Alexandra Kuhls Proseminar Das Buch der Beweise

Größe: px
Ab Seite anzeigen:

Download "Alexandra Kuhls Proseminar Das Buch der Beweise"

Transkript

1 Der Fünf Farben Satz Alexandra Kuhls Proseminar Das Buch der Beweise

2 Der Fünf Farben Satz Ist es möglich, die Gebiete einer ebenen Karte so Ist es möglich, die Gebiete einer ebenen Karte so mit fünf Farben zu färben, dass Gebiete mit einer gemeinsamen Grenze (und nicht nur mit einem Grenzpunkt) immer verschiedene Farben erhalten?

3 Gliederung Geschichte Anwendungen Grundlagen Graphentheorie Färbbarkeit Wie macht man aus einer Landkarte einen Graphen? Eulersche Polyederformel Proposition 6 Färbbarkeit 5-Farben-Satz

4 Geschichte Vier Farben Satz: 1852 von Francis Guthrie als Vermutung aufgestellt 2 Mal fehlerhaft bewiesen (1878 Alfred Kempe, 1880 Peter Guthrie Tait) Vollständiger Beweis 1976 (Appel, Haken) & 1997 (Robertson, Sander, Seymour) Anreiz zu massiven Computereinsatz

5 Geschichte Fünf Farben Satz Percy Heawood bewies den fehlerhasten Beweis von Alfred Kempe Daraufhin bewies er 1890 den Fünf Farben Satz

6 Anwendungen Landkartenfärbung Stundenplanprobleme Veranstaltungen sind die Knoten, Kante zwischen Knoten die nicht gleichzeitig stattfinden können Die möglichen Farben entsprechen den zuteilbaren Zeitfenstern Viele andere Probleme aus der Mathematik als Graphfärbungsproblem formulierbar z.b. Das Museumswächterproblem

7 Grundlagen Graphentheorie Graph: Geordnetes Paar (V,E) wobei V Menge der Knoten und E Menge der Kanten Planarer Graph: Graph, der auf der Ebene dargestellt werden kann (keine kreuzenden Kanten)

8 Grundlage Färbbarkeit Färbung ordnet jedem Knoten eine Farbe zu Ist G ungerichtet und f ist eine gültige Knotenfärbung, falls zwei benachbarte Knoten nicht dieselbe Farbe haben Wobei die Menge der Nachbarn von v ist

9 Wie macht man aus einer Karte einen Graphen?

10 Wie macht man aus einer Karte einen Graphen?

11 Eulersche Polyederformel n Knoten, e Kanten, f Gebiete Beispiel:

12 Proposition Aus der Eulerschen Formel kann man direkt die folgenden Aussagen erschließen: Sei G ein einfacher, planarer Graph mit n>2 Knoten. Dann gilt: (A) G hat höchstens 3n 6 Kanten (B) G hat einen Knoten vom Grad höchstens 5

13 Grundlagen Grad eines Knoten = Anzahl der ausgehenden Kanten n i = Anzahl der Knoten mit Grad i im Graph G Knoten anhand ihres Grades gezählt: (1) Beispiel:

14 Grundlagen Jede Kante hat genau zwei Enden Sie trägt 2 zur Summe der Grade aller Knoten bei, daher erhalten wir: (2) Beispiel:

15 Grundlagen Verbinden die Anzahl der Knoten mit der Summe der Grade aller Knoten Durchschnittsgrad d des Knotens ist somit: Beispiel:

16 Grundlagen Zählen der Gebiete eines ebenen Graphen in Abhängigkeit ihrer Seitenzahl f k = Anzahl der Gebiete, die durch k Kanten begrenzt werden Daraus folgt: (3) Beispiel:

17 Grundlagen Abzählen der Kanten anhand der Gebiete, die sie begrenzen: (4) Beispiel: Durchschnittliche Kantenzahl der Gebiete: Beispiel:

18 Proposition Aus der Eulerschen Formel kann man direkt die folgenden Aussagen erschließen: Sei G ein einfacher, planarer Graph mit n>2 Knoten. Dann gilt: (A) G hat höchstens 3n 6 Kanten (B) G hat einen Knoten vom Grad höchstens 5

19 Beweis (A): G hat höchstens 3n-6 Kanten Für alle Aussagen können wir annehmen dass G zusammenhängend ist Jedes Gebiet wird durch mindestens 3 Kanten begrenzt (da G einfach ist) Also liefern (3) und (4):

20 Beweis (A): G hat höchstens 3n-6 Kanten Aus der Eulerschen Polyederformel schließen wir: Mit 2e 3f 0 folgt:

21 Beweis (B): G hat einen Knoten vom Grad höchstens 5 Aus (A) erhalten wir für den Durchschnittsgrad d die Abschätzung:

22 Beweis (B): G hat einen Knoten vom Grad höchstens 5 Daraus folgt: Also muss es einen Knoten vom Grad höchstens 5 geben

23 6-Färbbarkeit Induktion über Anzahl der Knoten Induktionsanfang: Induktionsanfang: Graph mit einem Knoten ist 6-färbbar Induktionsannahme: Der Graph mit n-1 Knoten ist 6-färbbar Induktionsbehauptung: Der Graph mit n Knoten ist 6-färbbar

24 6-Färbbarkeit Induktionsschritt: G hat einen Knoten v vom Grad höchstens 5 (Proposition) Entfernen von v und allen Kanten, die v inzidieren Ergibt ebenen Graphen G 1 =G\v mit n-1 Knoten Nach Induktionsannahme ist G 1 6-färbbar

25 6-Färbbarkeit Da v höchstens 5 Nachbarn hat werden durch diese höchstens 5 Farben verwendet v eine Farbe zuweisen, die für seine Nachbarn nicht verwendet wird Wir können jede 6-Färbung von G 1 zu einer 6- Färbung von G erweitern Damit ist auch G 6-färbbar

26 5-Farben-Satz Vollständige Induktion über Anzahl der Knoten Induktionsanfang: Induktionsanfang: Ein Graph mit einem Knoten ist 5-färbbar Induktionsannahme: Graph mit n-1 Knoten ist 5-färbbar Induktionsbehauptung: Graph mit n Knoten ist 5-färbbar

27 5-Farben-Satz Induktionsschritt: G hat einen Knoten v vom Grad höchstens 5 Fall (1): Im Graph existiert ein Knoten v mit Knotengrad<5: G 1 =G\v G 1 ist nach Induktionsannahme 5-färbbar Da v in G nur 4 Nachbarn hat, kann dieser mit einer übrigen Farbe gefärbt werden Graph G ist gültig gefärbt

28 5-Farben-Satz Fall (2) Im Graph gibt es keinen Knoten mit K Knotengrad<5: Aus der Proposition folgt: Es existiert ein Knoten v mit Kantengrad 5 G 2 =G\v Der Graph G 2 ist nach Induktionsannahme 5-färbbar

29 5-Farben-Satz Fall (2.1) Die Nachbarknoten von v sind nur mit höchstens 4 unterschiedlichen Farben gefärbt: G 3 =G\v ist 5-färbbar Dann wird v mit einer der übrigen Farben gefärbt G hat eine gültige Färbung

30 5-Farben-Satz Fall (2.2) Die Nachbarn von v sind mit 5 verschiedenen Farben gefärbt: Bezeichnen der Nachbarknoten von v mit v 1, v 2, v 3, v 4, v 5 im Uhrzeigersinn v 1 v v 2 v 5 v 3 v 4

31 5-Farben-Satz Gibt es einen Weg W von v 1 nach v 3 der nicht über v führt und die Farben von v 1 und v 3 verwendet? v 1 v v 2 v 5 v 4 v 3

32 5-Farben-Satz Fall (2.2.1) Nein: Knoten v1 auf Farben von v3 umgefärbt Benachbarte Knoten von v1 mit Farbe von v3 werden auf ehemalige Farbe von v1 umgefärbt (usw) v 1 v 1 v v v 3 v 3

33 5-Farben-Satz Nachbarn von v sind nur noch mit 4 unterschiedlichen Farben gefärbt v kann mit der 5. Farbe gefärbt werden G hat eine gültige Färbung v 1 v 2 v v 3

34 5-Farben-Satz Fall Ja: Durch Umfärben, wie bei erreicht man nur, dass v 1 und v 3 die Farben wechseln Betrachte Knoten v 2 und v 4 kein Weg W 2 geben, der abwechselnd die Farben von v 2 und v 4 benutzt v 1 (kreuzt W) v 5 v v 2 v 4 v 3

35 5-Farben-Satz Somit können wir wie in das Umfärbprinzip anwenden Gültige Färbung v 1 G ist somit 5-färbbar v 5 v v 2 v 3 v 4

36 Vielen Dank für Eure Aufmerksamkeit.

37 Quellen Bildquellen: Textquellen: Das Buch der Beweise, Martin Aigner und Günter M. Ziegler C3%B6pfel%20-%205%20Farben%20Satz%20- %20Ausarbeitung.pdf

38

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn 1. Geschichte - Frage kommt Mitte des 19 Jahrhunderts auf Wie viele Farben benötigt man um eine Karte

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung)

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1 Der Fünf- Farben-Satz Seminar aus reiner Mathematik, WS 13/14 Schweighofer Lukas, November 2013 Seite 1 Inhaltsverzeichnis Vorwort...3 Graphentheoretische Grundlagen...4 Satz 2 (Eulerscher Polyedersatz)...7

Mehr

4 Färbungen Begriffe Komplexität Greedy-Algorithmus Knotenreihenfolgen Das 4-Farben-Problem...

4 Färbungen Begriffe Komplexität Greedy-Algorithmus Knotenreihenfolgen Das 4-Farben-Problem... Inhaltsverzeichnis 4 Färbungen 41 4.1 Begriffe....................... 41 4.2 Komplexität..................... 42 4.3 Greedy-Algorithmus................ 42 4.4 Knotenreihenfolgen................. 43 4.5

Mehr

durch Einfügen von Knoten konstruiert werden kann.

durch Einfügen von Knoten konstruiert werden kann. Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der

Mehr

Der Vier-Farben-Satz

Der Vier-Farben-Satz , Samuel Hetterich, Felicia Raßmann Goethe-Universität Frankfurt, Institut für Mathematik 21.Juni 2013 Wieviele Farben braucht man zum Färben einer Landkarte? Spielregeln Länder mit einer gemeinsamen Grenze

Mehr

Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014

Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014 Der Fünf-Farben-Satz Lukas Schweighofer Feb.2014 1 Contents 1 Vorwort 3 2 Graphentheoretische Grundlagen 4 3 Satz 2 (Eulerscher Polyedersatz) 8 4 Satz 3 9 5 Der Fnf-Farben-Satz 10 5.1 Beweis 1..............................

Mehr

Achilles und die Schildkröte Sommersemester 2008

Achilles und die Schildkröte Sommersemester 2008 Achilles und die Schildkröte Sommersemester 2008 Färbbarkeit planarer Graphen Alexander Damarowsky 20.05.2008 V6, 15.05.2008 Problemstellung /Ziel des Vortrags: Wie viele Farben werden benötigt, um jeden

Mehr

Vorlesung 1: Graphentheorie. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

Vorlesung 1: Graphentheorie. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Vorlesung 1: Graphentheorie Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Plan für die ersten Vorlesungen Vorlesungen 1,2: wichtige mathematische Grundlagen;

Mehr

16. Flächenfärbungen

16. Flächenfärbungen Chr.Nelius: Graphentheorie (WS 2015/16) 57 16. Flächenfärbungen In der Mitte des 19. Jahrhunderts tauchte eine Vermutung auf, die erst 125 Jahre später bewiesen werden sollte und die eine der bekanntesten

Mehr

Vier-Farben-Vermutung (1)

Vier-Farben-Vermutung (1) Vier-Farben-Vermutung (1) Landkarten möchte man so färben, dass keine benachbarten Länder die gleiche Farbe erhalten. Wie viele Farben braucht man zur Färbung einer Landkarte? Vier-Farben-Vermutung: Jede

Mehr

Färbungen auf Graphen

Färbungen auf Graphen Färbungen auf Graphen Robert Siegfried Seminar Algorithmische Graphentheorie FH Wedel, 26.06.2003 Agenda Einleitung Definitionen Färben von Landkarten Anwendungsbeispiele Algorithmen Folie 2 Einleitung

Mehr

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS Über klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Sabrina Klöpfel Wintersemester

Mehr

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen?

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen? Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen Problemstellung Deutsche Bundesländer in vier Farben 4. April 06 Martin Oellrich Warum geht das immer? Gegeben: Karte eines Gebietes

Mehr

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296 Kapitel 7 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 256 / 296 Inhalt Inhalt 7 Färbungen Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 257 / 296 Jordankurve Zentrale Frage

Mehr

1 Pfade in azyklischen Graphen

1 Pfade in azyklischen Graphen Praktikum Algorithmen-Entwurf (Teil 5) 17.11.2008 1 1 Pfade in azyklischen Graphen Sei wieder ein gerichteter Graph mit Kantengewichten gegeben, der diesmal aber keine Kreise enthält, also azyklisch ist.

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E.

Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E. Knotenfärbung Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E. Die chromatische Zahl χ(g) eines Graphen G ist die minimale

Mehr

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Vorlesungstermin 2: Graphentheorie II Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Wiederholung: Vollständige Induktion Ziel: zeige n N. A(n) für eine Aussage

Mehr

Kapitel 3. Kapitel 3 Graphentheorie

Kapitel 3. Kapitel 3 Graphentheorie Graphentheorie Inhalt 3.1 3.1 Grundlagen 3.2 3.2 Das Das Königsberger Brückenproblem 3.3 3.3 Bäume 3.4. 3.4. Planare Graphen 3.5 3.5 Färbungen Seite 2 3.1 Grundlagen Definition. Ein Ein Graph besteht aus

Mehr

Zweiter Zirkelbrief: Graphentheorie

Zweiter Zirkelbrief: Graphentheorie Matheschülerzirkel Universität Augsburg Schuljahr 2014/2015 Zweiter Zirkelbrief: Graphentheorie Inhaltsverzeichnis 1 Grundbegriffe 1 2 Eulerkreise 4 3 Hamiltonkreise 7 4 Planare Graphen 9 5 Färbbarkeit

Mehr

F R A N Z I S K A K U H L S 3 0. N O V E M B E R.

F R A N Z I S K A K U H L S 3 0. N O V E M B E R. Die Museumswächter F R A N Z I S K A K U H L S 3 0. N O V E M B E R. 2 0 1 7 Gliederung 2 Einleitung Grundlagen Anwendung Geschichtliches Beispiele Der Beweis Triangulation 3-Färbbarkeit Schlussfolgerung

Mehr

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier 4 Planare Graphen Bisher wurden Graphen abstrakt durch Mengen E und K und eine Abbildung ψ : K P(E) definiert. In diesem Kapitel beschäftigen wir uns mit einem Abschnitt der sogenannten topologischen Graphentheorie.

Mehr

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni CHAPTER. GRAPHEN.. B Ä UME.. Bäume Ein schlichter Graph ohne Kreise heisst Wald, ist er noch zusätzlich zusammenhängend so wird er Baum genannt. Bevor wir Bäume genauer beschreiben ein kleines LEMMA...

Mehr

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Inhalt: W.1 Grundlagen W.2 Das Königsberger Brückenproblem W.3 Bäume W.4 Planare Graphen W.5 Färbungen W.1 Grundlagen Ein Ein Graph besteht aus

Mehr

Listenfärbung von Graphen

Listenfärbung von Graphen Listenfärbung von Graphen Martin Matković WS 2011/2012 Abstract Martin Matković 14. April 2012 In dieser Arbeit werden Definitionen und grundlegende Eigenschaften von Graphenfärbungen und speziell von

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

Definition : Diechromatische Zahl eines Graphen G ist die kleinste Anzahl chromatische Zahl von Farben für eine zulässige Färbung.

Definition : Diechromatische Zahl eines Graphen G ist die kleinste Anzahl chromatische Zahl von Farben für eine zulässige Färbung. 4 Definition : Eine zulässige Färbung ist eine Färbung der Knoten des ( un- zulässige Färbung gerichteten ) Graphen, so daß je zwei adjazente Knoten verschiedene Farben haben. Trivial ist, daß n verschiedene

Mehr

Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel...

Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel... Vier-Farbenproblem Kann man jede Landkarte mit vier Farben färben, sodass keine aneindander angrenzenden Länder die gleiche Farbe haben? Versuchen Sie die Karte Deutschlands oder eines der anderen Bilder

Mehr

3-Färbbarkeit. Korollar: Zu Entscheiden, ob ein Graph k-färbbar ist mit k 3, ist NP-vollständig.

3-Färbbarkeit. Korollar: Zu Entscheiden, ob ein Graph k-färbbar ist mit k 3, ist NP-vollständig. 3-Färbbarkeit Wir wissen bereits, dass in polynomieller Zeit entschieden werden kann, ob ein Graph 2-färbbar ist. Satz: Zu Entscheiden, ob ein Graph 3-färbbar ist, ist NPvollständig. Beweis: Reduktion

Mehr

A Berlin, 10. April 2017

A Berlin, 10. April 2017 A Berlin, 10. April 2017 Name:... Matr.-Nr.:... Wiederholung der schriftlichen Prüfung zur Vorlesung Diskrete Strukturen (Niedermeier/Molter/Froese, Wintersemester 2016/17) Einlesezeit: 15 Minuten Bearbeitungszeit:

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Universität Siegen Lehrstuhl Theoretische Inormatik Carl Philipp Reh Daniel König Diskrete Mathematik ür Inormatiker WS 2016/2017 Übung 6 1. Beweisen Sie die olgenden Aussagen: a) χ(k n ) = n b) χ(k m,n

Mehr

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14 KARL-FRANZENS-UNIVERSITÄT GRAZ Seminar aus Reiner Mathematik Die Museumswächter Krupic Mustafa Wintersemester 2013/14 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Einleitung 3 2 Museumswächter-Satz 6 2.1

Mehr

Färbungen von Graphen: Die chromatische Zahl und der Satz von Brooks

Färbungen von Graphen: Die chromatische Zahl und der Satz von Brooks Färbungen on Graphen: Die chromatische Zahl und der Satz on Brooks Florian Seerin Heinrich-Heine-Uniersität Düsseldorf Mathe-Akademie 2018 Definition. Ein (endlicher) Graph besteht aus einer (endlichen)

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Dr. Joachim Spoerhase und Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Algorithmische Graphentheorie Sommersemester 2017 10. Vorlesung Planaritätstest und Färben planarer Graphen Graphen färben

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/03 Institut für Informatik Aufgabenblatt 6 Prof. Dr. J. Csirik 18. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am

Mehr

Vorlesung 2: Graphentheorie

Vorlesung 2: Graphentheorie Vorlesung 2: Graphentheorie Markus Püschel David Steurer Peter Widmayer Algorithmen und Datenstrukturen, Herbstsemester 2017, ETH Zürich Funktionsgraph bekannt aus der Schule hat aber leider nichts mit

Mehr

Westfälische Wilhelms-Universität Münster. Fachbereich: Mathematik und Informatik. Planare Graphen

Westfälische Wilhelms-Universität Münster. Fachbereich: Mathematik und Informatik. Planare Graphen Westfälische Wilhelms-Universität Münster Fachbereich: Mathematik und Informatik Planare Graphen Kreuzungslemma und Charakterisierung planarer Graphen nach Kuratowski Andrea Vollmer Seminar: Graphentheorie

Mehr

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Bäume und Wälder Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Ida Feldmann 2-Fach Bachelor Mathematik und Biologie 6. Fachsemester Inhaltsverzeichnis Einleitung 1 1. Bäume

Mehr

Geraden in der Ebene und Zerlegung von Graphen

Geraden in der Ebene und Zerlegung von Graphen Geraden in der Ebene und Zerlegung von Graphen Proseminar: Beweise aus dem Buch am 17.01.2015 von Ina Seidel 1 Historisches zu Sylvester und Gallai James Joseph Sylvester * 1814, 1897 war britischer Mathematiker.Unter

Mehr

Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008

Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008 Graphentheorie Rainer Schrader Färbungen Zentrum für Angewandte Informatik Köln 28. Januar 2008 1 / 57 2 / 57 wir wollen versuchen, die Knoten eines Graphen zu färben dabei dürfen keine zwei benachbarten

Mehr

Naiver Algorithmus für Hamiltonkreis

Naiver Algorithmus für Hamiltonkreis Naiver Algorithmus für Hamiltonkreis Algorithmus HAMILTON EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung 1 Für alle Permutationen π : [n] [n]. 1 Falls (π(1), π(2),..., π(n)) ein Kreis in G ist, AUSGABE

Mehr

Ilse Fischer. Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria.

Ilse Fischer. Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria. GRAPHEN MÜSSEN NICHT IMMER FUNKTIONEN DARSTELLEN Ilse Fischer Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria. E-mail: Ilse.Fischer@univie.ac.at Zusammenfassung. In der

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Diskrete Mathematik Graphentheorie (Übersicht)

Diskrete Mathematik Graphentheorie (Übersicht) Diskrete Mathematik Graphentheorie (Übersicht) Dr. C. Löh 2. Februar 2010 0 Graphentheorie Grundlagen Definition (Graph, gerichteter Graph). Ein Graph ist ein Paar G = (V, E), wobei V eine Menge ist (die

Mehr

Graphen und Algorithmen

Graphen und Algorithmen Graphen und Algorithmen Vorlesung #8: Färbungsprobleme Dr. Armin Fügenschuh Technische Universität Darmstadt WS 2007/2008 Übersicht Knotenfärbung (vs. Kanten- & Kartenfärbung) Satz von Brooks Algorithmen

Mehr

6. Planare Graphen und Färbungen

6. Planare Graphen und Färbungen 6. Planare Graphen und Färbungen Lernziele: Den Begriff der Planarität verstehen und erläutern können, wichtige Eigenschaften von planaren Graphen kennen und praktisch einsetzen können, die Anzahl von

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12. Klausurvorbereitung

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12. Klausurvorbereitung Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12 Prof. Dr. A. Taraz, Dr. O. Cooley, Klausurvorbereitung Die Klausur zum Propädeutikum Diskrete Mathematik findet

Mehr

Ein Turnierplan mit fünf Runden

Ein Turnierplan mit fünf Runden Mathematik I für Informatiker Graphen p. 1 Ein Turnierplan mit fünf Runden c b a c b a c b a c b a c b a d e d e d e d e d e Mathematik I für Informatiker Graphen p. 2 Definition: Graph Ein (schlichter)

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen Bernd Döring Wege, Plätten, Färben Vom Problem zur Theorie der Graphen Bernd Döring, 2002-2005 Bernd Döring Johannes-Althusius-Gymnasium Früchteburger Weg 28 26721 Emden - 2 - Inhaltsverzeichnis 0. Einleitung

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Fünf-Farben-Satz. Eine Seminararbeit für das Seminar,,Mathematik macht Freu(n)de. Prof. Mag. Dr. Markus Fulmek

Fünf-Farben-Satz. Eine Seminararbeit für das Seminar,,Mathematik macht Freu(n)de. Prof. Mag. Dr. Markus Fulmek Fünf-Farben-Satz Eine Seminararbeit für das Seminar,,Mathematik macht Freu(n)de. Seminarleiter: Betreuer: Autoren: Prof. Dr. Michael Eichmair Prof. Mag. Dr. Markus Fulmek Akio Friesacher Hemma Giglleitner

Mehr

Planare Graphen. Ein Graph heißt planar, wenn er sich so in die Ebene einzeichnen lässt, dass sich die Kanten nicht schneiden.

Planare Graphen. Ein Graph heißt planar, wenn er sich so in die Ebene einzeichnen lässt, dass sich die Kanten nicht schneiden. Planare Graphen Bei der Betrachtung des K 3,3 ergab sich die Frage, ob man diesen Graph so in die Ebene einzeichnen kann, dass sich die Kanten nicht schneiden. Das motiviert folgende Definition: Ein Graph

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Hausaufgabenblatt 8. Abgabe bis zum um 12:00

HA-Lösung TA-Lösung Diskrete Strukturen Hausaufgabenblatt 8. Abgabe bis zum um 12:00 Technische Universität München Winter 2018/19 Prof. J. Esparza / Dr. M. Luttenberger, C. Welzel 2019/01/29 HA- TA- Diskrete Strukturen Hausaufgabenblatt 8 Abgabe bis zum 12.12.2018 um 12:00 Beachten Sie:

Mehr

4. Kreis- und Wegeprobleme

4. Kreis- und Wegeprobleme 4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung

Mehr

Das Art Gallery Problem

Das Art Gallery Problem Dipl. Math. Timo de Wolff FB 12 Institut für Mathematik Mail: wolff(at)math.uni-frankfurt.de http://www.uni-frankfurt.de/fb/fb12/mathematik/dm/personen/dewolff/index.html Das Art Gallery Problem Mustervorlesung

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt Prof. Dr. J. Csirik. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am. und.

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton) WS 2015/16 Diskrete Strukturen Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Grundbegriffe der mathematischen Logik

Grundbegriffe der mathematischen Logik Grundbegriffe der mathematischen Logik Vorlesung WS 2005/2006 Jakob Kellner http://www.logic.univie.ac.at/ kellner Kurt Gödel Research Center for Mathematical Logic 5. Vorlesung, 2005-11-16 Jakob Kellner

Mehr

Kap. IV: Färbungen von Graphen

Kap. IV: Färbungen von Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 46 Kap. IV: Färbungen von Graphen 12. Eckenfärbungen Bereits im 6 ten Paragraphen haben wir Eckenfärbungen benutzt, um bipartite Graphen charakterisieren zu können.

Mehr

3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen

3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen 3 Die natürlichen Zahlen Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen Die natürlichen Zahlen Æ = {1, 2, 3,...}. sind die natürlichen

Mehr

11: Die Euler sche Polyederformel für planare Graphen

11: Die Euler sche Polyederformel für planare Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von

Mehr

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z}

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} u v u v z w z w y x y x Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} Definition 0.0.1 (Vertex Cover (VC)). Gegeben: Ein ungerichteter

Mehr

Argumentationen zu ermöglichen, verlangen wir, dass diese Eigenschaft auch für induzierte Teilgraphen

Argumentationen zu ermöglichen, verlangen wir, dass diese Eigenschaft auch für induzierte Teilgraphen Kapitel 9 Perfekte Graphen 9.1 α- und χ-perfektheit Eine Clique in einem Graphen G ist ein induzierter vollstäniger Teilgraph. Die Cliquenzahl ω(g) ist die Kardinalität einer größten in G enthaltene Clique.

Mehr

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4 Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben Übersicht 5. April 009 5. April 009 Martin Oellrich 1 vom Problem zur Theorie die Idee weiter denken 3 MathematikerIn werden? Gibt

Mehr

Kapitel 1. Kapitel 1 Vollständige Induktion

Kapitel 1. Kapitel 1 Vollständige Induktion Vollständige Induktion Inhalt 1.1 1.1 Das Das Prinzip A(n) A(n) A(n+1) 1.2 1.2 Anwendungen 1 + 2 + 3 +...... + n =? 1.3 1.3 Landkarten schwarz-weiß 1.4 1.4 Fibonacci-Zahlen 1, 1, 1, 1, 2, 2, 3, 3, 5, 5,

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Klausurvorbereitung

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Klausurvorbereitung Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl.-Math. S. König, Dipl.-Math. A. Würfl, Klausurvorbereitung Die Klausur zum Propädeutikum Diskrete

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Dr. Joachim Spoerhase und Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Algorithmische Graphentheorie Sommersemester 2014 10. Vorlesung Planare Graphen Graphen zeichnen Def. injektive, in beiden

Mehr

II. Wissenschaftliche Argumentation

II. Wissenschaftliche Argumentation Gliederung I. Motivation II. Wissenschaftliche Argumentation i. Direkter Beweis ii. iii. Indirekter Beweis Beweis durch vollständige Induktion Seite 35 II. Wissenschaftliche Argumentation Ein Beweis ist

Mehr

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten

Mehr

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 13. Januar 2018

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 13. Januar 2018 Brückenkurs Mathematik Jörn Steuding (Uni Würzburg), 3. Januar 08 unser Programm. November:. Zahlen und einfache Gleichungen Zahlen, Rechengesetze, lineare u. quadratische Gleichungen, Dezimalbrüche, ein

Mehr

Graphen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Graphen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Ein Turnierplan mit fünf Runden c d b e a c d b e a c d b e a c d b b c a a d e e Das Diagramm beschreibt

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? Königsberger Brückenproblem Gibt es in Königsberg einen Spaziergang, bei dem man

Mehr

5 Graphen und Polyeder

5 Graphen und Polyeder 5 Graphen und Polyeder 5.1 Graphen und Eulersche Polyederformel Ein Graph besteht aus einer Knotenmenge V (engl. vertex) und einer Kantenmenge E (engl. edge). Anschaulich verbindet eine Kante zwei Knoten,

Mehr

Es sei P ein einfaches Polygon in der Ebene; P habe n Ecken. Hilfssatz: Zu jedem einfachen Polygon mit mehr als 3 Ecken existiert eine Diagonale.

Es sei P ein einfaches Polygon in der Ebene; P habe n Ecken. Hilfssatz: Zu jedem einfachen Polygon mit mehr als 3 Ecken existiert eine Diagonale. 6. Polygontriangulierung: Wie bewacht man eine Kunstgalerie? 6.1. Grundlegendes zu Polygonen Es sei P ein einfaches Polygon in der Ebene; P habe n Ecken. Definition: Hilfssatz: Zu jedem einfachen Polygon

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? 1 Königsberger Brückenproblem Im Jahre 1736 Leonhard Euler löste das Problem allgemein

Mehr

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen.

Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Seminarausarbeitung Existenz unendlich vieler Primzahlen Es werden mehrere Beweise für die Existenz unendlich vieler Primzahlen vorgetragen. Andre Eberhard Mat. Nr. 25200607 5. November 207 Inhaltsverzeichnis

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

3. Übung zur Vorlesung Planare Graphen

3. Übung zur Vorlesung Planare Graphen 3. Übung zur Vorlesung Planare Graphen Übung 20. Mai 14 Andreas Gemsa INSTITUTE OF THEORETICAL INFORMATICS PROF. DR. DOROTHEA WAGNER KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Grundlagen der Graphentheorie. Thomas Kamps 6. Oktober 2008

Grundlagen der Graphentheorie. Thomas Kamps 6. Oktober 2008 Grundlagen der Graphentheorie Thomas Kamps 6. Oktober 2008 1 Inhaltsverzeichnis 1 Definition von Graphen 3 2 Unabhängigkeit von Ecken und Kanten 3 3 Teil- und Untergraphen 4 4 Schnitt, Vereinigung und

Mehr

Das Problem der Museumswächter

Das Problem der Museumswächter Das Problem der Museumswächter Laura Wartschinski November 15, 2015 Definition Gegeben sei eine polygonale Fläche G mit Rand G, interpretiert als Grundriss eines Museums. Wähle nun möglichst wenige Punkte

Mehr

Übersicht. Bielefeld Hannover. Kamen Paderborn. Unna Wünnenberg Kassel. Ziffer wählen. abheben. auflegen. Gespräch führen

Übersicht. Bielefeld Hannover. Kamen Paderborn. Unna Wünnenberg Kassel. Ziffer wählen. abheben. auflegen. Gespräch führen Übersicht Graphen beschreiben Objekte und Beziehungen zwischen ihnen geeignet für Modellierung verschiedener Aufgaben betrachten endliche, ungerichtete und endliche, gerichtete Graphen Graphen bestehen

Mehr

OR für Wirtschaftsingenieure. Übungsserie 7: Färbungen von Graphen

OR für Wirtschaftsingenieure. Übungsserie 7: Färbungen von Graphen HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Operations Research allgemeine Optimierungsmethoden OR für Wirtschaftsingenieure Übungsserie : Färbungen von Graphen Aufgabe 1 : Wieviele Farben

Mehr

Graphentheorie. Perfekte Graphen. Perfekte Graphen. Perfekte Graphen. Rainer Schrader. 22. Januar 2008

Graphentheorie. Perfekte Graphen. Perfekte Graphen. Perfekte Graphen. Rainer Schrader. 22. Januar 2008 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 22. Januar 2008 1 / 47 2 / 47 eine Clique in G ist ein induzierter vollständiger Teilgraph Gliederung α- und χ-perfektheit Replikation

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Diskrete Mathematik. Kryptographie und Graphentheorie

Diskrete Mathematik. Kryptographie und Graphentheorie Diskrete Matheatik Kryptographie und Graphentheorie Jochen Hores & Jonas Bühler 14.06.006 Jochen Hores, Jonas Bühler Kryptographie & Graphentherorie 1 Inhaltsverzeichnis Inhaltsverzeichnis 1. Kryptographie

Mehr

Diskrete Strukturen in der Informatik

Diskrete Strukturen in der Informatik Diskrete Strukturen in der Informatik Markus Lohrey Universität Leipzig Wintersemester 2012/2013 Lohrey (Universität Leipzig) Diskrete Strukturen Wintersem. 2012/2013 1 / 287 Organisatorisches zur Vorlesung

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr