Folie 1 von 19 Punkt-in-Polygon-Suche Übersicht Praxisbeispiel/Problemstellung Zählen von Schnittpunkten Schnitt einer Halbgerade mit der Masche Aufwandsbetrachtung Streifenkarte Vorgehen und Eigenschaften
Hallo Welt! für Fortgeschrittene. Geometrie I. Philipp Erhardt. 19. Juli Philipp Erhardt Geometrie I 19. Juli / 27
Hallo Welt! für Fortgeschrittene Geometrie I Philipp Erhardt 19. Juli 2011 Philipp Erhardt Geometrie I 19. Juli 2011 1 / 27 Gliederung 1 Grundlagen 2 CCW 3 Punkt-in-Polygon 4 Pick s Theorem 5 Konvexe Hülle
Klausur. 18. Juli 2008, 10:15-12:15 Uhr. Name:... Matrikelnummer:... Anzahl beschriebener Blätter (ohne Aufgabenblatt):... D(p) : Y = p x X + p y
GRUNDZÜGE DER ALGORITHMISCHEN GEOMETRIE Klausur 18. Juli 2008, 10:15-12:15 Uhr Name:................................... Matrikelnummer:................................... Anzahl beschriebener Blätter (ohne
Algorithmische Techniken für Geometrische Probleme
Algorithmische Techniken für Geometrische Probleme Berthold Vöcking 14. Juni 2007 Inhaltsverzeichnis 1 Die Sweepline-Technik 2 1.1 Schnitte orthogonaler Liniensegmente............... 2 1.2 Schnitte beliebiger
Geometrie 1. Christian Bay Christian Bay Geometrie / 46
Geometrie 1 Christian Bay 02.07.2013 Christian Bay Geometrie 1 02.07.2013 1 / 46 Inhaltsverzeichnis Grundlagen CCW Polygone Picks Theorem Konvexe Hülle Christian Bay Geometrie 1 02.07.2013 2 / 46 Geometrie
Parallelogramme und Dreiecke A512-03
12 Parallelogramme und Dreiecke A512-0 1 10 Dreiecke 01 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke und sind gleichschenklig. 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A = A = 61, cm2,56
Parallelogramme und Dreiecke A512-03
12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =
Polygon Triangulation. robot.scr. "Art Gallery Problem" Sichtbarkeitspolygon. Algorithmische Geometrie - SS 99 - Th. Ottmann
Polygon Triangulation "Art Gallery Problem" Sichtbarkeitspolygon robot.scr Triangulation simpler Polygone P w v u Satz: Triangulation existiert und besitzt n-2 Dreiecke Bew.: Induktion über n> 3. Suche
Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem
Geometrische Algorithmen Einige einfache Definitionen: Punkt: im n-dimensionalen Raum ist ein n-tupel (n Koordinaten) Gerade: definiert durch zwei beliebige Punkte auf ihr Strecke: definiert durch ihre
Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :
Algorithmische Geometrie: Schnittpunkte von Strecken
Algorithmische Geometrie: Schnittpunkte von Strecken Nico Düvelmeyer WS 2009/2010, 3.11.2009 3 Phasen im Algorithmenentwurf 1. Konzentration auf das Hauptproblem 2. Verallgemeinerung auf entartete Eingaben
Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin
Konvexe Hülle Konvexe Hülle AK der Algorithmik 5, SS 2005 Hu Bin Anwendung: Computergraphik Boundary Kalkulationen Geometrische Optimierungsaufgaben Konvexe Hülle: Definition Mathematik Konvex: Linie zwischen
Uberblick 1. Problemstellung 2. Kongurationsraum 3. Bewegungsplanung fur einen Punktroboter 4. Minkowski Summen 5. Pseudo-Scheiben 6. Bewegungsplanung
Vorlesung Geometrische Algorithmen Bewegungsplanung fur Roboter (Robot Motion Planning) Sven Schuierer Uberblick 1. Problemstellung 2. Kongurationsraum 3. Bewegungsplanung fur einen Punktroboter 4. Minkowski
Geometrische Algorithmen Voronoi-Diagramme. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Voronoi-Diagramme
Folie 1 von 32 Geometrische Algorithmen Voronoi-Diagramme Folie 2 von 32 Voronoi-Diagramme Übersicht Problemstellung Animation zur Konstruktion eines Voronoi-Diagramms Definition, Eigenschaften eines Voronoi-Diagramms
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
4. Kreis- und Wegeprobleme
4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung
2. Mathematikschulaufgabe
1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1
Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,
Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich
Vorlesungstermin 2: Graphentheorie II Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Wiederholung: Vollständige Induktion Ziel: zeige n N. A(n) für eine Aussage
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern
Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x
Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $
$Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der
Jede beschränkte und monotone Folge (a n ) n N konvergiert, d.h. es gibt ein a R, so dass lim
Beispiel 3.10 ( 1) n n a n a+nd aq n 1 (a > 0) n monoton steigend d 0 q 1 nein nein streng monoton steigend d > 0 q > 1 nein nein monoton fallend d 0 0 q 1 streng monoton fallend d < 0 0 < q < 1 ja nein
Die Trapeze sind offensichtlich gleichschenklig und haben die Basiswinkel 60. Sind sie auch ähnlich?
Hans Walser, [20090625c] Fibonacci-Trapeze Anregung: [Deshpande 2009] 1 Hexagon mit angesetzten Quadraten 1.1 Basisfigur Wir basieren unsere Überlegungen auf folgender Figur. Einem zentralen Hexagon werden
Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.
GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
DAS MUSEUMSWÄCHTERPROBLEM
DAS MUSEUMSWÄCHTERPROBLEM bearbeitet von Claudia Goltz Till Weigt Uwe Siebert Johanna Soava im Rahmen des PROSEMINAR I WS 04/05 bei Prof. Roch DAS MUSEUMSWÄCHTERPROBLEM Ein lauter herzzerreißender Schrei,
3.9.1 Kartesisches Koordinatensystem
Seite 1 Kapitel 3 Mathematik Kapitel 3.9 Algebra Grafische Darstellungen und Lösungen 3.9.1 Kartesisches Koordinatensstem Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn
Pfadgenerierung/Polygone/Polygonoffsetting
Pfadgenerierung/Polygone/Polygonoffsetting Jan Stenzel 17. Juni 2015 Proseminar: 3D-Druck-Verfahren 1 / 42 Gliederung I 1 Polygone Definition konkav, konvex und überschlagen 2 Clipping Was kann passieren?
Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $
$Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei
häufige Aufgabe Motivation: Approximation komplizierter Geometrien durch einfachere Dreiecke oft effizienter zu bearbeiten als Polygone
Triangulierung häufige Aufgabe Motivation: Approximation komplizierter Geometrien durch einfachere Dreiecke oft effizienter zu bearbeiten als Polygone Problemstellung 1: Gegeben: ein einfaches Polygon
16. Platonische Körper kombinatorisch
16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder
Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.
Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten
Geometrie I. Polygone. Dominik Huber Hallo Welt! für Fortgeschrittene. Informatik 2 Programmiersysteme Martensstraße Erlangen
Geometrie I Polygone Dominik Huber 28.5.2018 Hallo Welt! für Fortgeschrittene Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Wiederholung Analytische Geometrie Abstand Punkt
4.23 Buch XII der Elemente
4.23 Buch XII der Elemente Buch XII behandelt den Flächeninhalt des Kreises und das Volumen von Pyramiden, Kegeln, Zylindern und Kugeln. Wichtiges Hilfsmittel ist dabei die erste Proposition von Buch X,
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:
Computer-Graphik I Verallgemeinerte Baryzentrische Koordinaten
lausthal omputer-raphik I Verallgemeinerte Baryzentrische Koordinaten. Zachmann lausthal University, ermany [email protected] Verallgemeinerungen der baryzentr. Koord. 1. Was macht man im 2D bei
mathe plus Aussagenlogik Seite 1
mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet
Geometrie I. Sebastian Redinger Informatik 2 Programmiersysteme Martensstraße Erlangen
Geometrie I Sebastian Redinger 01.07.2015 Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen CCW Polygone Picks Theorem Konvexe Hülle - Graham Scan - Jarvis March 2 Gliederung
Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgabe A1 A1 Die nebenstehende Skizze dient als Vorlage für eine Pflanzschale. Sie zeigt den Axialschnitt ABCDEF eines Rotationskörpers mit der Rotationsachse KL. Es gilt: =1,4
Algorithmische Geometrie
Algorithmische Geometrie Martin Peternell TU Wien 31. Fortbildungstagung für Geometrie 2010, Strobl 1 Themen der Algorithmische Geometrie Entwurf von Algorithmen für geometrische Fragestellungen betreffend
Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1
Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1 Aufgabe 1 Zeichne in Geogebra ein beliebiges Dreieck und konstruiere den Umkreismittelpunkt U, den Schwerpunkt S und den Höhenschnittpunkt
Städtewettbewerb Frühjahr 2009
Städtewettbewerb Frühjahr 2009 Lösungsvorschläge Hamburg 4. März 2009 [Version 1. April 2009] M Mittelstufe Aufgabe M.1 (3 P.). In ein konvexes 2009-Eck werden sämtliche Diagonalen eingezeichnet. (Diagonalen
Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1
Vorlesung Geometrische Algorithmen Sichtbarkeitsgraphen und kurzeste Wege Sven Schuierer Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale
Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):
Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische
Aufgaben für die Klassenstufen 11/12
Aufgaben für die Klassenstufen 11/12 Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe OE1: Ein
Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung
Mathematisches Institut II.06.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 3: Elementare Beweismethoden: Direkter Beweis,
2.1. Konvexe Hülle in 2D
Wir wollen die konvexe Hülle einer Menge von Punkten P = {p 1,..., p n } in der Ebene R 2 bestimmen. y y x x Def. 21: Eine Teilmenge S der Ebene ist konvex gdw für jedes Paar das Liniensegment pq in S
Die Geometrie der Tischlerei
- Sommersemester 2009 Benjamin Bortfeldt Die Geometrie der Tischlerei 1 Worum geht es? Problem: Wir wollen ein einfaches Polygon P aus einer oder mehreren Holzplatten aussägen und dürfen dazu nur eine
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1
Stud.-Nummer: Datenstrukturen & Algorithmen Seite Aufgabe. / 6 P Instruktionen: ) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern Sie
Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche
Folie 1 von 51 Geometrische Algorithmen Punkt-in-Polygon-Suche Folie 2 von 51 Punkt-in-Polygon-Suche Übersicht Praxisbeispiel/Problemstellung Zählen von Schnittpunkten Schnitt einer Halbgerade mit der
Wir wollen nun die Behauptung beweisen, dass die Laufzeit von SELECT linear ist, also dass T (n) = O(n) gilt.
Abschätzung für die Rekursion von SELECT Wir wollen nun die Behauptung beweisen, dass die Laufzeit von SELECT linear ist, also dass T (n) = O(n) gilt. Wir nehmen erst einmal an, dass eine Konstante d existiert,
Allgemeines über Vierecke
Allgemeines über Vierecke Autor(en): Pünchera, J. Objekttyp: Article Zeitschrift: Jahresbericht des Bündnerischen Lehrervereins Band (Jahr): 17 (1899) Heft: Der Geometrie-Unterricht in der I. und II. Klasse
Geometrische Algorithmen
Geometrische Algorithmen Thomas Röfer Motivation Scan-line-Prinzip Konvexe Hülle Distanzprobleme Voronoi-Diagramm Rückblick Manipulation von Mengen Vorrangwarteschlange Heap HeapSort swap(a, 0, 4) 1 5
Prüfungsteil 2, Aufgabe 5 Analytische Geometrie
Abitur Mathematik: Prüfungsteil, Aufgabe 5 Analytische Geometrie Nordrhein-Westfalen 1 LK Aufgabe a (1) 1. SCHRITT: DIE VEKTOREN, UND BERECHNEN 1 3 5 3 5 1 4. SCHRITT: DEN RECHTEN WINKEL NACHWEISEN Ein
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 26. Oktober 2017 1/35 Abbildungen Boolesche Algebra Summen- und Produktzeichen Definition
KAPITEL 4. Posets Hasse Diagramm
KAPITEL 4 Posets Im Abschnitt über Relationen (1.4) wurde Eigenschaften von Relationen über einer einzigen Grundmenge X definiert. Mithilfe dieser Eigenschaften wurden z.b. Äquivalenzrelationen definiert.
Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() 3 e =. Bestimmen Sie eine Stammfunktion der Funktion f mit Aufgabe 3: (3 VP) 5 3 Lösen
