2 Eulersche Polyederformel und reguläre Polyeder
|
|
|
- Max Reuter
- vor 9 Jahren
- Abrufe
Transkript
1 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge von X, also u = {x 1, x 2 }. Anschaulich besteht ein Graph aus Knoten, die durch die Kanten miteinander verbunden werden. Es gibt auch gerichtete Graphen, bei denen die Kanten zusätzlich orientiert sind. Diese betrachten wir hier aber nicht, sondern bleiben bei den oben eingeführten ungerichteten Graphen. G 1 G 2 G 3 In der Graphentheorie gibt es eine Vielzahl von Begriffen, die anschaulich klar sind, aber formal aufwendig definiert werden. Ein Graph G heißt zusammenhängend, wenn je zwei Punkte durch einen Kantenzug miteinander verbunden werden können. Der Graph links ist demnach zusammenhängen, der Graph in der Mitte besteht aus zwei zusammenhängenden Teilgraphen, er selber ist aber nicht zusammenhängend. G 2 zeigt noch eine weitere Besonderheit, nämlich eine Kante, die einen Knoten mit sich selbst verbindet, was durchaus erlaubt ist. Ein Graph G heißt planar, wenn er auf der Ebene so gezeichnet werden kann, daß seine Kanten sich nicht überkreuzen. Die Graphen G 1 und G 2 sind planar, der Graph G 3 aber nicht. Man beachte die Definition: gezeichnet werden kann, beim Graphen G 3 scheitern alle Versuche, ihn kreuzungsfrei unterzubringen G 4 G 4 6 Lassen wir eine beliebige Kante in G 3 weg, so erhalten wir beispielsweise den Graphen G 4, der auch nicht sonderlich planar aussieht, aber kreuzungsfei gezeichnet werden kann. G 4 ist also planar. Wir betrachten nun nur noch Graphen, die mindestens einen Knoten besitzen sowie zusammenhängend und planar sind. Wir setzen e=anzahl der Knoten (=Ecken), k=anzahl der Kanten, f =Anzahl der Flächen, wobei unter den Flächen diejenigen gemeint sind, die vom Graphen eingeschlossen werden plus eins für die äußere Fläche. Der Graph G 1 schließt demnach mit seinem Dreieck eine Fläche ein; für die Außenfläche zählen wir 1 dazu und erhalten f = 2. Für G 1 gilt ferner e = 4 und k = 3, daher e k + f = 2.
2 7 Dieses Ergebnis ist kein Zufall: Satz 2.1 (Eulersche Polyederformel) Sei G ein nichtleerer, zusammenhängender, planarer Graph mit e Knoten, k Kanten und f Flächen. Dann ist e k + f = 2.. Wie beweist man diese Formel? Dazu überlegt man sich, wie man einen nichtleeren und zusammenhängenden Graphen zeichnen kann. Zunächst zeichnet man einen Knoten. Anschließend kann man den Graphen Stück für Stück mit den beiden folgenden Operationen aufbauen: a) Man zeichnet einen neuen Knoten ein und verbindet diesen Knoten mit einem vorhandenen Knoten. b) Man verbindet zwei vorhandene Knoten. Die nichtleeren zusammenhängenden Graphen besitzen also eine induktive Struktur: Ausgehend vom Graphen, der nur aus einem Knoten besteht, kann man jeden solchen Graphen durch sukzessives Anwenden der Schritte a) und b) erzeugen. Ist der Graph zusätzlich planar, so lassen sich diese Schritte kreuzungsfrei durchführen. Damit läßt sich ( ) leicht durch Induktion beweisen. Der Induktionsanfang ist der Graph, der nur aus einem Knoten besteht. Für diesen ist e = 1, k = 0 und f = 1, also ist die Formel für diesen Graphen richtig. Sei G nun ein Graph, für den die Formel ebenfalls richtig ist. Wenden wir auf G den Schritt a) an, so erhöhen wir e und k um 1, f bleibt unverändert. Die Formel bleibt daher auch nach Anwendung dieses Schrittes richtig. Im Fall b) bleibt e unverändert, dagegen erhöhen sich k und f um 1. Also bleibt die Formel auch nach diesem Schritt richtig. Damit ist die Formel vollständig bewiesen. Tetraeder Würfel Oktaeder Wie der Name schon sagt, wurde die Eulersche Polyederformel zunächst auf Polyeder angewendet. Ein Polyeder ist ein dreidimensionaler Körper, der durch gerade Seitenflächen begrenzt ist. Diese Seitenflächen treffen sich in geraden Kanten und die Kanten wiederum treffen sich in Punkten. Einen solchen Polyeder können wir in Gedanken in einer Seitenfläche aufschneiden und dann auseinanderziehen. Die Ecken und Kanten entsprechen dann den Knoten und Kanten eines planaren Graphen. Jetzt ist auch klar, warum die Zahl der Knoten mit e bezeichnet wurde, weil sie nämlich die Zahl der Ecken des Polyeders ist. Ferner leuchtet nun ein, warum die Außenfläche des planaren Graphen mitgezählt wurde, weil nämlich diese der aufgeschnittenen Seitenfläche entspricht. Bei den oben angegebenen Beispielen von Tetraeder, Würfel und Oktaeder läßt sich die Polyederformel leicht noch einmal überprüfen. 2.2 Die platonischen Körper Ein regulärer Polyeder oder platonischer Körper ist ein Polyeder mit folgenden Eigenschaften: 1. Alle Seitenflächen sind kongruente, regelmäßige n Ecke. 2. In jeder Ecke münden m Kanten.
3 8 Schon im Altertum kannte man 5 reguläre Polyeder: Bezeichnung Form der Seitenflächen (n) m f k e Tetraeder Dreiecke Würfel Quadrate Oktaeder Dreiecke Dodekaeder Fünfecke Ikosaeder Dreiecke Tetraeder Würfel Oktaeder Dodekaeder Ikosaeder Wir beweisen nun, daß es nur diese 5 regulären Polyeder gibt. An jeder Ecke grenzen genau m Kanten. Da jede Kante zwei Ecken besitzt, besteht zwischen Ecken und Kanten die Beziehung (1) em = 2k oder k = em 2 Jede Fläche hat n Begrenzungskanten. Da jede Kante zwei Flächen begrenzt, gilt (2) fn = 2k oder f = 2k n. In die Eulersche Polyederformel e k + f = 2
4 9 setzen wir nacheinander die Ausdrücke für f und k ein und erhalten 2 = e k + 2k n = e + k( 2 n 1) = e + em 2 ( 2 n 1) = e 2n (2n + mn( 2 n 1)) = e (2n + 2m nm) 2n Wegen 2n + 2m nm = 4 (n 2)(m 2) gilt (3) 2 = e (4 (n 2)(m 2)). 2n Da die linke Seite dieser Gleichung positiv ist, muß auch die rechte positiv sein, insbesondere (4 (n 2)(m 2)) > 0 oder (n 2)(m 2) < 4. Wir erhalten also die folgenden Möglichkeiten: (n, m) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3). Mit diesen Werten gehen wir zurück nach (3) und bestimmen daraus e. Mit e erhalten wir k aus (1) und schließlich f aus (2). Daher n m f k e Diese Daten entsprechen genau den bekannten 5 regulären Polyedern. Präsenzaufgaben 1. a) Die Zahlen 1, 2, 3, 4, 5, 6 sollen so den Kanten eines Tetraeders zugeordnet werden, sodaß in jeder Ecke gilt, daß die Summe der in die Ecke einlaufenden Kanten konstant ist. Ist dies überhaupt möglich? b) Die gleiche Aufgabe wie a), aber mit den Zahlen 1, 2, 3, 4, 5, 7. c) (Bundeswettbewerb 2. Runde) Die Zahlen 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 sollen so den Kanten eines Würfels zugeordnet werden, sodaß in jeder Ecke gilt, daß die Summe der in die Ecke einlaufenden Kanten konstant ist. Ist dies überhaupt möglich? d) Die gleiche Aufgabe wie c), aber mit den Zahlen 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, Die folgenden Fragen sollen in Abhängigkeit der Zahl der Knoten n eines Graphen beantwortet werden. Dabei sind keine Schleifen oder Mehrfachkanten erlaubt. a) Wie viele verschiedene Kanten kann ein Graph maximal haben? b) Ein Graph heißt kreisfrei, wenn er keinen geschlossenen Kantenzug enthält. Insbesondere darf ein kreisfreier Graph keine Kante haben, der einen Knoten mit sich selbst verbindet. Wie viele Kanten besitzt ein kreisfreier Graph?
5 10 c) Ein Graph heißt gut zusammenhängend, wenn er nach Entfernen einer beliebigen Kante immer noch zusammenhängend ist. Wie viele Kanten muß ein gut zusammenhängender Graph mindestens haben? A B D C 3. Die obige Abbildung zeigt die Brücken von Königsberg über den Fluß Pregel. Leonhard Euler löste die Frage, ob es möglich ist, in A beginnend eine Reise zu unternehmen, bei der man jede Brücke genau einmal überquert und sich am Ende wieder in A befindet. a) Formuliere dieses Problem als Rundreiseproblem in einem Graphen, bei dem ausnahmsweise auch Mehrfachkanten erlaubt sind. b) Ist die gesuchte Rundreise möglich? c) Welche Bedingung muß ein allgemeiner Graph erfüllen, damit eine solche Rundreise möglich ist?
6 11 Aufgaben 2.1 (Bundeswettbewerb 1. Runde) Die Oberfläche eines Fußballs setzt sich aus schwarzen Fünfecken und weißen Sechsecken zusammen. An die Seiten eines jeden Fünfecks grenzen lauter Sechsecke, während an die Seiten eines jeden Sechseck abwechselnd Fünfecke und Sechsecke grenzen. Man bestimme aus diesen Angaben über den Fußball die Anzahl seiner Fünfecke und seiner Sechsecke. 2.2 (Bundeswettbewerb 1. Runde) Zwischen 20 Städten bestehen 172 direkte Flugverbindungen, die jeweils in beide Richtungen benutzbar sind. Keine zwei von ihnen verbinden dieselben beiden Städte. Man weise nach, daß man von jeder Stadt in jede Stadt fliegen kann, ohne dabei mehr als einmal umzusteigen. Viel Spaß beim Lösen! Für die besten Löser gibt es am Ende der Veranstaltung im Februar 2006 Buchpreise zu gewinnen. Der nächste Mathe-Samstag findet am statt. 17. Dezember 2005, 9 12 Uhr Die Mathe-Samstage im Internet: dobro/sam.html
5 Graphen und Polyeder
5 Graphen und Polyeder 5.1 Graphen und Eulersche Polyederformel Ein Graph besteht aus einer Knotenmenge V (engl. vertex) und einer Kantenmenge E (engl. edge). Anschaulich verbindet eine Kante zwei Knoten,
Beweis der Existenz von genau 5 platonischen Körpern anhand der Eulerschen Polyederformel
Platonische Körper.nb 1 Beweis der xistenz von genau 5 platonischen Körpern anhand der ulerschen Polyederformel Daniel Bauernfeind, 0355507 Dietmar Kerbl, 0355750 Dodekaeder Tetraeder Ikosaeder Würfel
Fußbälle, platonische und archimedische Körper
Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?
Eulerscher Polyedersatz
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde
Eulerscher Polyedersatz
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde
3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen
3 Die natürlichen Zahlen Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen Die natürlichen Zahlen Æ = {1, 2, 3,...}. sind die natürlichen
11: Die Euler sche Polyederformel für planare Graphen
Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von
Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $
$Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei
Das Dodekaeder. 1 Grundlagen: Das regelmäßige Fünfeck
Das Dodekaeder Walter Fendt. Februar 005 1 Grundlagen: Das regelmäßige Fünfeck Satz 1 Für ein regelmäßiges Fünfeck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 5 + 5 Umkreisradius r = a 10(5 +
Das Ikosaeder. 1 Grundlagen: Das gleichseitige Dreieck
Das Ikosaeder Walter Fendt 27. Februar 2005 1 Grundlagen: Das gleichseitige Dreieck Satz 1 Für ein gleichseitiges Dreieck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 3 2 Umkreisradius r = a 3
Platonische Körper oder das Geheimnis der A5. Peter Maaß, Uttendorf 2005
Platonische Körper oder das Geheimnis der A5 Peter Maaß, Uttendorf 2005 Konstruktion platonischer Körper Symmetriegruppen der platonischen Körper Die Primzahlen der Gruppentheorie Das Geheimnis der A5
Der Eulersche Polyedersatz
Der Eulersche Polyedersatz Def Die Anzahl der k Seiten eines konvexen Polytops P bezeichnen wir mit f k (P) oder kurz mit f k. Das n Tupel (f 0,f 1,...,f n 1 ) Z n heißt dann der f Vektor des (n dimensionalen)
Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau
2 Die natürlichen Zahlen und vollständige Induktion Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau 2.1 Einführung sind die natürlichen Zahlen. Æ =
Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen:
Kapitel 8 Platonische Körper Platonische Körper sind regelmäßige Polyeder, die die folgenden Bedingungen erfüllen: Die Begrenzungsflächen sind regelmäßige Vielecke, die untereinander kongruent sind An
Körper zum Selberbauen Polydron
Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist
5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen
Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten
Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $
$Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der
Polyeder und Platonische Körper
Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung
Kantengraphen und Planare Graphen. Seminararbeit
Kantengraphen und Planare Graphen Seminararbeit in Mathematisches Seminar für LAK 621.378 SS 2018 vorgelegt von Anna Maria Gärtner bei: Baur, Karin, Univ.-Prof. Dr.phil. Graz, 2018 Inhaltsverzeichnis 1
Eulerscher Polyedersatz
Eigenschaften als reguläre Parkettierungen der Sphäre Seien E die der Ecken, F die der Flächen und K die der Kanten eines konvexen Polyeders, dann gilt: K E = F 2 als reguläre Parkettierungen der Sphäre
7 Graphentheorie. Beispiele. Die folgende Liste gibt Beispiele für Graphen mit einer zweielementigen Eckenmenge E = {A, B} an.
7 Graphentheorie Definition. Ein Graph ist ein Paar (E, K) bestehend aus einer Eckenmenge E und einer Kantenmenge K, zusammen mit einer Zuordnung, die jedem Element der Menge K genau zwei Elemente der
GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II
Universität Bielefeld WS 2012/13 GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II DR. PHILIPP LAMPE Rat sucht man deshalb, weil man die einzige Lösung kennt, aber nichts davon wissen will. Erica Jong
Polyeder, Konvexität, Platonische und archimedische Körper
Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:
Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu
REGULÄRE UND SEMIREGULÄRE POLYTOPE
REGULÄRE UND SEMIREGULÄRE POLYTOPE regulare und semireguläre polytope ANDREAS PAFFENHOLZ FU Berlin Germany Eulersche Polyederformel Theorem Für ein Polytop mit Ecken Eulersche Polyederformel Kanten und
= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2
1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)
Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier
4 Planare Graphen Bisher wurden Graphen abstrakt durch Mengen E und K und eine Abbildung ψ : K P(E) definiert. In diesem Kapitel beschäftigen wir uns mit einem Abschnitt der sogenannten topologischen Graphentheorie.
2 Rationale und reelle Zahlen
2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist
Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)
WS 2015/16 Diskrete Strukturen Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:
KAPITEL 3 Graphen Man kann als Ursprung der Graphentheorie ein Problem sehen, welches Euler 1736 von Studenten aus Königsberg gestellt bekam. Der Fluss Pregel wird von 7 Brücken überquert, und die Frage
Einfache Parkettierungen
Einfache Definitionen: Unter einer Parkettierung (auch Pflasterung oder Parkett genannt) verstehen wir eine überlappungsfreie Überdeckung der Ebene durch Polygone. Ein Polygon (auch Vieleck oder n-eck
1 Beispiele für Graphen
Beispiele für Graphen 1 Beispiele für Graphen 1. Kreuzungsproblem : 3 Häuser sollen mit einem Wasser-, Gas- und Elektroanschluß verbunden werden, wobei keine Kreuzung entstehen darf. Abbildung 1: Kreuzungsproblem
Elementargeometrie. Prof. Dr. Andreas Meister SS digital von: Frank Lieberknecht
Prof. Dr. Andreas Meister SS 2004 digital von: Frank Lieberknecht Geplanter Vorlesungsverlauf...1 Graphentheorie...1 Beispiel 1.1: (Königsberger Brückenproblem)... 1 Beispiel 1.2: (GEW - Problem)... 2
6. Planare Graphen und Färbungen
6. Planare Graphen und Färbungen Lernziele: Den Begriff der Planarität verstehen und erläutern können, wichtige Eigenschaften von planaren Graphen kennen und praktisch einsetzen können, die Anzahl von
Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.
Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines
1 Platonische Körper 1
1 Platonische Körper 1 1 Platonische Körper Das Oktaeder gehört zu den fünf platonischen Körpern die alle aus kongruenten Seiten- ächen aufgebaut sind. Es sollen daher in einem kurzen Abschnitt alle fünf
Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten.
11 Aussagen, Beweise, vollständige Induktion 13 Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten 114 Folgerung n ( ) n = (1+1) n = 2 n und k
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Beweise und Widerlegungen
Beweise und Widerlegungen Alberto Abbondandolo Ruhr-Universität Bochum Tag der offenen Tür 2015 Einige Polyeder Einige Polyeder V = 4, S = 6, F = 4 V = 8, S = 12, F = 6 Einige Polyeder V = 4, S = 6, F
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 8
Über die regelmäßigen Platonischen Körper
Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben
Sphärische Vielecke. Hans Walser
Sphärische Vielecke Hans Walser Sphärische Vielecke ii Inhalt 1 Sphärische Vielecke...1 1.1 Sphärische Dreiecke...1 1.2 Sphärische Zweiecke...2 1.3 Der Flächeninhalt sphärischer Dreiecke...3 2 Regelmäßige
3 Planare Graphen die Eulersche Polyederformel
3 Planare Graphen die Eulersche Polyederformel Planare Graphen sind solche Graphen, die sich ohne Überkreuzungen von Kanten in eine Ebene zeichnen lassen. Wir nehmen hierbei an, dass die Knoten als Punkte
Tutoraufgabe 1 (Suchen in Graphen):
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn
Diskrete Mathematik Graphentheorie (Übersicht)
Diskrete Mathematik Graphentheorie (Übersicht) Dr. C. Löh 2. Februar 2010 0 Graphentheorie Grundlagen Definition (Graph, gerichteter Graph). Ein Graph ist ein Paar G = (V, E), wobei V eine Menge ist (die
Fußbälle, platonische und archimedische Körper
Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen. Hashing 6. Algorithmische Geometrie 4/6, Folie 1 2014 Prof. Steffen Lange - HDa/FbI
Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung
Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken
Formale Grundlagen. bis , Lösungen. 1. Beweisen Sie, daß die Summe aller Grade der Knoten stets gerade ist.
Formale Grundlagen 4. Übungsaufgaben bis 2011-06-03, Lösungen 1. Beweisen Sie, daß die Summe aller Grade der Knoten stets gerade ist. 2. Finden Sie einen Eulerschen Weg im Briefumschlag, d.h. in: { ((1,
8 Konvergenzkriterien und Häufungswerte von Folgen in R
8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium
16. Platonische Körper kombinatorisch
16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder
Diskrete Mathematik für Informatiker
Universität Siegen Lehrstuhl Theoretische Inormatik Carl Philipp Reh Daniel König Diskrete Mathematik ür Inormatiker WS 2016/2017 Übung 6 1. Beweisen Sie die olgenden Aussagen: a) χ(k n ) = n b) χ(k m,n
2 Die natürlichen Zahlen und vollständige Induktion
2 Die natürlichen Zahlen und vollständige Induktion 2.1 Einführung Mit Æ bezeichnen wir die Menge der natürlichen Zahlen Æ = {1,2,3,...}. Manche Autoren lassen die natürlichen Zahlen auch mit der Null
Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen
Bernd Döring Wege, Plätten, Färben Vom Problem zur Theorie der Graphen Bernd Döring, 2002-2005 Bernd Döring Johannes-Althusius-Gymnasium Früchteburger Weg 28 26721 Emden - 2 - Inhaltsverzeichnis 0. Einleitung
Körper kennen lernen Station 1
Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele
Alexandra Kuhls Proseminar Das Buch der Beweise
Der Fünf Farben Satz Alexandra Kuhls Proseminar Das Buch der Beweise 30.11.2017 Der Fünf Farben Satz Ist es möglich, die Gebiete einer ebenen Karte so Ist es möglich, die Gebiete einer ebenen Karte so
Drei Anwendungen der Eulerschen Polyederformel
Drei Anwendungen der Eulerschen Polyederformel Seminar aus Reiner Mathematik Viktoria Weißensteiner 04. Dezember 2013 Inhaltsverzeichnis 1 Einleitung 2 2 Vorbereitende Theorie 3 2.1 ebene Graphen..........................
Ein Turnierplan mit fünf Runden
Mathematik I für Informatiker Graphen p. 1 Ein Turnierplan mit fünf Runden c b a c b a c b a c b a c b a d e d e d e d e d e Mathematik I für Informatiker Graphen p. 2 Definition: Graph Ein (schlichter)
Teilgebiete der Abbildungsgeometrie
Teilgebiete der Abbildungsgeometrie In der Abbildungsgeometrie wird zur Klassifizierung von Eigenschaften des Raumes (bzw. der Ebene) und der in ihm enthaltenen Objekte (Geraden, Kreise, Polytope, usw.)
A Berlin, 10. April 2017
A Berlin, 10. April 2017 Name:... Matr.-Nr.:... Wiederholung der schriftlichen Prüfung zur Vorlesung Diskrete Strukturen (Niedermeier/Molter/Froese, Wintersemester 2016/17) Einlesezeit: 15 Minuten Bearbeitungszeit:
Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)
WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII
Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)
WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
Univ.-Prof. Dr. Goulnara ARZHANTSEVA
Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 08: Menger, König und Hall / Planare Graphen 1 / 30 Der Satz von Menger: s t trennende Kantenmenge
Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn
Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn 1. Geschichte - Frage kommt Mitte des 19 Jahrhunderts auf Wie viele Farben benötigt man um eine Karte
Flüsse in Netzwerken
Skript zum Seminar Flüsse in Netzwerken WS 2008/09 David Meier Inhaltsverzeichnis 1 Einführende Definitionen und Beispiele 3 2 Schnitte in Flussnetzwerken 12 2.1 Maximaler s t Fluss..........................
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Vierter Zirkelbrief: Invarianten. 2 Der Satz von Euler 4 2.1 Kurze Einführung in Graphen... 4 2.2 Der Beweis des Eulerschen Polyedersatzes...
Matheschülerzirkel Universität Augsburg Schuljahr 2014/2015 Vierter Zirkelbrief: Invarianten Inhaltsverzeichnis 1 Erste Beispiele 1 2 Der Satz von Euler 4 2.1 Kurze Einführung in Graphen.........................
André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen
André Krischke Helge Röpcke Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen 8 Grundbegriffe der Graphentheorie für die Kante, die die beiden Knoten und verbindet. Der linke Graph in Bild. kann
Ilse Fischer. Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria.
GRAPHEN MÜSSEN NICHT IMMER FUNKTIONEN DARSTELLEN Ilse Fischer Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria. E-mail: [email protected] Zusammenfassung. In der
Kapitel 3. Kapitel 3 Graphentheorie
Graphentheorie Inhalt 3.1 3.1 Grundlagen 3.2 3.2 Das Das Königsberger Brückenproblem 3.3 3.3 Bäume 3.4. 3.4. Planare Graphen 3.5 3.5 Färbungen Seite 2 3.1 Grundlagen Definition. Ein Ein Graph besteht aus
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 23 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung
Definition : Diechromatische Zahl eines Graphen G ist die kleinste Anzahl chromatische Zahl von Farben für eine zulässige Färbung.
4 Definition : Eine zulässige Färbung ist eine Färbung der Knoten des ( un- zulässige Färbung gerichteten ) Graphen, so daß je zwei adjazente Knoten verschiedene Farben haben. Trivial ist, daß n verschiedene
Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke
Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,
Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild
Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene
Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel...
Vier-Farbenproblem Kann man jede Landkarte mit vier Farben färben, sodass keine aneindander angrenzenden Länder die gleiche Farbe haben? Versuchen Sie die Karte Deutschlands oder eines der anderen Bilder
WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung)
WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt
Diskrete Mathematik Hamiltonsche Graphen Teil I Karina Arndt 21.06.2006 Übersicht Einleitung Hamiltonsch und eulersch Hamiltonsche Kreise Hamiltonsche Graphen neu zeichnen Kreise und Wege Reguläre Graphen
1 Mengen und Aussagen
Mathematik für Physiker I, WS 010/011 Montag 01.11 $Id: mengen.tex,v 1.4 010/11/01 14:19:48 hk Exp $ $Id: beweise.tex,v 1.3 010/11/05 06:40:11 hk Exp $ 1 Mengen und Aussagen Wir haben jetzt Allaussagen
MaLa A.Pruchnewski...Klasse 9/10...1
MaLa - 008...............A.Pruchnewski...............Klasse 9/10...............1 Graphentheorie Sei G = (V, E) ein Graph mit der Knotenmenge V und der Kantenmenge E. Der Knotengrad d(v) eines Knoten v
Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).
Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung
Graphen. Graphen und ihre Darstellungen
Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten
Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge
1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten
Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen
Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Algorithmen für Graphen Fragestellungen: Suche
Tag der Mathematik 2013
Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende
Zentralübung zur Vorlesung Diskrete Strukturen
WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:
Übung zur Vorlesung Diskrete Strukturen I
Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt Prof. Dr. J. Csirik. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am. und.
Lineare Algebra II 5. Übungsblatt
Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,
Rechenregeln für Summen
Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal
Algorithmen und Datenstrukturen 2-1. Seminar -
Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8
