Färbungen auf Graphen
|
|
|
- Linus Bieber
- vor 8 Jahren
- Abrufe
Transkript
1 Färbungen auf Graphen Robert Siegfried Seminar Algorithmische Graphentheorie FH Wedel,
2 Agenda Einleitung Definitionen Färben von Landkarten Anwendungsbeispiele Algorithmen Folie 2
3 Einleitung Fussball WM 2002 in Japan und Südkorea Vorrunde: Deutschland, Kamerun, Irland, Saudi-Arabien Kein Team soll zwei Spiele an einem Tag bestreiten Frage: Wieviele Spieltage sind notwendig? Folie 3
4 Einleitung Der Spielplan als Graph CMR GER 3 Farben = 3 Spieltage IRL KSA Folie 4
5 Agenda Einleitung Definitionen Färben von Landkarten Anwendungsbeispiele Algorithmen Folie 5
6 Färbung Unter der Färbung eines Graphen G=(V,E) versteht man eine Abbildung c: V C der Knoten auf eine Menge C von Farben, so dass adjazente Knoten u, v unterschiedlich gefärbt sind: c(u) c(v) {u, v} E Folie 6
7 Kantenfärbung Analog zur Knotenfärbung wird die Kantenfärbung eines Graphen G=(V,E) definiert als Abbildung c: E C der Kanten auf eine Menge C von Farben, so dass adjazente Kanten e, f unterschiedlich gefärbt sind: c(e) c(f) e, f E e f {} Folie 7
8 Chromatische Zahl χ (G) Die chromatische Zahl χ (G) ist die minimale Anzahl von Farben die für eine Knotenfärbung von G benötigt werden. Folie 8
9 Kantenchromatische Zahl χ (G) Die kantenchromatische Zahl χ (G) ist die minimale Anzahl von Farben die für eine Kantenfärbung von G benötigt werden. Die kantenchromatische Zahl wird auch als chromatischer Index bezeichnet. Folie 9
10 Beispiele CMR GER IRL KSA χ (G) = 3 χ (G) = 3 Folie 10
11 Agenda Einleitung Definitionen Färben von Landkarten Anwendungsbeispiele Algorithmen Folie 11
12 Damals Francis Guthrie Reichen immer 4 Farben aus, um beliebige Landkarten so einzufärben, dass Länder mit gemeinsamen Grenzen unterschiedliche Farben haben? Augustus de Morgan nimmt sich der Frage an de Morgan konsultiert auch William R. Hamilton Folie 12
13 Transformation Die Länder werden durch Knoten repräsentiert, wobei benachbarte Länder durch eine Kante verbunden werden. C D C A B D A B Das Einfärben einer Landkarte ist äquivalent zur Bestimmung einer gültigen Färbung eines planaren Graphen. Folie 13
14 3 Farben reichen nicht immer!??? Folie 14
15 Chronologie 1879: Alfred Kempe zeigt, dass 4 Farben immer ausreichen , London Folie 15
16 Chronologie, II 1890: Percy J. Heawood findet einen Fehler in Kempes Beweis, kann aber zeigen, dass 5 Farben immer ausreichen 1976: Kenneth Appel und Wolfgang Haken beweisen die 4-Farben-Vermutung , England Folie 16
17 Chronologie, III Beweis von Appel & Haken 1976 Kompliziert & auf Computer angewiesen Strategie: Alle Graphen auf 1950 Grundkonfigurationen reduzieren Zeigen, dass diese alle 4-färbbar sind 1996 verfeinerter Beweis von Robertson, Sanders, Seymour, Thomas Grundmenge der Graphen auf 650 reduziert und weitere Vereinfachungen an der Struktur des Beweises However, an argument can be made that our proof is not a proof in the traditional sense, because it contains steps that can never be verified by humans. (aus dem Schlusswort von: A new proof of the four-colour theorem, Neil Robertson, Daniel P. Sanders, Paul Seymour, Robin Thomas) Folie 17
18 Chronologie, IV 1994: neuer Beweis für die 5- Färbbarkeit planarer Graphen von Carsten Thomassen Beweis kommt (im Ggs. zu Heawood s) ohne die Eulersche Polyederformel (Knoten- Kanten+Gebiete=2) aus 2 Vorbemerkungen Listenfärbungen Ebene Dreiecksgraphen * , Grindsted, DK Folie 18
19 Listenfärbung C = {Gelb, Blau} {Gelb, Blau} {Rot, Schwarz} {Gelb, Blau} {Gelb, Schwarz} {Blau, Rot} {Blau, Schwarz} Es gibt für alle Knoten eine Menge C von Farben. Es gibt zu jedem Knoten eine Liste C(v) der verfügbaren Farben. Alle Listen haben gleich viele Elemente. Folie 19
20 Listenfärbung {Gelb, Blau} {Gelb, Blau} {Gelb, Blau} {Gelb, Blau} {Gelb, Blau} {Gelb, Blau} Normale Färbung ist lediglich der Sonderfall, dass alle C(v) identisch sind. Folie 20
21 Listenfärbung {Gelb, Blau} {Rot, Schwarz}??? {Gelb, Rot} {Gelb, Schwarz} {Blau, Rot} {Blau, Schwarz} χ (G) = 2 χ l (G) > 2 χ l (G) χ (G) Folie 21
22 Ebene Dreiecksgraphen Ein planarer Graph heißt ebener Dreiecksgraph bzw. trianguliert (engl. near-triangulated ), wenn alle seine Innengebiete durch drei Kanten begrenzt werden. Folie 22
23 Beweis von Thomassen, I Behauptung: Jeder planare Graph besitzt eine 5-Listenfärbung. Trick : Wir beweisen eine stärkere Behauptung. Stärkere Behauptung: Wir werden zeigen, dass jeder ebene Dreiecksgraph eine 5-Listenfärbung besitzt. Da durch das Hinzufügen von Kanten zu einem Graphen die listenchromatische Zahl lediglich wachsen kann, können wir jeden planaren Graph zu einem ebenen Dreiecksgraph erweitern und mit 5 Farben färben. Folie 23
24 Beweis von Thomassen, II Induktionsannahme Es sei G=(V,E) ein ebener Dreiecksgraph. B = v 1, v 2,..., v k, v 1 soll den Kreis beschreiben, der das Außengebiet begrenzt. Für die Farbenmengen C(v) sollen folgende Annahmen gelten: Die adjazenten Knoten v 1, v 2 B sind bereits mit den unterschiedlichen Farben α, β gefärbt. C(v) 3 für alle anderen Knoten v B C(v) 5 für alle Knoten v im Innengebiet Die Färbung von v 1 und v 2 kann nun mit Hilfe der gegebenen Farbenmengen zu einer gültigen Färbung von G erweitert werden. Folie 24
25 Beweis von Thomassen, III Für V = 3 ist die Behauptung wahr. Fortsetzung des Beweises per Induktion 2 Fälle: B hat eine Sehne B hat keine Sehne Folie 25
26 Beweis von Thomassen, IV B hat eine Sehne {x, y} {x, y} liegt auf zwei Kreisen B 1, B 2 G 1 : von den Knoten von B 1 und aus dem Innengebiet induzierter Untergraph G 2 : von den Knoten von B 2 und aus dem Innengebiet induzierter Untergraph Der Untergraph G 1 besitzt laut Induktionsannahme eine 5- Listenfärbung. Da nun x und y mit Farben belegt sind, ist die Induktionsannahme auch für G 2 erfüllt, womit sich eine gültige Färbung für G ergibt. x v 1 v 2 y Folie 26
27 Beweis von Thomassen, V B hat keine Sehne v k v 1 Durchnummerieren der Nachbarn von v k v k-1 v 2 P = v 1, u 1,..., u m, v k-1 ist ein Weg in G u m u 2 u 1 Durch Entfernen von v k und allen inzidenten Kanten erhalten wir den Graphen G Folie 27
28 Beweis von Thomassen, VI C(v k ) 3, daher gibt es mindestens 2 Farben γ, δ in C(v k ) welche ungleich c(v 1 ) sind v k v 1 γ, δ werden aus allen Listen C(u i ) entfernt G erfüllt nun die Induktionsannahme und ist daher 5-listenfärbbar v k-1 u m u 2 u 1 v 2 γ oder δ stellt eine gültige Färbung für v k dar, womit sich eine gültige Färbung für G ergibt Folie 28
29 Agenda Einleitung Definitionen Färben von Landkarten Anwendungsbeispiele Algorithmen Folie 29
30 Aufgabenplanung Aufgaben A i, wobei einige Aufgaben nicht parallel abgearbeitet werden können Aufgaben -> Knoten Konfliktäre Aufgaben werden durch Kanten verbunden A 2 A 3 A 1 A 6 A 4 Aufgaben gleicher Farbe können parallel abgearbeitet werden. A 5 Folie 30
31 Transaktionsverwaltung Die Transaktionsverwaltung eines Datenbankmanagement- Systems (DBMS) versucht möglichst viele Transaktionen parallel auszuführen. Transaktionen behindern sich nur dann gegenseitig, wenn sie auf dieselbe Relation zugreifen und mindestens eine der Transaktionen schreibenden Zugriff beansprucht. Mögliche Lösung: Aufbau eines Konfliktgraphen und ermitteln einer gültigen Färbung Alle Transaktionen, denen dieselbe Farbe zugeordnet wurde, können parallel ausgeführt werden Problem: Eine gültige Färbung ist im Allgemeinen schwer zu ermitteln. Daher werden in der Praxis Sperrverfahren verwendet. Folie 31
32 Weitere Beispiele Andere Anwendungen denkbar: Ermitteln eines Stundenplans für eine Hochschule Vorlesungen = Knoten Vorlesungen, die nicht parallel stattfinden sollen, werden durch Kanten verbunden Maschinenplanung Auftragsplanung Personalplanung... Folie 32
33 Mobilfunk Jede Basisstation deckt einen gewissen Funkbereich ab Mehrere Funkbereiche (unterschiedlicher Basisstationen) können sich überlappen Überlappen sich mehrere Funkbereiche, so dürfen die zugehörigen Basisstationen nicht dieselben Frequenzen verwenden, da es sonst aufgrund von Interferenzen zu Störungen kommt Wieviele Frequenzen muss jede Basisstation zur Verfügung haben, damit es keine Störungen gibt? Folie 33
34 Mobilfunk Lösung Transformation in einen Konfliktgraph Ermittlung einer (minimalen) Listenfärbung Folie 34
35 Agenda Einleitung Definitionen Färben von Landkarten Anwendungsbeispiele Algorithmen Folie 35
36 Allgemeines Das Färben eines Graphen ist im Allgemeinen ein schwieriges Problem Bereits das (scheinbar) einfache Entscheidungsproblem Gegeben ist ein Graph G = (V, E), gilt χ (G) 3? ist NP-vollständig. Unter der Annahme P NP gibt es keinen Algorithmus, der die chromatische Zahl eines beliebigen Graphen in polynomialer Zeit berechnet. Folie 36
37 Planare Graphen Für planare Graphen liefert der Beweis der Vier-Farben- Vermutung einen Algorithmus, der planare Graphen mit höchstens 4 Farben in einer Laufzeit von O ( V 2 ) färbt. Folie 37
38 Backtracking-Verfahren Systematisches Ausprobieren aller möglichen Farbzuordnungen Exponentielle Laufzeit Bsp.: 5 Farben, n Knoten n = = 3125 mögliche Farbzuordnungen n = = mögliche Farbzuordnungen n = * mögliche Farbzuordnungen In der Praxis nur bei sehr kleinen Fragestellungen anwendbar. (FH Wedel: etwa 300 Vorlesungen n 300) Folie 38
39 Greedy-Verfahren Approximativer Färbungsalgorithmus Effizient, liefert aber nicht immer eine optimale Lösung Laufzeit: O ( n) : maximaler Eckengrad n : Anzahl Knoten verwendet maximal c Farben, wobei c die kleinste ganze Zahl grössergleich 2m ist (m = Anzahl Kanten) + 1 Farben ( = maximaler Eckengrad) Folie 39
40 Johnson-Algorithmus Verfeinerung des Greedy-Algorithmus Laufzeit: O ( V 2 ) Für einen ungerichteten Graphen G erzeugt der Johnson- Algorithmus eine Färbung, die maximal 3n log(χ (G)) log n Farben verwendet. Folie 40
41 ... Vielen Dank für Euer Interesse. Folie 41
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling
Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J
Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung
4 Greedy-Algorithmen (gierige Algorithmen)
Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine
16. All Pairs Shortest Path (ASPS)
. All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)
NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP
Das P versus N P - Problem
Das P versus N P - Problem Dr. Michael Huber Habilitationsvortrag eines der sieben Milleniumsprobleme des Clay Mathematics Institute A gift to Mathematics from Computer Science (Steve Smale) Überblick
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
Alles zu seiner Zeit Projektplanung heute
Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?
Guten Morgen und Willkommen zur Saalübung!
Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei
Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik
Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus
Komplexitätstheorie Einführung und Überblick (Wiederholung)
Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität
Schwierige Probleme in der Informatik Informationen für die Lehrperson
Schwierige Probleme in der Informatik Informationen für die Lehrperson Thema, Adressaten,... Das Thema dieses Moduls sind NP-vollständige Probleme, also schwierige Probleme in der Informatik. GraphBench
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007
Graphentheorie Rainer Schrader Organisatorisches Zentrum für Angewandte Informatik Köln 23. Oktober 2007 1 / 79 2 / 79 Organisatorisches Organisatorisches Dozent: Prof. Dr. Rainer Schrader Weyertal 80
Wissensbasierte Systeme
WBS3 Slide 1 Wissensbasierte Systeme Sebastian Iwanowski FH Wedel Kap. 3: Algorithmische Grundlagen der KI WBS3 Slide 2 Suchstrategien Warum sind Suchstrategien so wichtig in Wissensbasierten Systemen?
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Bäume und Wälder. Bäume und Wälder 1 / 37
Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des
Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering
Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas
Graphentheorie Mathe-Club Klasse 5/6
Graphentheorie Mathe-Club Klasse 5/6 Thomas Krakow Rostock, den 26. April 2006 Inhaltsverzeichnis 1 Einleitung 3 2 Grundbegriffe und einfache Sätze über Graphen 5 2.1 Der Knotengrad.................................
Fully dynamic algorithms for the single source shortest path problem.
Fully dynamic algorithms for the single source shortest path problem. Michael Baur Wintersemester 2001/2002 Zusammenfassung Im folgenden Paper werde ich Algorithmen für das dynamische Kürzeste-Wege-Problem
Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.
Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo [email protected] xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung
Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik
Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes
Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY
Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung
Approximations-Algorithmen
Approximations-Algorithmen Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen 186.102 Sommersemester 2004, 2h VU Motivation: Bereits viele einfache Optimierungsprobleme
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Traversierung Durchlaufen eines Graphen, bei
Pratts Primzahlzertifikate
Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest
Maximizing the Spread of Influence through a Social Network
1 / 26 Maximizing the Spread of Influence through a Social Network 19.06.2007 / Thomas Wener TU-Darmstadt Seminar aus Data und Web Mining bei Prof. Fürnkranz 2 / 26 Gliederung Einleitung 1 Einleitung 2
Primzahlzertifikat von Pratt
Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren
Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht
Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Beispiele wirtschaftsmathematischer Modellierung Lehrerfortbildung, Speyer, Juni 2004-1- Beispiele wirtschaftsmathematischer Modellierung
Bäume und Wälder. Bäume und Wälder 1 / 37
Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume
Seminararbeit für das SE Reine Mathematik- Graphentheorie
Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis
Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!
Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck
Algorithmen & Datenstrukturen 1. Klausur
Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse
Einführung in die Informatik
Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester
Graphen: Datenstrukturen und Algorithmen
Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.
Datenstrukturen und Algorithmen SS07
Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage [email protected] belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen
Wasserfall-Ansätze zur Bildsegmentierung
Wasserfall-Ansätze zur Bildsegmentierung von Philipp Jester Seminar: Bildsegmentierung und Computer Vision 16.01.2006 Überblick 1. Problemstellung 2. Wiederholung: Wasserscheiden-Ansätze 3. Der Wasserfall-Ansatz
Einführung in PROLOG. Christian Stocker
Einführung in PROLOG Christian Stocker Inhalt Was ist PROLOG? Der PROLOG- Interpreter Welcher Interpreter? SWI-Prolog Syntax Einführung Fakten, Regeln, Anfragen Operatoren Rekursion Listen Cut Funktionsweise
Praktikum Planare Graphen
1 Praktikum Planare Graphen Michael Baur, Martin Holzer, Steffen Mecke 10. November 2006 Einleitung Gliederung 2 Grundlagenwissen zu planaren Graphen Themenvorstellung Gruppeneinteilung Planare Graphen
Algorithmen und Datenstrukturen (WS 2007/08) 63
Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders
Information Systems Engineering Seminar
Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, 22.10.2012 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1 Planarität - Definition Ein Graph heißt
Wir unterscheiden folgende drei Schritte im Design paralleler Algorithmen:
1 Parallele Algorithmen Grundlagen Parallele Algorithmen Grundlagen Wir unterscheiden folgende drei Schritte im Design paralleler Algorithmen: Dekomposition eines Problems in unabhängige Teilaufgaben.
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)
5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!
Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn
Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen
Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume
Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
Breiten- und Tiefensuche in Graphen
Breiten- und Tiefensuche in Graphen Inhalt Theorie. Graphen. Die Breitensuche in der Theorie am Beispiel eines ungerichteten Graphen. Die Tiefensuche in der Theorie am Beispiel eines gerichteten Graphen
Software-Entwurfsmuster
Software-Entwurfsmuster Prinzip von Entwurfsmustern und einige elementare Beispiele Malte Spiess [email protected] Seminar Bildanalyse und Simulation mit Java im WS 2003/2004 Universität Ulm
Wissensbasierte Systeme
WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien
Property Testing in Graphen mit beschränktem Maximalgrad
Property Testing in Graphen mit beschränktem Maximalgrad Björn Schümann Seminar Graphentheorie und Kombinatorik WS 2007-08 Inhaltsverzeichnis 1 Einleitung 2 2 Allgemeine Aussagen zum Property Testing 3
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Algorithmen für Graphen Fragestellungen: Suche
Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011
Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.
Kapitel 3: Problemformulierungen in der KI. oder das Problem ist die halbe Lösung
Kapitel 3: Problemformulierungen in der KI oder das Problem ist die halbe Lösung Lernziele: eine Struktur für die Definition eines problemlösenden Agenten kennen die wichtige Rolle von Abstraktionen in
Algorithmentheorie. 13 - Maximale Flüsse
Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
Statistische Untersuchungen zu endlichen Funktionsgraphen
C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion
Kapitel 4: Analyse von Petrinetzen
Kapitel 4: Analyse von Petrinetzen 1. Beispiele 2. Analyseansatz 3. Markierungsgraph 4. Beschränktheit 5. State Space Explosion: Beispiel 6. Komplementbildung 7. Zusammenhängend 8. Tot, lebendig, verklemmungsfrei
Zeichnen von Graphen. graph drawing
Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =
Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer
Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen
Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke
Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,
Prozessor (CPU, Central Processing Unit)
G Verklemmungen G Verklemmungen Einordnung: Prozessor (CPU, Central Processing Unit) Hauptspeicher (Memory) Ein-, Ausgabegeräte/ Periphere Geräte (I/O Devices) externe Schnittstellen (Interfaces) Hintergrundspeicher
Kompakte Graphmodelle handgezeichneter Bilder
Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Authentizierung und Bilderkennung Inhaltsverzeichnis Seminar Mustererkennung WS 006/07 Autor: Stefan Lohs 1 Einleitung 1 Das graphische Modell.1
Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. [email protected]
Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern [email protected] Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der
Modelle und Statistiken
Kapitel 4 Modelle und Statistiken In letzter Zeit werden vermehrt Parameter (Gradfolgen, Kernzahlfolgen, etc.) empirischer Graphen (Internet, WWW, Proteine, etc.) berechnet und diskutiert. Insbesondere
w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2
1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba
Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. [email protected]. [email protected].
1 Programmierung 2 Dynamische Programmierung Sebastian Hack [email protected] Klaas Boesche [email protected] Sommersemester 2012 2 Übersicht Stammt aus den Zeiten als mit Programmierung
Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge
Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem
2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit:
Vorlesung 5.5. VERBINDUNGSNETZWERKE Kommunikation zwischen den einzelnen Komponenten eines arallelrechners wird i.d.r. über ein Netzwerk organisiert. Dabei unterscheidet man zwei Klassen der Rechner: TOOLOGIE:
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014
Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:
Expander Graphen und Ihre Anwendungen
Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)
Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung
Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Autentizierung und Bilderkennung Inhaltsverzeichnis 1 Einleitung Das graphische Model.1 Image Thinning................................. 3.
Mining top-k frequent itemsets from data streams
Seminar: Maschinelles Lernen Mining top-k frequent itemsets from data streams R.C.-W. Wong A.W.-C. Fu 1 Gliederung 1. Einleitung 2. Chernoff-basierter Algorithmus 3. top-k lossy counting Algorithmus 4.
Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege
Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 [email protected] Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick
Informatik I WS 07/08 Tutorium 24
Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: [email protected] Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben
Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)
Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff
Kapitel MK:IV. IV. Modellieren mit Constraints
Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren
Abschnitt: Algorithmendesign und Laufzeitanalyse
Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher
Approximationsalgorithmen
Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann [email protected] FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert
Tourist Town. wenn Computer ins Schwitzen geraten. Prof. Dr. Isolde Adler IT-Girls Night 28.11.2014 29.11.2014
Tourist Town wenn Computer ins Schwitzen geraten Prof. Dr. Isolde Adler IT-Girls Night 28.11.2014 29.11.2014 Inhalt 1. Was kommt jetzt? 2. Tourist Town Dominierende Mengen 3. Ausblick Isolde Adler Tourist
1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert
Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume
Synergien aus Graph-Theorie und Data-Mining für die Analyse von Netzwerkdaten
für die Analyse von Netzwerkdaten Tanja Hartmann, Patricia Iglesias Sánchez, Andrea Kappes, Emmanuel Müller und Christopher Oßner IPD Institut für Programmstrukturen und Datenorganisation ITI Institut
Informatik II Greedy-Algorithmen
7/7/06 lausthal Erinnerung: Dynamische Programmierung Informatik II reedy-algorithmen. Zachmann lausthal University, ermany [email protected] Zusammenfassung der grundlegenden Idee: Optimale Sub-Struktur:
Wissensbasierte Systeme
WBS5 Slide 1 Wissensbasierte Systeme Vorlesung 5 vom 17.11.2004 Sebastian Iwanowski FH Wedel WBS5 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien
Wissensbasierte Systeme 5. Constraint Satisfaction Probleme
Wissensbasierte Systeme 5. Constraint Satisfaction Probleme Michael Beetz Vorlesung Wissensbasierte Systeme 1 Inhalt 5.1 Begriffe 5.2 Constraint Satisfaction in Linienbildern 5.3 Beispielanwendungen 5.4
Das Falten-und-Schneiden Problem
Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit
Konzepte der AI. Maschinelles Lernen
Konzepte der AI Maschinelles Lernen http://www.dbai.tuwien.ac.at/education/aikonzepte/ Wolfgang Slany Institut für Informationssysteme, Technische Universität Wien mailto: [email protected], http://www.dbai.tuwien.ac.at/staff/slany/
