Das Problem der Museumswächter
|
|
|
- Britta Buchholz
- vor 8 Jahren
- Abrufe
Transkript
1 Das Problem der Museumswächter Laura Wartschinski November 15, 2015
2 Definition Gegeben sei eine polygonale Fläche G mit Rand G, interpretiert als Grundriss eines Museums. Wähle nun möglichst wenige Punkte p 1, p 2... p k (Wächter) im Innern des Polygons, sodass jeder Punkt im Innern des Polygons durch eine Gerade, die ganz in G einschlie sslich Rand liegt, mit einem Wächter verbunden werden kann.
3 Problembeschreibung Museum: ebenes Polygon mit n Seiten Wächter sollen so auf festen Punkten platziert werden, dass sie das ganze Museum im Blick haben Wächter dürfen sich drehen, aber sich nicht bewegen Für eine gewisse Anzahl Seiten und ein beliebig verwinkeltes Gebäude, wie viele Wächter braucht man mindestens?
4 Beispiel
5 Beispiel
6 Beispiel
7 Verrückte Galerien
8 Einfache Beispiele Was haben diese Räume gemeinsam?
9 Konkave Räume Wenn das Polygon konvex ist, dann reicht natürlich ein Wächter aus. Den Wächter kann man dann sogar an jeden Punkt des Museums postieren. Für teilweise konkave Museumsgrundrisse ist das Problem jedoch schwieriger. Dreiecke und Vierecke sind stets konvex - hier reicht also stets ein einziger Wächter.
10 Fünfecke Jedes Fünfeck hat entweder 0, 1 oder 2 konkave Ecken Auch hier reicht noch ein einziger Wächter:
11 Sechsecke Sechseckige Museumsräume lassen sich nicht mehr von einem Wächter bewachen Es reichen jedoch stets zwei Wächter
12 Neunecke Für neuneckige Räume, die maximal unglücklich verwinkelt sind (sog. kritische Polygone), benötigt man mindestens 3 Wächter.
13 Allgemeine Überlegungen Für jeweils drei Wände kommt ein weiterer minimal notwendiger Wächter hinzu Die Spitzen der Zacken können nicht von dem gleichen Wächter beobachtet werden Im schlimmsten Fall gibt es n Zacken Ein Museum mit n = 3m Wänden braucht stets m Wächter.
14 Beweis Ein Wächter sieht einen Punkt des Museums, wenn keine Wand im Weg steht Anders ausgedrückt: wenn es eine gerade (Sicht-)Linie zwischen dem Wächter und dem Punkt gibt Konvexe Regionen können von einem Wächter komplett eingesehen werden Wir müssen also das Museum in möglichst wenige Regionen einteilen, die jeweils von einem Wächter überblickt werden können Jedes Polygon kann ich Dreiecke aufgeteilt werden, und Dreiecke sind immer konvex.
15 Beweis Triangulierung: verwende n-3 sich nicht kreuzende Diagonalen, um den Innenraum in Dreiecke zu teilen Füge dabei keine Ecken hinzu
16 Beweis Lässt sich eine solche Triangulierung immer finden? Ja! Beweis: Induktion über Anzahl n der Ecken (Induktionsanfang) n = 3: Dreieck, nichts zu zeigen (Induktionsschritt) Hinzufügen einer Ecke (A): Betrachte Nachbarecken (B und C) Wenn BC im Inneren des Polygons liegt, ist es unsere Diagonale Falls nicht, verschieben wir die Strecke in Richtung A bis zur letzten Ecke des Polygons (Z), und AZ ist die neue Diagonale.
17 Beweis Interpretiere die Triangulierung als Graph Wände und Diagonalen sind Kanten Vorherige Ecken des Museums sind Knoten
18 Beweis Dieser Graph ist immer 3-Färbbar! Beweis per Induktion. Für n=3 ist nichts zu zeigen. n 3: Wähle zwei beliebige Ecken u und v, die durch eine Diagonale verbunden sind.
19 Beweis zerlegt Graph in zwei Teile, die jeweils UV enthalten. Nach Induktionsannahme können beide Teile mit drei Farben gefärbt werden. o.b.d.a. können wir annehmen, dass die beiden Eckpunkte in beiden Teilgraphen die gleichen Farben haben Nun kleben wir den Graphen zusammen
20 Beweis Insgesamt gibt es n Ecken Diese sind mit 3 Farben gefärbt Eine der Farbklassen enthält also nicht mehr als n/3 Ecken jedes Dreieck enthält eine Ecke jeder Farbe Wähle beliebig eine Farbe und platziere Wächter auf allen Ecken dieser Farbe Wächter können alle Dreiecke einsehen, damit wird also der gesamte Raum überwacht Und es wurden n/3 Wächter benötigt.
21 Anwendung Digitale Bildbearbeitung Wegfindung in der Robotik Beleuchtungsprobleme von Bühnen Beobachtung von Tierpopulationen in der Natur Aufstellung von Sonden zur Wetterbeobachtung
22 Einschränkung auf Orthogonale Polygone Orthogonale Polygone benötigen n/4 Wächter Beweis funktioniert ähnlich: Zerlegung in konvexe Vierecke resultierender Graph ist 4-färbbar Wächter werden an den Ecken mit der seltensten Farbe platziert
23 Verallgemeinerung auf Au ssenbereiche Das Festungsproblem: Wächter überwachen Au ssenbereich des Polygons Im allgemeinen Fall: n/2 Wächter ausreichend (Joseph ORourke) Für orthogonale Festungen : n/4 + 1 Wächter ausreichend (Argawall)
24 Verallgemeinerung auf bewegliche Wächter Das Wandwächter-Problem Nehmen wir an, dass jeder Wächter an einer Wand des Museums entlang läuft, und alles überwacht, was von irgendeinem Punkt der Wand aus zu sehen ist. Wie viele solche Wandwächter brauchen wir, um das gesamte Museum zu überwachen? Godfried Toussaint vermutet n/4 Wächter noch kein Beweis gefunden
25 Verallgemeinerung auf dreidimensionale Museen Falls das Museum ein dreidimensionales Gebilde ist, reicht es nicht einmal, auf jeder einzelnen Ecke einen Wchter zu platzieren Die Oberfläche würde überwacht, aber es kann Punkte im Inneren geben, die nicht im Blickfeld eines Wächters liegen
26 Verallgemeinerung Aigner, Martin, Günter M. Ziegler, and Karl H. Hofmann. Das BUCH der Beweise. Vol. 2. Springer, der Museumswächter gallery problem
KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14
KARL-FRANZENS-UNIVERSITÄT GRAZ Seminar aus Reiner Mathematik Die Museumswächter Krupic Mustafa Wintersemester 2013/14 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Einleitung 3 2 Museumswächter-Satz 6 2.1
Museumswächter, Bühnenbeleuchtung, Staubsaugerroboter
Museumswächter, Bühnenbeleuchtung, Staubsaugerroboter Hat das etwas miteinander zu tun? Aufgabenheft Bjarnheiður Kristinsdóttir (Bea) 2017 Wer ich bin? Bea aus Island B.Sc. in Mathematik von der Uni Islands
2.4. Triangulierung von Polygonen
Als drittes Problem haben wir in Kapitel 1 die Triangulierung von Polygonen identifiziert, die etwa bei der Überwachung eines Museums durch Kameras auftritt. F70 F71 Definition und Theorie: Definition
Es sei P ein einfaches Polygon in der Ebene; P habe n Ecken. Hilfssatz: Zu jedem einfachen Polygon mit mehr als 3 Ecken existiert eine Diagonale.
6. Polygontriangulierung: Wie bewacht man eine Kunstgalerie? 6.1. Grundlegendes zu Polygonen Es sei P ein einfaches Polygon in der Ebene; P habe n Ecken. Definition: Hilfssatz: Zu jedem einfachen Polygon
Algorithmische Geometrie: Delaunay Triangulierung (Teil 1)
Algorithmische Geometrie: Delaunay Triangulierung (Teil 1) Nico Düvelmeyer WS 2009/2010, 26.1.2010 Überblick 1 Motivation Interpolation von Höhendaten 2 Triangulierungen von ebenen Punktmengen 3 Delaunay
Übersicht. Begriffserklärung Motivation / Anwendungen Drei Algorithmen Zusammenfassung Fragen Quellen. Triangulierung von Steffen Ernst 2
Triangulierung Übersicht Begriffserklärung Motivation / Anwendungen Drei Algorithmen Zusammenfassung Fragen Quellen Triangulierung von Steffen Ernst 2 Begriffserklärung Ein Graph ist trianguliert, wenn
6. Triangulation von Polygonen
1 6. Triangulation von Polygonen 2 Problemstellung 3 Problemstellung 4 Problemstellung 5 Problemstellung 6 Jedes Polygon lässt sich triangulieren. Wir führen einen Induktionsbeweis nach der Anzahl der
DAS MUSEUMSWÄCHTERPROBLEM
DAS MUSEUMSWÄCHTERPROBLEM bearbeitet von Claudia Goltz Till Weigt Uwe Siebert Johanna Soava im Rahmen des PROSEMINAR I WS 04/05 bei Prof. Roch DAS MUSEUMSWÄCHTERPROBLEM Ein lauter herzzerreißender Schrei,
Algorithmische Geometrie 5. Triangulierung von Polygonen
Algorithmische Geometrie 5. Triangulierung von Polygonen JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.
Polygontriangulierung
Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem
Alexandra Kuhls Proseminar Das Buch der Beweise
Der Fünf Farben Satz Alexandra Kuhls Proseminar Das Buch der Beweise 30.11.2017 Der Fünf Farben Satz Ist es möglich, die Gebiete einer ebenen Karte so Ist es möglich, die Gebiete einer ebenen Karte so
Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $
$Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
Die. Ramsey-Zahlen
Westfälische Willhelms-Universität Münster Fachbereich 10 Mathematik und Informatik Seminar Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Die Ramsey-Zahlen 01.06.15 Kirsten Voß [email protected]
Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z}
u v u v z w z w y x y x Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} Definition 0.0.1 (Vertex Cover (VC)). Gegeben: Ein ungerichteter
8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule
1 / 31 8. Konvexe Tobias Boelter TopMath Frühlingsschule Mittwoch, 5. März 2014 2 / 31 Es können auch nicht konvexe untersucht werden, wir beschränken uns hier aber auf konvexe. Mit einem Polytop ist hier
Triangulierung von Polygonen und das Museumsproblem
Triangulierung von Polygonen und das Museumsproblem (Literatur: deberg et al., Kapitel 3) 1 Motivation: Das Museumsproblem ein Museum soll durch Kameras überwacht werden wie viele Kameras werden benötigt?
Geraden in der Ebene und Zerlegung von Graphen
Geraden in der Ebene und Zerlegung von Graphen Proseminar: Beweise aus dem Buch am 17.01.2015 von Ina Seidel 1 Historisches zu Sylvester und Gallai James Joseph Sylvester * 1814, 1897 war britischer Mathematiker.Unter
3. Übung zur Vorlesung Planare Graphen
3. Übung zur Vorlesung Planare Graphen Übung 20. Mai 14 Andreas Gemsa INSTITUTE OF THEORETICAL INFORMATICS PROF. DR. DOROTHEA WAGNER KIT University of the State of Baden-Wuerttemberg and National Laboratory
Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008
Graphentheorie Rainer Schrader Färbungen Zentrum für Angewandte Informatik Köln 28. Januar 2008 1 / 57 2 / 57 wir wollen versuchen, die Knoten eines Graphen zu färben dabei dürfen keine zwei benachbarten
Über ein Theorem von Hans Läuchli
Über ein Theorem von Hans Läuchli Lorenz Halbeisen Abstract. Für natürliche Zahlen n sei P n die folgende Aussage: Ist G ein unendlicher Graph, all dessen endliche Teilgraphen n-färbbar sind, so ist auch
Triangulierungen von Punktmengen und Polyedern
Triangulierungen von Punktmengen und Polyedern Vorlesung im Sommersemester 2000 Technische Universität Berlin Jörg Rambau 21.06.2000 Flipdefizit 10 In diesem Kapitel starten wir die Untersuchung von Triangulierungen,
3-Färbbarkeit. Korollar: Zu Entscheiden, ob ein Graph k-färbbar ist mit k 3, ist NP-vollständig.
3-Färbbarkeit Wir wissen bereits, dass in polynomieller Zeit entschieden werden kann, ob ein Graph 2-färbbar ist. Satz: Zu Entscheiden, ob ein Graph 3-färbbar ist, ist NPvollständig. Beweis: Reduktion
2. Hausübung Diskrete Mathematik SS 2003
2. Hausübung Diskrete Mathematik SS 2003 Lösungsvorschläge 6. Zunächst bestimmen wir die Anzahl der verschiedenen möglichen Ergebnisse für die Differenzen a i a j. Wegen 1 a 1 < < a 21 100 gibt es 99 Möglichkeiten
Finite Elemente. bzw. F + E K = 1. (1)
Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 25 Finite Elemente Übung 2 Aufgabe 6 (Eulerscher Polyedersatz für Triangulierung)
Grundlagen der Graphentheorie. Thomas Kamps 6. Oktober 2008
Grundlagen der Graphentheorie Thomas Kamps 6. Oktober 2008 1 Inhaltsverzeichnis 1 Definition von Graphen 3 2 Unabhängigkeit von Ecken und Kanten 3 3 Teil- und Untergraphen 4 4 Schnitt, Vereinigung und
Vorlesung 1: Graphentheorie. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich
Vorlesung 1: Graphentheorie Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Plan für die ersten Vorlesungen Vorlesungen 1,2: wichtige mathematische Grundlagen;
10 Delaunay Triangulierung
10 Delaunay Triangulierung 10.1 Motivation Interpolation von Höhendaten Ein Terrain ist der Graph einer Funktion f : A R 2 R. Typischerweise kennen wir f durch Messungen in endlich vielen Punkten P A,
Listenfärbung von Graphen
Listenfärbung von Graphen Martin Matković WS 2011/2012 Abstract Martin Matković 14. April 2012 In dieser Arbeit werden Definitionen und grundlegende Eigenschaften von Graphenfärbungen und speziell von
MONTESSORI einfach klar!
Wilhelm Weinhäupl Margit Gruber Ingrid Laube MONTESSORI einfach klar! Handreichung für die Arbeit mit Montessori-Materialien Übungen des praktischen Lebens Schulung der Sinne BEIBLÄTTER Hinweis: Nur für
Freie Bäume und Wälder
(Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese
1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1961/1962 Aufgaben und Lösungen
1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 11 Aufgaben Hinweis: Der Lösungsweg mit
Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann
Bäume und Wälder Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Ida Feldmann 2-Fach Bachelor Mathematik und Biologie 6. Fachsemester Inhaltsverzeichnis Einleitung 1 1. Bäume
Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1
Der Fünf- Farben-Satz Seminar aus reiner Mathematik, WS 13/14 Schweighofer Lukas, November 2013 Seite 1 Inhaltsverzeichnis Vorwort...3 Graphentheoretische Grundlagen...4 Satz 2 (Eulerscher Polyedersatz)...7
4. Kreis- und Wegeprobleme
4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung
Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $
$Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei
Polygontriangulierung
Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem
Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone
Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer
Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
Tutoraufgabe 1 (Suchen in Graphen):
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn
Erweiterung: Flächeninhalt mit Vorzeichen. a b, P, Q, R gegen Uhrzeigersinn a b, P, Q, R im Uhrzeigersinn
Flächeninhalte Flächeninhalt eines Dreiecks: R A(PQR)= 1 2 = 1 2 a b sin α a b P b α a c Q Erweiterung: Flächeninhalt mit Vorzeichen A(PQR)= 1 2 1 2 a b, P, Q, R gegen Uhrzeigersinn a b, P, Q, R im Uhrzeigersinn.
HA-Lösung TA-Lösung Diskrete Strukturen Hausaufgabenblatt 8. Abgabe bis zum um 12:00
Technische Universität München Winter 2018/19 Prof. J. Esparza / Dr. M. Luttenberger, C. Welzel 2019/01/29 HA- TA- Diskrete Strukturen Hausaufgabenblatt 8 Abgabe bis zum 12.12.2018 um 12:00 Beachten Sie:
Achilles und die Schildkröte Sommersemester 2008
Achilles und die Schildkröte Sommersemester 2008 Färbbarkeit planarer Graphen Alexander Damarowsky 20.05.2008 V6, 15.05.2008 Problemstellung /Ziel des Vortrags: Wie viele Farben werden benötigt, um jeden
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
Übung zur Vorlesung Algorithmische Geometrie
Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)
Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.
Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen
2. Platonische Körper
2 Platonische Körper 27 2. Platonische Körper Dieses Kapitel legt den Schwerpunkt auf die Geometrie. Geometrie in der Grundschule befasst sich mit zwei zentralen Gebieten: Symmetrie und Raumvorstellung.
Übung zur Vorlesung Diskrete Strukturen I
Technische Universität München WS 00/03 Institut für Informatik Aufgabenblatt 6 Prof. Dr. J. Csirik 18. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am
Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt
Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden
Färbungen von Graphen: Die chromatische Zahl und der Satz von Brooks
Färbungen on Graphen: Die chromatische Zahl und der Satz on Brooks Florian Seerin Heinrich-Heine-Uniersität Düsseldorf Mathe-Akademie 2018 Definition. Ein (endlicher) Graph besteht aus einer (endlichen)
Kantengraphen und Planare Graphen. Seminararbeit
Kantengraphen und Planare Graphen Seminararbeit in Mathematisches Seminar für LAK 621.378 SS 2018 vorgelegt von Anna Maria Gärtner bei: Baur, Karin, Univ.-Prof. Dr.phil. Graz, 2018 Inhaltsverzeichnis 1
Eulerscher Polyedersatz
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde
Drei Anwendungen der Eulerschen Polyederformel
Drei Anwendungen der Eulerschen Polyederformel Seminar aus Reiner Mathematik Viktoria Weißensteiner 04. Dezember 2013 Inhaltsverzeichnis 1 Einleitung 2 2 Vorbereitende Theorie 3 2.1 ebene Graphen..........................
Der Satz von Pick. Alexandra Zimmer
Der Satz von Pick Alexandra Zimmer Übersicht Georg Pick Der Satz von Pick: Hilfslemma Beweisidee Beweis Hilfslemma Basis des Z²-Gitters, elementares Parallelogramm mit Flächeninhalt 1 Beweis Satz Triangulierung,
Übung zur Vorlesung Diskrete Strukturen I
Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt Prof. Dr. J. Csirik. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am. und.
Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):
Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische
Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014
Der Fünf-Farben-Satz Lukas Schweighofer Feb.2014 1 Contents 1 Vorwort 3 2 Graphentheoretische Grundlagen 4 3 Satz 2 (Eulerscher Polyedersatz) 8 4 Satz 3 9 5 Der Fnf-Farben-Satz 10 5.1 Beweis 1..............................
Polygone - Bausteine der Computergrafik
Polygone - Bausteine der Computergrafik Schülerseminar Florian Buchegger Johannes Kepler Universität Linz Dez 12, 2014 Wo werden Polygone verwendet? Welche wichtige Algorithmen gibt es? Outline Wo werden
Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:
Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu
Diskrete Mathematik für Informatiker
Universität Siegen Lehrstuhl Theoretische Inormatik Carl Philipp Reh Daniel König Diskrete Mathematik ür Inormatiker WS 2016/2017 Übung 6 1. Beweisen Sie die olgenden Aussagen: a) χ(k n ) = n b) χ(k m,n
Aufgabe S 1 (4 Punkte)
Aufgabe S 1 (4 Punkte) Bei einer Folge a 1, a 2, a 3,... ist a 1 = 7 2 = 49. Für das nächste Glied der Folge nimmt man die Quersumme der Zahl, addiert 1 und quadriert diese Zahl, also a 2 = (4 + 9 + 1)
Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1
Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1 Aufgabe 1 Zeichne in Geogebra ein beliebiges Dreieck und konstruiere den Umkreismittelpunkt U, den Schwerpunkt S und den Höhenschnittpunkt
Triangulierung von einfachen Polygonen
Triangulierung von einfachen Polygonen - Seminarvortrag von Tobias Kyrion - Inhalt: 1.1 Die Problemstellung Quellenangabe 1.1 Die Problemstellung Definition Polygon: endlich viele paarweise verschiedene
Mathematische Grundlagen der Computerlinguistik
Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum
Wie viele Geraden werden von n Punkten aufgespannt?
Fakultät für Mathematik und Informatik Lehrgebiet Diskrete Mathematik und Optimierung Prof. Dr. Winfried Hochstättler Sommersemester 009 Seminar zur Diskreten Mathematik Ausarbeitung der Fragestellung:
Parallelogramme und Dreiecke A512-03
12 Parallelogramme und Dreiecke A512-0 1 10 Dreiecke 01 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke und sind gleichschenklig. 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A = A = 61, cm2,56
Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem
Geometrische Algorithmen Einige einfache Definitionen: Punkt: im n-dimensionalen Raum ist ein n-tupel (n Koordinaten) Gerade: definiert durch zwei beliebige Punkte auf ihr Strecke: definiert durch ihre
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Algorithmische Geometrie: Delaunay Triangulierung (Teil 2)
Algorithmische Geometrie: Delaunay Triangulierung (Teil 2) Nico Düvelmeyer WS 2009/2010, 2.2.2010 Überblick 1 Delaunay Triangulierungen 2 Berechnung der Delaunay Triangulierung Randomisiert inkrementeller
WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung)
WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Cell Decomposition & Potential Field
Seminar EXRPR Cell Decomposition & Potential Field Gruppe 2: Thomas Janu Martin Koch Adrian J. Merkl Matthias Schneider Cell Decomposition & Potential Field 20.06.2005 Gruppe 2 Gliederung (1) 1.Cell Decomposition
Übung Computergrafik 3
Übung Computergrafik 3 1.Übungsblatt: Geometrie Stephan Groß (Dank an Irini Schmidt und Jakob Bärz) Institut für Computervisualistik Universität Koblenz-Landau 6. Juli 2011 Aufgabe 1: Fragezeichen Gegeben:
Was ändert sich, wenn zu Beginn eine andere Anzahl n an Streichhölzern auf dem Haufen liegt?
NIM Auf dem Tisch liegen mehrere Haufen mit Spielsteinen. Zum Beispiel drei Haufen mit 4, 5 und 6 Steinen. Jeder Spiele nimmt abwechselnd von einem Haufen eine beliebige Anzahl an Steinen. Der Spieler,
Kreistangente. Tangente an Graph. Winkel(markierung)
Kreistangente Skizziere auf der Kreislinie ein T. Der erste Teilstrich deutet die Lage der Tangente an. Der letzte Teilstrich verläuft senkrecht dazu. sketchometry erzeugt einen Gleiter und eine Tangete
Knoten-Partitionierung in feste Eigenschaften ist NP-schwer
Knoten-Partitionierung in feste Eigenschaften ist NP-schwer Seminar: Ausgewählte Kapitel der Informatik bei Prof. Dr. R. Schrader Seminarvortrag von Nils Rosjat Wintersemester 09 / 10 1 Einleitung Dieser
Hallo Welt! für Fortgeschrittene. Geometrie I. Philipp Erhardt. 19. Juli Philipp Erhardt Geometrie I 19. Juli / 27
Hallo Welt! für Fortgeschrittene Geometrie I Philipp Erhardt 19. Juli 2011 Philipp Erhardt Geometrie I 19. Juli 2011 1 / 27 Gliederung 1 Grundlagen 2 CCW 3 Punkt-in-Polygon 4 Pick s Theorem 5 Konvexe Hülle
Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)
WS 2015/16 Diskrete Strukturen Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal
3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition
Die Platonischen Körper
Wie viele Platonische Körper gibt es? Der griechische Philosoph Platon (427-348/347 v. Chr.) beschrieb die regelmässigen, geometrischen Körper im Dialog Timaios. Es ist leicht nachzuweisen, dass es nur
Eulerscher Polyedersatz
Eigenschaften als reguläre Parkettierungen der Sphäre Seien E die der Ecken, F die der Flächen und K die der Kanten eines konvexen Polyeders, dann gilt: K E = F 2 als reguläre Parkettierungen der Sphäre
