Der Vier-Farben-Satz
|
|
|
- Edmund Bäcker
- vor 9 Jahren
- Abrufe
Transkript
1 , Samuel Hetterich, Felicia Raßmann Goethe-Universität Frankfurt, Institut für Mathematik 21.Juni 2013
2 Wieviele Farben braucht man zum Färben einer Landkarte? Spielregeln Länder mit einer gemeinsamen Grenze bekommen unterschiedliche Farben. Die Länder müssen zusammenhängend sein.
3 Wieviele Farben braucht man zum Färben einer Landkarte? Spielregeln Länder mit einer gemeinsamen Grenze bekommen unterschiedliche Farben. Die Länder müssen zusammenhängend sein.
4 Bei all diesen Karten genügen vier Farben: Funktioniert das immer?
5 Die Vier-Farben-Vermutung Vermutung [Guthrie 1852] Vier Farben genügen!
6 Die Vier-Farben-Vermutung Vermutung [Guthrie 1852] Vier Farben genügen! Das können wir glauben. Aber können wir es auch beweisen? Vielleicht haben wir eine Landkarte, die mehr Farben braucht, nur noch nicht gefunden?
7 Warum Beweise? Vermutung [Euler 1769] Es gibt keine ganzen Zahlen a, b, c, d > 0, so dass a 4 + b 4 + c 4 = d 4.
8 Warum Beweise? Vermutung [Euler 1769] Es gibt keine ganzen Zahlen a, b, c, d > 0, so dass a 4 + b 4 + c 4 = d 4. Gegenbeispiel [Elkies 1986] =
9 Formalisierung des Problems Die Landkarte wird in einen planaren Graphen verwandelt.
10 Sechs-Farben-Satz Sechs Farben genügen.
11 Sechs-Farben-Satz Sechs Farben genügen. Die Eulersche Polyederformel Für einen (zusammenhängenden) planaren Graphen mit gilt immer: v = Anzahl der Knoten e = Anzahl der Kanten f = Anzahl der Flächen v e + f = 2 Kante Fläche Knoten
12 Die Eulersche Polyederformel Die Eulersche Polyederformel v e + f = 2 Beispiele: f 1 f 2 f 1 f 2 f 3 v = 3 e = 3 f = = 2 v = 4 e = 5 f = = 2
13 Beweis der Eulerschen Polyederformel Beweisidee: Induktion.
14 Beweis der Eulerschen Polyederformel Beweisidee: Induktion. Operation 1 Lösche eine Kante und ihren Endknoten, der keine weitere Kante berührt. Operation 1 v = 4 e = 4 f = = 2 v = 3 e = 3 f = = 2 Ein Knoten und eine Kante verschwinden; v e + f bleibt gleich.
15 Operation 2 Lösche eine Kante, die auf einem Kreis liegt. Operation 2 v = 3 e = 3 f = = 2 v = 3 e = 2 f = = 2 Eine Kante und eine Fläche verschwinden; v e + f bleibt gleich.
16 Korollar Es gibt immer einen Knoten mit weniger als 6 Nachbarn.
17 Korollar Es gibt immer einen Knoten mit weniger als 6 Nachbarn. Beweis durch Widerspruch. Wenn jeder Knoten mindestens sechs Nachbarn hätte, wäre 6v 2e v 1 3 e
18 Korollar Es gibt immer einen Knoten mit weniger als 6 Nachbarn. Beweis durch Widerspruch. Wenn jeder Knoten mindestens sechs Nachbarn hätte, wäre 6v 2e v 1 3 e Außerdem wissen wir 3f 2e f 2 3 e
19 Korollar Es gibt immer einen Knoten mit weniger als 6 Nachbarn. Beweis durch Widerspruch. Wenn jeder Knoten mindestens sechs Nachbarn hätte, wäre 6v 2e v 1 3 e Außerdem wissen wir 3f 2e f 2 3 e Zusammen mit der Eulerschen Polyederformel wäre dann 2 = v e + f 1 3 e e e = 0
20 Korollar Es gibt immer einen Knoten mit weniger als 6 Nachbarn. Beweis durch Widerspruch. Wenn jeder Knoten mindestens sechs Nachbarn hätte, wäre 6v 2e v 1 3 e Außerdem wissen wir 3f 2e f 2 3 e Zusammen mit der Eulerschen Polyederformel wäre dann Widerspruch! 2 = v e + f 1 3 e e e = 0
21 Wie färbt man jetzt? Finde einen Knoten mit weniger als 6 Nachbarn. Entferne ihn bis nur noch 6 Knoten übrig sind. Dann füge die Knoten in umgekehrter Reihenfolge wieder hinzu.
22 Wie färbt man jetzt? Finde einen Knoten mit weniger als 6 Nachbarn. Entferne ihn bis nur noch 6 Knoten übrig sind. Dann füge die Knoten in umgekehrter Reihenfolge wieder hinzu.
23 Wie färbt man jetzt? Finde einen Knoten mit weniger als 6 Nachbarn. Entferne ihn bis nur noch 6 Knoten übrig sind. Dann füge die Knoten in umgekehrter Reihenfolge wieder hinzu.
24 Wie färbt man jetzt? Finde einen Knoten mit weniger als 6 Nachbarn. Entferne ihn bis nur noch 6 Knoten übrig sind. Dann füge die Knoten in umgekehrter Reihenfolge wieder hinzu.
25 Wie färbt man jetzt? Finde einen Knoten mit weniger als 6 Nachbarn. Entferne ihn bis nur noch 6 Knoten übrig sind. Dann füge die Knoten in umgekehrter Reihenfolge wieder hinzu.
26 Wie färbt man jetzt? Finde einen Knoten mit weniger als 6 Nachbarn. Entferne ihn bis nur noch 6 Knoten übrig sind. Dann füge die Knoten in umgekehrter Reihenfolge wieder hinzu.
27 Wie färbt man jetzt? Finde einen Knoten mit weniger als 6 Nachbarn. Entferne ihn bis nur noch 6 Knoten übrig sind. Dann füge die Knoten in umgekehrter Reihenfolge wieder hinzu.
28 Wie färbt man jetzt? Finde einen Knoten mit weniger als 6 Nachbarn. Entferne ihn bis nur noch 6 Knoten übrig sind. Dann füge die Knoten in umgekehrter Reihenfolge wieder hinzu.
29 Wie färbt man jetzt? Finde einen Knoten mit weniger als 6 Nachbarn. Entferne ihn bis nur noch 6 Knoten übrig sind. Dann füge die Knoten in umgekehrter Reihenfolge wieder hinzu.
30 Wie färbt man jetzt? Finde einen Knoten mit weniger als 6 Nachbarn. Entferne ihn bis nur noch 6 Knoten übrig sind. Dann füge die Knoten in umgekehrter Reihenfolge wieder hinzu.
31 Genügen vier Farben wirklich? Guthrie: die Grafschaften von England Vermutung Cayley: Problem wird der London Math Society vorgestellt. 1879/80 - Kempe/Tait legen vermeintliche Beweise vor. 1890/91 - die zwei fehlerhaften Beweise widerlegt Heawood: Beweis des Fünf-Farben-Satzes.
32 Genügen vier Farben wirklich? 1960/70er - Heesch: Idee eines Computerbeweises Appel, Haken: Erster Computerbeweis Robertson, Sanders, Seymour, Thomas: Stark vereinfachter Computerbeweis. Weitgehend anerkannt Gonthier, Werner: Formaler Beweis des Satzes mit einem Beweisassistenten.
33 Genügen vier Farben wirklich? Bis heute kein analytischer Beweis. Lektüre: R. Wilson: Four colors suffice (2002).
WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung)
WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Wiederholung aus Diskreter Mathematik I: I: Graphentheorie
Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Inhalt: W.1 Grundlagen W.2 Das Königsberger Brückenproblem W.3 Bäume W.4 Planare Graphen W.5 Färbungen W.1 Grundlagen Ein Ein Graph besteht aus
Kapitel 3. Kapitel 3 Graphentheorie
Graphentheorie Inhalt 3.1 3.1 Grundlagen 3.2 3.2 Das Das Königsberger Brückenproblem 3.3 3.3 Bäume 3.4. 3.4. Planare Graphen 3.5 3.5 Färbungen Seite 2 3.1 Grundlagen Definition. Ein Ein Graph besteht aus
Alexandra Kuhls Proseminar Das Buch der Beweise
Der Fünf Farben Satz Alexandra Kuhls Proseminar Das Buch der Beweise 30.11.2017 Der Fünf Farben Satz Ist es möglich, die Gebiete einer ebenen Karte so Ist es möglich, die Gebiete einer ebenen Karte so
Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen?
Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen Problemstellung Deutsche Bundesländer in vier Farben 4. April 06 Martin Oellrich Warum geht das immer? Gegeben: Karte eines Gebietes
Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn
Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn 1. Geschichte - Frage kommt Mitte des 19 Jahrhunderts auf Wie viele Farben benötigt man um eine Karte
Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel...
Vier-Farbenproblem Kann man jede Landkarte mit vier Farben färben, sodass keine aneindander angrenzenden Länder die gleiche Farbe haben? Versuchen Sie die Karte Deutschlands oder eines der anderen Bilder
Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie
Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek
16. Flächenfärbungen
Chr.Nelius: Graphentheorie (WS 2015/16) 57 16. Flächenfärbungen In der Mitte des 19. Jahrhunderts tauchte eine Vermutung auf, die erst 125 Jahre später bewiesen werden sollte und die eine der bekanntesten
Ilse Fischer. Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria.
GRAPHEN MÜSSEN NICHT IMMER FUNKTIONEN DARSTELLEN Ilse Fischer Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria. E-mail: [email protected] Zusammenfassung. In der
Naiver Algorithmus für Hamiltonkreis
Naiver Algorithmus für Hamiltonkreis Algorithmus HAMILTON EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung 1 Für alle Permutationen π : [n] [n]. 1 Falls (π(1), π(2),..., π(n)) ein Kreis in G ist, AUSGABE
4 Färbungen Begriffe Komplexität Greedy-Algorithmus Knotenreihenfolgen Das 4-Farben-Problem...
Inhaltsverzeichnis 4 Färbungen 41 4.1 Begriffe....................... 41 4.2 Komplexität..................... 42 4.3 Greedy-Algorithmus................ 42 4.4 Knotenreihenfolgen................. 43 4.5
Färbungen auf Graphen
Färbungen auf Graphen Robert Siegfried Seminar Algorithmische Graphentheorie FH Wedel, 26.06.2003 Agenda Einleitung Definitionen Färben von Landkarten Anwendungsbeispiele Algorithmen Folie 2 Einleitung
Minimal spannender Baum
Minimal spannender Baum 16 1 2 21 5 11 19 6 6 3 14 33 10 5 4 18 Die Kreise zeigen die vorgesehenen Standorte neu zu errichtender Filialen einer Bank. Entlang der bestehenden Straßen sollen Telefonleitungen
Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.
Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines
Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:
Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu
Definition : Diechromatische Zahl eines Graphen G ist die kleinste Anzahl chromatische Zahl von Farben für eine zulässige Färbung.
4 Definition : Eine zulässige Färbung ist eine Färbung der Knoten des ( un- zulässige Färbung gerichteten ) Graphen, so daß je zwei adjazente Knoten verschiedene Farben haben. Trivial ist, daß n verschiedene
1 Pfade in azyklischen Graphen
Praktikum Algorithmen-Entwurf (Teil 5) 17.11.2008 1 1 Pfade in azyklischen Graphen Sei wieder ein gerichteter Graph mit Kantengewichten gegeben, der diesmal aber keine Kreise enthält, also azyklisch ist.
Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom
Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS Über klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Sabrina Klöpfel Wintersemester
Diskrete Mathematik Graphentheorie (Übersicht)
Diskrete Mathematik Graphentheorie (Übersicht) Dr. C. Löh 2. Februar 2010 0 Graphentheorie Grundlagen Definition (Graph, gerichteter Graph). Ein Graph ist ein Paar G = (V, E), wobei V eine Menge ist (die
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Bemerkung: Der vollständige Graph K n hat n(n 1)
Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel
Achilles und die Schildkröte Sommersemester 2008
Achilles und die Schildkröte Sommersemester 2008 Färbbarkeit planarer Graphen Alexander Damarowsky 20.05.2008 V6, 15.05.2008 Problemstellung /Ziel des Vortrags: Wie viele Farben werden benötigt, um jeden
Diskrete Strukturen. wissen leben WWU Münster
MÜNSTER Diskrete Strukturen Dietmar Lammers Vorlesung SoSe 2010 MÜNSTER Diskrete Strukturen 269/260 MÜNSTER Diskrete Strukturen 270/260 Im WLAN gibt es 6 Frequenzen und die AccessPoints müssen so verteilt
Vier-Farben-Vermutung (1)
Vier-Farben-Vermutung (1) Landkarten möchte man so färben, dass keine benachbarten Länder die gleiche Farbe erhalten. Wie viele Farben braucht man zur Färbung einer Landkarte? Vier-Farben-Vermutung: Jede
Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)
WS 2015/16 Diskrete Strukturen Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
durch Einfügen von Knoten konstruiert werden kann.
Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der
Übung zur Vorlesung Diskrete Strukturen I
Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt Prof. Dr. J. Csirik. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am. und.
William Rowan Hamilton,
3.2.2 Hamiltonkreise Definition 130. In einem Graph G = (V,E) nennt man einen Kreis, der alle Knoten aus V genau einmal durchläuft, einen Hamiltonkreis. Enthält ein Graph eine Hamiltonkreis, nennt man
In diesem Skript werden folgende Begriffe anhand von einfachen Beispielen eingeführt:
Färbungsprobleme Einstieg In diesem Skript werden folgende Begriffe anhand von einfachen Beispielen eingeführt: Graphentheorie Der Vier-Farben-Satz Algorithmen Komplexität von Algorithmen NP-Probleme Die
Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296
Kapitel 7 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 256 / 296 Inhalt Inhalt 7 Färbungen Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 257 / 296 Jordankurve Zentrale Frage
Studientag zur Algorithmischen Mathematik
Studientag zur Algorithmischen Mathematik Eulertouren, 2-Zusammenhang, Bäume und Baumisomorphismen Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline
Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E.
Knotenfärbung Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E. Die chromatische Zahl χ(g) eines Graphen G ist die minimale
5 Graphen und Polyeder
5 Graphen und Polyeder 5.1 Graphen und Eulersche Polyederformel Ein Graph besteht aus einer Knotenmenge V (engl. vertex) und einer Kantenmenge E (engl. edge). Anschaulich verbindet eine Kante zwei Knoten,
Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4
Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben Übersicht 5. April 009 5. April 009 Martin Oellrich 1 vom Problem zur Theorie die Idee weiter denken 3 MathematikerIn werden? Gibt
Diskrete Mathematik für Informatiker
Universität Siegen Lehrstuhl Theoretische Informatik Carl Philipp Reh Daniel König Diskrete Mathematik für Informatiker WS 016/017 Übung 7 1. Gegeben sei folgender Graph und das Matching M = {{h, f}, {c,
Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.
Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen
Das Vierfarbenproblem und verwandte Fragestellungen
Eichstätter Kolloquium zur Februar 010 Didaktik der Mathematik Das Vierfarbenproblem und verwandte Fragestellungen Cornelia Minette Busch 1 Das Vierfarbenproblem Wenn Schüler eine politische Landkarte
Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008
Graphentheorie Rainer Schrader Färbungen Zentrum für Angewandte Informatik Köln 28. Januar 2008 1 / 57 2 / 57 wir wollen versuchen, die Knoten eines Graphen zu färben dabei dürfen keine zwei benachbarten
Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1
Der Fünf- Farben-Satz Seminar aus reiner Mathematik, WS 13/14 Schweighofer Lukas, November 2013 Seite 1 Inhaltsverzeichnis Vorwort...3 Graphentheoretische Grundlagen...4 Satz 2 (Eulerscher Polyedersatz)...7
Nachbarschaft, Grad, regulär, Inzidenz
Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad
Hausarbeit aus. Graphentheorie Formale Grundlagen Professor Franz Binder. zum Thema. Herbert Huber k Seite 1 von 21
Hausarbeit aus 368.712 Formale Grundlagen Professor Franz Binder zum Thema Graphentheorie Herbert Huber k0455780 Seite 1 von 21 Inhaltsverzeichnis Graphen Grundlagen und Begriffsdefinitionen...3 Graphenstrukturen...6
Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld
Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus
Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014
Der Fünf-Farben-Satz Lukas Schweighofer Feb.2014 1 Contents 1 Vorwort 3 2 Graphentheoretische Grundlagen 4 3 Satz 2 (Eulerscher Polyedersatz) 8 4 Satz 3 9 5 Der Fnf-Farben-Satz 10 5.1 Beweis 1..............................
3-Färbbarkeit. Korollar: Zu Entscheiden, ob ein Graph k-färbbar ist mit k 3, ist NP-vollständig.
3-Färbbarkeit Wir wissen bereits, dass in polynomieller Zeit entschieden werden kann, ob ein Graph 2-färbbar ist. Satz: Zu Entscheiden, ob ein Graph 3-färbbar ist, ist NPvollständig. Beweis: Reduktion
Ein Turnierplan mit fünf Runden
Mathematik I für Informatiker Graphen p. 1 Ein Turnierplan mit fünf Runden c b a c b a c b a c b a c b a d e d e d e d e d e Mathematik I für Informatiker Graphen p. 2 Definition: Graph Ein (schlichter)
Christian Rieck, Arne Schmidt
Institute of Operating Systems and Computer Networks Algorithms Group Algorithmen und Datenstrukturen Wintersemester 207/208 Übung#2, 09..207 Christian Rieck, Arne Schmidt Organisatorisches Anmeldung Mailingliste
\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.
Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )
Freie Bäume und Wälder
(Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese
Westfälische Wilhelms-Universität Münster. Fachbereich: Mathematik und Informatik. Planare Graphen
Westfälische Wilhelms-Universität Münster Fachbereich: Mathematik und Informatik Planare Graphen Kreuzungslemma und Charakterisierung planarer Graphen nach Kuratowski Andrea Vollmer Seminar: Graphentheorie
A Berlin, 10. April 2017
A Berlin, 10. April 2017 Name:... Matr.-Nr.:... Wiederholung der schriftlichen Prüfung zur Vorlesung Diskrete Strukturen (Niedermeier/Molter/Froese, Wintersemester 2016/17) Einlesezeit: 15 Minuten Bearbeitungszeit:
Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich
Vorlesungstermin 2: Graphentheorie II Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Wiederholung: Vollständige Induktion Ziel: zeige n N. A(n) für eine Aussage
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik
5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen
Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten
Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)
WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Listenfärbung von Graphen
Listenfärbung von Graphen Martin Matković WS 2011/2012 Abstract Martin Matković 14. April 2012 In dieser Arbeit werden Definitionen und grundlegende Eigenschaften von Graphenfärbungen und speziell von
Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. ein Problem vor der Haustür 3
Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben Übersicht vom Problem zur Theorie 0. Juni 008 0. Juni 008 Martin Oellrich die Idee weiter denken MathematikerIn werden? Gibt es einen
Eulerscher Polyedersatz
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde
Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen
Bernd Döring Wege, Plätten, Färben Vom Problem zur Theorie der Graphen Bernd Döring, 2002-2005 Bernd Döring Johannes-Althusius-Gymnasium Früchteburger Weg 28 26721 Emden - 2 - Inhaltsverzeichnis 0. Einleitung
Graphentheorie. Perfekte Graphen. Perfekte Graphen. Perfekte Graphen. Rainer Schrader. 22. Januar 2008
Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 22. Januar 2008 1 / 47 2 / 47 eine Clique in G ist ein induzierter vollständiger Teilgraph Gliederung α- und χ-perfektheit Replikation
Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt
Diskrete Mathematik Hamiltonsche Graphen Teil I Karina Arndt 21.06.2006 Übersicht Einleitung Hamiltonsch und eulersch Hamiltonsche Kreise Hamiltonsche Graphen neu zeichnen Kreise und Wege Reguläre Graphen
Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9
Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Klausurvorbereitung
Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl.-Math. S. König, Dipl.-Math. A. Würfl, Klausurvorbereitung Die Klausur zum Propädeutikum Diskrete
Algorithmische Graphentheorie
Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES
1. Einleitung wichtige Begriffe
1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und
Diskrete Mathematik 1
Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt
Der Vierfarbensatz. 1 Historischer Hintergrund. Seminar Graphentheorie Carsten Erdmann
Seminar Graphentheorie 06.04.2009 Carsten Erdmann Der Vierfarbensatz 1 Historischer Hintergrund Der Satz wurde erstmals 1852 von Francis Guthrie als Vermutung aufgestellt, als er die Grafschaften von England
Effizienter Planaritätstest Vorlesung am
Effizienter Planaritätstest Vorlesung am 23.04.2014 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER Satz Gegebenen einen Graphen G = (V, E) mit n Kanten und m Knoten, kann in O(n + m) Zeit
6. Planare Graphen und Färbungen
6. Planare Graphen und Färbungen Lernziele: Den Begriff der Planarität verstehen und erläutern können, wichtige Eigenschaften von planaren Graphen kennen und praktisch einsetzen können, die Anzahl von
4. Kreis- und Wegeprobleme
4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung
Dieser Graph hat 3 Zusammenhangskomponenten
Vl 2, Informatik B, 19. 04. 02 1.1.3 Definitionen und wichtige Graphen Sei im folgenden G =(V;E) ein schlichter ungerichteter Graph. Definition: Der Grad eines Knoten v in einem ungerichteten Graphen ist
Übungen zu Kombinatorik und Graphentheorie
Übungen zu Kombinatorik und Graphentheorie Ilse Fischer, SS 07 (1) (a) In einer Schachtel sind 4 rote, 2 blaue, 5 gelbe und 3 grüne Stifte. Wenn man die Stifte mit geschlossenen Augen zieht, wieviele muss
Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier
4 Planare Graphen Bisher wurden Graphen abstrakt durch Mengen E und K und eine Abbildung ψ : K P(E) definiert. In diesem Kapitel beschäftigen wir uns mit einem Abschnitt der sogenannten topologischen Graphentheorie.
Bäume und Wälder. Definition 1
Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt
2. Triangulation ebener Punktmengen. 3. Definition und Eigenschaften der Delaunay Triangulation
Delaunay Triangulation 1. Motivation 2. Triangulation ebener Punktmengen 3. Definition und Eigenschaften der Delaunay Triangulation 4. Berechnung der Delaunay Triangulation (randomisiert, inkrementell)
Formale Grundlagen. bis , Lösungen. 1. Beweisen Sie, daß die Summe aller Grade der Knoten stets gerade ist.
Formale Grundlagen 4. Übungsaufgaben bis 2011-06-03, Lösungen 1. Beweisen Sie, daß die Summe aller Grade der Knoten stets gerade ist. 2. Finden Sie einen Eulerschen Weg im Briefumschlag, d.h. in: { ((1,
Bäume und Wälder. Definition 1
Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt
Graphentheorie. Kardinalitätsmatchings. Kardinalitätsmatchings. Kardinalitätsmatchings. Rainer Schrader. 11. Dezember 2007
Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 11. Dezember 2007 1 / 47 2 / 47 wir wenden uns jetzt einem weiteren Optimierungsproblem zu Gliederung Matchings in bipartiten Graphen
Algorithmen und Datenstrukturen Tutorium Übungsaufgaben
Algorithmen und Datenstrukturen Tutorium Übungsaufgaben AlgoDat - Übungsaufgaben 1 1 Landau-Notation Aufgabe Lösung 2 Rekurrenzen Aufgabe 3 Algorithmenentwurf und -analyse Aufgabe AlgoDat - Übungsaufgaben
Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:
KAPITEL 3 Graphen Man kann als Ursprung der Graphentheorie ein Problem sehen, welches Euler 1736 von Studenten aus Königsberg gestellt bekam. Der Fluss Pregel wird von 7 Brücken überquert, und die Frage
Def. 1.1: Graph, Knoten, Kanten, adjazent. Notwendige Bedingungen für Isomorphie. Das 3-Brunnen Problem, der vollständige bipartite Graph K 3,3
Stand: 27. Januar 2004 1. Kapitel: Was ist ein Graph? Beispiel: Mannschafts-Wettkämpfe Def. 1.1: Graph, Knoten, Kanten, adjazent Nullgraphen, vollständige Graphen K n, komplementäre Graphen Isomorphie
Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)
WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
Diskrete Mathematik für Informatiker
Universität Siegen Lehrstuhl Theoretische Inormatik Carl Philipp Reh Daniel König Diskrete Mathematik ür Inormatiker WS 2016/2017 Übung 6 1. Beweisen Sie die olgenden Aussagen: a) χ(k n ) = n b) χ(k m,n
Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 8
Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007
Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 13. November 2007 1 / 84 2 / 84 Gliederung stest und Schnittkanten älder und Bäume minimal aufspannende Bäume Der Satz von Menger 2-zusammenhängende
