Polygone - Bausteine der Computergrafik
|
|
|
- Damian Lenz
- vor 9 Jahren
- Abrufe
Transkript
1 Polygone - Bausteine der Computergrafik Schülerseminar Florian Buchegger Johannes Kepler Universität Linz Dez 12, 2014
2 Wo werden Polygone verwendet? Welche wichtige Algorithmen gibt es?
3 Outline Wo werden Polygone verwendet? Welche wichtige Algorithmen gibt es?
4 Was ist ein Polygon?
5 Was ist ein Polygon? Def: Ein Polygon ist eine geschlossene Form in der Ebene, die durch gerade Strecken begrenzt ist.
6 Was ist ein Polygon? Def: Ein Polygon ist eine geschlossene Form in der Ebene, die durch gerade Strecken begrenzt ist. Polygon (altgriech.): Poly- bedeutet "viel" und -gon bedeutet "Winkel".
7 Polygon oder nicht?
8 Polygon oder nicht? Polygon (gerade Seiten)
9 Polygon oder nicht? Polygon (gerade Seiten)
10 Polygon oder nicht? Polygon (gerade Seiten) Kein Polygon (eine Kurve)
11 Polygon oder nicht? Polygon (gerade Seiten) Kein Polygon (eine Kurve)
12 Polygon oder nicht? Polygon Kein Polygon Kein Polygon (gerade Seiten) (eine Kurve) (offen, nicht geschlossen)
13 Konkav oder konvex Ein Polygon ist konvex, wenn jede gerade Verbindung zweier Punkte des Polygons im Inneren liegt. konvex konkav
14 Konkav oder konvex Ein Polygon ist konvex, wenn jede gerade Verbindung zweier Punkte des Polygons im Inneren liegt. konvex konkav
15 Regulär oder irregulär Sind alle Seiten und Winkel eines Polygons gleich und es ist konvex, dann ist es regulär, sonst ist es irregulär. regulär irregulär
16 Einfach oder komplex Ein einfaches Polygon hat nur eine Randkurve, die sich nicht selbst schneidet. einfach komplex
17 Namen von Polygonen Wir können den Polygonen Namen geben, die von der Anzahl an Ecken abhängen:
18 Namen von Polygonen Name Ecken Form Trigon (Dreieck) 3 Tetragon (Viereck) 4 Pentagon (Fünfeck) 5 Hexagon (Sechseck) 6 Haptagon, Octagon, Nonagon...
19 Beispiele Übungszettel!
20 Wo werden Polygone verwendet? Outline Wo werden Polygone verwendet? Welche wichtige Algorithmen gibt es?
21 Wo werden Polygone verwendet? Nutzen Polygone werden verwendet, um viele Formen zu beschreiben. Komplexe Formen werden dabei entweder durch ein großes, oder durch viele kleinere Polygone angenähert.
22 Wo werden Polygone verwendet? Nutzen Diese Technik wird oft verwendet bei der
23 Wo werden Polygone verwendet? Nutzen Diese Technik wird oft verwendet bei der computerunterstützten Erzeugung von Bildern und Animationen,
24 Wo werden Polygone verwendet? Nutzen Diese Technik wird oft verwendet bei der computerunterstützten Erzeugung von Bildern und Animationen, grafischen Darstellung in Computerspielen,
25 Wo werden Polygone verwendet? Nutzen Diese Technik wird oft verwendet bei der computerunterstützten Erzeugung von Bildern und Animationen, grafischen Darstellung in Computerspielen, Modellierung von Objekten (z.b. Dreiecksnetze),
26 Wo werden Polygone verwendet? Nutzen Diese Technik wird oft verwendet bei der computerunterstützten Erzeugung von Bildern und Animationen, grafischen Darstellung in Computerspielen, Modellierung von Objekten (z.b. Dreiecksnetze), Simulation am Computer, etc.
27 Wo werden Polygone verwendet? Vorteile Polygone werden auf Grund ihrer vielen positven Eigenschaften verwendet: Sie sind effizient und einfach darzustellen. Sie benötigen nur geringen Speicherplatz. Gute Algorithmen für viele Operationen (Schnitt, etc.) sind bekannt.
28 Wo werden Polygone verwendet? Vorteile Speicherung: Wir können das Polygon als eine Liste von Punkten abspeichern. Handhabung: Da die Seiten lineare Funktionen sind, ist es einfach mit ihnen zu rechnen.
29 Welche wichtige Algorithmen gibt es? Outline Wo werden Polygone verwendet? Welche wichtige Algorithmen gibt es?
30 Welche wichtige Algorithmen gibt es? Algorithmen Wollen wir mit Polygonen arbeiten, stellen sich einige Fragen: Welcher Typ von Polygon liegt vor? Liegt ein Punkt innerhalb oder außerhalb von einem Polygon? Welchen Flächeninhalt hat ein Polygon? Schneiden sich zwei Polygone? Welche Schnittmenge haben zwei Polygone? Wie kann man ein Polygon in Dreiecke zerlegen?
31 Welche wichtige Algorithmen gibt es? Punkt in Polygon -Test Das werden wir jetzt in der Gruppe erarbeiten!
32 Welche wichtige Algorithmen gibt es? Punkt in Polygon -Test Beispiel: Teste unseren Algorithmus anhand dieses Beispieles und verifiziere das Ergebnis durch eine Zeichnung: Polygon { (2 1), (3 2), (1 3), (1 0), (1.5 2) } Liegt der Punkt (2 2) im Polygon?
33 Welche wichtige Algorithmen gibt es? Flächenberechnung Gruppenarbeit!
Hallo Welt! für Fortgeschrittene. Geometrie I. Philipp Erhardt. 19. Juli Philipp Erhardt Geometrie I 19. Juli / 27
Hallo Welt! für Fortgeschrittene Geometrie I Philipp Erhardt 19. Juli 2011 Philipp Erhardt Geometrie I 19. Juli 2011 1 / 27 Gliederung 1 Grundlagen 2 CCW 3 Punkt-in-Polygon 4 Pick s Theorem 5 Konvexe Hülle
Sicheres Wissen und Können zu Vierecken und Vielecken 1
Sicheres Wissen und Können zu Vierecken und Vielecken 1 Die Schüler können Figuren als Viereck, Fünfeck, Sechseck usw. bezeichnen und können solche Figuren skizzieren (ohne Angabe von Maßen). Die Schüler
Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 9 Stand 2008 Lehrbuch: Mathematik heute 9
Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 9 Stand 008 Lehrbuch: Mathematik heute 9 Inhalte Seiten Kompetenzen gemäß Kerncurriculum Eigene Bemerkungen Lineare Gleichungssysteme Lineare
Parallelogramme und Dreiecke A512-03
12 Parallelogramme und Dreiecke A512-0 1 10 Dreiecke 01 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke und sind gleichschenklig. 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A = A = 61, cm2,56
Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 10 Stand 2008 Lehrbuch: Mathematik heute 10
Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 0 Stand 008 Lehrbuch: Mathematik heute 0 Inhalte Seiten Kompetenzen gemäß Kerncurriculum Eigene Bemerkungen Quadratische Gleichungen Quadratischen
S T E R N E U N D P O L Y G O N E
Ornament Stern und Polygon (S. 1 von 11) / www.kunstbrowser.de S T E R N E U N D P O L Y G O N E Polygone und Sterne in regelmäßiger Form sind ein wichtiges Grundmotiv in der Ornamentik, da sie v ielf
2.4. Triangulierung von Polygonen
Als drittes Problem haben wir in Kapitel 1 die Triangulierung von Polygonen identifiziert, die etwa bei der Überwachung eines Museums durch Kameras auftritt. F70 F71 Definition und Theorie: Definition
2. Platonische Körper
2 Platonische Körper 27 2. Platonische Körper Dieses Kapitel legt den Schwerpunkt auf die Geometrie. Geometrie in der Grundschule befasst sich mit zwei zentralen Gebieten: Symmetrie und Raumvorstellung.
Algorithmische Geometrie 1. Einführung
Algorithmische Geometrie 1. Einführung JProf. Dr. Heike Leitte Computergraphik und Visualisierung Algorithmische Geometrie Veranstaltung: 2 SWS Vorlesung: Mi, 9:15 10:45 1 SWS Übung: Do 14:00 16:00 Übungen:
Algorithmische Geometrie: Einstimmung
Algorithmische Geometrie: Einstimmung Nico Düvelmeyer WS 2009/2010, 20.10.2009 Überblick 1 Organisatorisches 2 Fachgebiet Typische Untersuchungsgegenstände Typische Anwendungsgebiete 3 Inhalte der Vorlesung
Triangulierung von einfachen Polygonen
Triangulierung von einfachen Polygonen - Seminarvortrag von Tobias Kyrion - Inhalt: 1.1 Die Problemstellung Quellenangabe 1.1 Die Problemstellung Definition Polygon: endlich viele paarweise verschiedene
Aufgabe 1. Wie muss? richtig angeschrieben werden?
Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 2 Wie gross ist die Summe der Innenwinkel im konvexen und konkaven Viereck? Aufgabe 2 Wie gross
Übersicht. Begriffserklärung Motivation / Anwendungen Drei Algorithmen Zusammenfassung Fragen Quellen. Triangulierung von Steffen Ernst 2
Triangulierung Übersicht Begriffserklärung Motivation / Anwendungen Drei Algorithmen Zusammenfassung Fragen Quellen Triangulierung von Steffen Ernst 2 Begriffserklärung Ein Graph ist trianguliert, wenn
Geometrische Modellierung mittels Oktalbäumen und Visualisierung von Simulationsdaten aus der Strömungsmechanik. Klaus Daubner
Geometrische Modellierung mittels Oktalbäumen und Visualisierung von Simulationsdaten aus der Strömungsmechanik Klaus Daubner 1 / 22 Übersicht Motivation Geometriemodelle Oberflächenmodelle Volumenmodelle
Sicheres, vernetztes Wissen zu geometrischen Formen
Sicheres, vernetztes Wissen zu geometrischen Formen SINUS Veranstaltung Grundschule Egelsbach 08.12. 2011, 14:30-17:30 Uhr Renate Rasch, Universität Koblenz-Landau, Campus Landau [email protected]
5. Gitter, Gradienten, Interpolation Gitter. (Rezk-Salama, o.j.)
5. Gitter, Gradienten, Interpolation 5.1. Gitter (Rezk-Salama, o.j.) Gitterklassifikation: (Bartz 2005) (Rezk-Salama, o.j.) (Bartz 2005) (Rezk-Salama, o.j.) Allgemeine Gitterstrukturen: (Rezk-Salama, o.j.)
Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone
Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer
Seminar. Algorithmische Geometrie
Seminar Algorithmische Geometrie WS 2000/2001 Thema: Konvexe Hülle Mirko Dennler 21439 Inhaltsverzeichnis Konvexe Hülle 1. Problemstellung 3 2. GRAHAMS SCAN 4-5 3. JARVIS' MARCH 5-6 4. QUICK HULL 6-7 5.
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Multimedia für Referate und Präsentationen
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Multimedia für Referate und Präsentationen Das komplette Material finden Sie hier: School-Scout.de Computergrafik Computergrafik umfasst
Tutorial zum Umgang mit Scratch
Tutorial zum Umgang mit Scratch In diesem Tutorial sollst du die grundlegenden Funktionen von Scratch ausprobieren und kennen lernen Danach solltest du gut mit dem Programm umgehen können und eigene Programme
Über die regelmäßigen Platonischen Körper
Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben
Aufgabe S 1 (4 Punkte)
Aufgabe S 1 (4 Punkte) Bei einer Folge a 1, a 2, a 3,... ist a 1 = 7 2 = 49. Für das nächste Glied der Folge nimmt man die Quersumme der Zahl, addiert 1 und quadriert diese Zahl, also a 2 = (4 + 9 + 1)
Algorithmische Geometrie
Algorithmische Geometrie Martin Peternell TU Wien 31. Fortbildungstagung für Geometrie 2010, Strobl 1 Themen der Algorithmische Geometrie Entwurf von Algorithmen für geometrische Fragestellungen betreffend
M. Pester 29. Ein konvexes d-polytop ist eine begrenzte d-dimensionale polyedrale Menge. (d = 3 Polyeder, d = 2 Polygon)
M. Pester 29 6 Konvexe Hülle 6.1 Begriffe Per Definition ist die konvexe Hülle für eine Menge S von lich vielen Punkten die kleinste konvexe Menge, die S enthölt (z.b. in der Ebene durch ein umspannes
8. Modelle für feste Körper
8. Modelle für feste Körper Modell: Abbild der Realität, welches bestimmte Aspekte der Realität repräsentiert (und andere ausblendet) mathematische Modelle symbolische Modelle Datenmodelle Experimentalmodelle
Geometrie I. Sebastian Redinger Informatik 2 Programmiersysteme Martensstraße Erlangen
Geometrie I Sebastian Redinger 01.07.2015 Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen CCW Polygone Picks Theorem Konvexe Hülle - Graham Scan - Jarvis March 2 Gliederung
Es sei P ein einfaches Polygon in der Ebene; P habe n Ecken. Hilfssatz: Zu jedem einfachen Polygon mit mehr als 3 Ecken existiert eine Diagonale.
6. Polygontriangulierung: Wie bewacht man eine Kunstgalerie? 6.1. Grundlegendes zu Polygonen Es sei P ein einfaches Polygon in der Ebene; P habe n Ecken. Definition: Hilfssatz: Zu jedem einfachen Polygon
Ausbildungsberuf KonstruktionsmechanikerIn. Projekt Abzugshaube Anm.: Blechstärke wird nicht berücksichtigt Lernfeld/er:
Ausbildungsberuf KonstruktionsmechanikerIn Einsatzgebiet/e: Metallbau Schiffbau Schweißen Projekt Abzugshaube Anm.: Blechstärke wird nicht berücksichtigt Lernfeld/er: Inhalt/e Technische Kommunikation
Ingenieurmathematik mit MATLAB
Dieter Schott Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure Mit 179 Abbildungen, zahlreichen Beispielen, Übungsaufgaben und Lernkontrollen Fachbuchverlag Leipzig im Carl Hanser Verlag
Triangulierung von einfachen Polygonen
Triangulierung von einfachen Polygonen Tobias Kyrion Inhaltsverzeichnis 1.1 Die Problemstellung....................... 1 2.1 Ein naiver Algorithmus...................... 2 3.1 Zerlegung in monotone Teilpolygone..............
Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $
$Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei
Orientierungsmodul Oberstufe OS 1. Zahlen auf dem Zahlenstrahl darstellen und interpretieren. natürliche Zahlen bis 2 Millionen lesen und schreiben
ernziele Inhalt/ernziele Zahlendarstellung Zahlen auf dem Zahlenstrahl darstellen und interpretieren natürliche Zahlen bis 2 Millionen lesen und schreiben Schwierigkeitsgrad A1 73%, A2 57%, A4 56% A3 68%
Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen
Vorlesung Algorithmen für hochkomplexe Virtuelle Szenen Sommersemester 2012 Matthias Fischer [email protected] Vorlesung 12 26.6.2012 Matthias Fischer 374 Übersicht Motivation Modell der Sichtbarkeit Eigenschaft
6. Triangulation von Polygonen
1 6. Triangulation von Polygonen 2 Problemstellung 3 Problemstellung 4 Problemstellung 5 Problemstellung 6 Jedes Polygon lässt sich triangulieren. Wir führen einen Induktionsbeweis nach der Anzahl der
Geometrische Algorithmen Voronoi-Diagramme. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Voronoi-Diagramme
Folie 1 von 32 Geometrische Algorithmen Voronoi-Diagramme Folie 2 von 32 Voronoi-Diagramme Übersicht Problemstellung Animation zur Konstruktion eines Voronoi-Diagramms Definition, Eigenschaften eines Voronoi-Diagramms
Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $
$Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der
Dynamische Geometrie
Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage
Quadtrees und Meshing
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.06.2012 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung
Quadtrees und Meshing
Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 21.06.2011 Motivation: Meshing von Platinenlayouts Zur Simulation
Lisa und ihre Freundin haben in den Ferien einen Kochkurs besucht. Nun versuchen sie eine Torte nach einem Rezept im Internet zu backen.
Muster 1 131. Setze die fehlende Malrechnung so ein, dass die Waage im Gleichgewicht ist. 4 9 3 8 8 5 8 5 151. Für welche Zahl steht das Smily am Schluss? 40 - = 32 + =. 3 = : 6 = Für das Smily steht die
2.3. Das Vektorprodukt
2.3. Das Vektorprodukt In sehr vielen mathematischen und physikalisch-technischen Problemstellungen geht es darum, zu einer gegebenen Fläche deren Inhalt und auf ihr senkrecht stehende Vektoren zu bestimmen.
Zentrische Streckung Mündliche Aufgaben
Zentrische Streckung Mündliche Aufgaben Aufgabe 1 Was ist eine zentrische Streckung mit Zentrum Z und Streckungsfaktor k? Aufgabe 1 Was ist eine zentrische Streckung mit Zentrum Z und Streckungsfaktor
Geometrie I. Polygone. Dominik Huber Hallo Welt! für Fortgeschrittene. Informatik 2 Programmiersysteme Martensstraße Erlangen
Geometrie I Polygone Dominik Huber 28.5.2018 Hallo Welt! für Fortgeschrittene Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Wiederholung Analytische Geometrie Abstand Punkt
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86
Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................
Algorithmische Geometrie 3. Schnitte von Liniensegmenten
Algorithmische Geometrie 3. Schnitte von Liniensegmenten JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.
Einführung in die Geometrie - Grundbegriffe. 2. Teil
Einführung in die Geometrie - Grundbegriffe 2. Teil 12. Dezember 2018 Inhaltsverzeichnis 1.7 Winkelkonstruktionen........................ 40 1.7.1 Das Halbieren eines Winkels................ 41 1.7.2 Die
Geometrie 1. Christian Bay Christian Bay Geometrie / 46
Geometrie 1 Christian Bay 02.07.2013 Christian Bay Geometrie 1 02.07.2013 1 / 46 Inhaltsverzeichnis Grundlagen CCW Polygone Picks Theorem Konvexe Hülle Christian Bay Geometrie 1 02.07.2013 2 / 46 Geometrie
Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):
Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische
MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. Anzahl 12 3 15 8 Preis (e),20 1,05 5,25 2,80 P2. a) 12,5 % b) 0 g 28 g entsprechen 70 % P3. a) (1),
Geometrie der Polygone Sterne Markus Wurster 1
Geometrie der Polygone Teil 1 Sterne Geometrie der Polygone Sterne Markus Wurster 1 Fünfeck Pentagon 1. Zeichne ein Fünfeck (verwende die Figur in der Geometrischen Kommode). 2. Zeichne einen Stern: Ziehe
Quadtrees und Meshing
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.06.2014 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung
Prozedurales Programmieren und Problemlösungsstrategien
Prozedurales Programmieren und Problemlösungsstrategien Bachelorstudiengänge Umwelttechnik und Maschinenbau Prof. Dr. Thomas Hoch Problemlösungsstrategien Prozedurales Programmieren und Problemlösungsstrategien
Ingenieurmathematik mit MATLAB
Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure Bearbeitet von Dieter Schott 1. Auflage 2004. Buch. 520 S. Hardcover ISBN 978 3 446 22043 0 Format (B x L): 17,7 x 24,7 cm Gewicht: 1073
Das Problem der Museumswächter
Das Problem der Museumswächter Laura Wartschinski November 15, 2015 Definition Gegeben sei eine polygonale Fläche G mit Rand G, interpretiert als Grundriss eines Museums. Wähle nun möglichst wenige Punkte
(Max Bill) . Gilt A 0 A 4 A 2
19 3. Reguläre Polygone (Max Bill) Definitionen: 1. Ein Polygon ist ein Streckenzug. Dieser kann geschlossen oder offen sein. (Wir betrachten nur ebene Polygone.) Die Ecken werden aufeinander folgend nummeriert:
Algorithmische Geometrie: Delaunay Triangulierung (Teil 1)
Algorithmische Geometrie: Delaunay Triangulierung (Teil 1) Nico Düvelmeyer WS 2009/2010, 26.1.2010 Überblick 1 Motivation Interpolation von Höhendaten 2 Triangulierungen von ebenen Punktmengen 3 Delaunay
Projektionskurve Abiturprüfung LK Bayern 2003
Projektionskurve Abiturprüfung LK Bayern 03 In einem kartesischen Koordinatensystem des R 3 ist die Ebene H: x 1 + x 2 + x 3 8 = 0 sowie die Schar von Geraden ( a 2 ) ( ) 3a g a : x = 0 a 2 + λ 3a 8, λ
Cell Decomposition & Potential Field
Seminar EXRPR Cell Decomposition & Potential Field Gruppe 2: Thomas Janu Martin Koch Adrian J. Merkl Matthias Schneider Cell Decomposition & Potential Field 20.06.2005 Gruppe 2 Gliederung (1) 1.Cell Decomposition
Mathematik für Techniker
Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe
KGS Curriculum Mathematik Hauptschule Klasse 5. Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene Bemerkungen Kapitel 1 Zahlen und Daten
Cornelsen: Schlüssel zur Mathematik Klasse 5 Differenzierende Ausgabe Niedersachsen ISBN: 978-3-06-006720-6 KGS Curriculum Mathematik Hauptschule Klasse 5 Inhalte Inhaltsbereiche gemäß Kerncurriculum Eigene
Dualität + Quad-trees
Übung Algorithmische Geometrie Dualität + Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 30.06.2011 Übersicht Übungsblatt 10 - Dualität
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass
16. Platonische Körper kombinatorisch
16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder
Orientierungsmodul Oberstufe OS 2 OS 2 _Mathematik_71. Zahlen auf dem Zahlenstrahl darstellen und interpretieren
Inhalt/ Orientierungsmodul Oberstufe O 2 O 2 _Mathematik_71 Zahlendarstellung Zahlen auf dem Zahlenstrahl darstellen und interpretieren A1, A2, A3, A5 natürliche Zahlen bis 2 Millionen lesen und schreiben
Kongruenz, Vierecke und Prismen
Kongruenz, Vierecke und Prismen Kongruente Figuren Ziele: Begriff: Kongruenz, Kongruenzsätze für Dreiecke Schrittfolgen für Konstruktionen beschreiben, über Eindeutigkeit entscheiden kongruente Teilfiguren
Kreissektoren - Bogenlänge und Sektorfläche
Kreissektoren - Bogenlänge und Sektorfläche 1 In folgender Tabelle ist r Radius, b Bogenlänge und φ Mittelpunktswinkel eines Kreissektors A s ist dessen Flächeninhalt Berechne die fehlenden Größen: r φ
Parallele Algorithmen in der Bildverarbeitung
Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren
Geometrie der Polygone Konstruktionen Markus Wurster 1
Geometrie der Polygone Teil 6 Klassische Konstruktionen Geometrie der Polygone Konstruktionen Markus Wurster 1 Sechseck Gegeben ist der Umkreis des Sechsecks Zeichne einen Kreis mit dem gewünschten Radius
Vorlage für das Schulcurriculum Qualifikationsphase
Vorlage für das Schulcurriculum Qualifikationsphase Grundkurs/grundlegendes Anforderungsniveau Kompetenzen/ Fähigkeiten L1 Leitidee: Algorithmus und Zahl - lösen lineare Gleichungssysteme mithilfe digitaler
30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen
30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 1 OJM 30. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
Triangulierung von Polygonen und das Museumsproblem
Triangulierung von Polygonen und das Museumsproblem (Literatur: deberg et al., Kapitel 3) 1 Motivation: Das Museumsproblem ein Museum soll durch Kameras überwacht werden wie viele Kameras werden benötigt?
Geodatenbanksysteme in Theorie und Praxis
Themas Brinkheff Geodatenbanksysteme in Theorie und Praxis Einführung in objektrelationale Geodatenbanken unter besonderer Berücksichtigung von Grade Spatial 2., überarbeitete und erweiterte Auflage @
KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:
KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur
Kapitel 6: Algorithmen der Computer-Geometrie
LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Kapitel 6: Algorithmen der Computer-Geometrie Skript zur Vorlesung Geo-Informationssysteme Wintersemester 2015/16 Ludwig-Maximilians-Universität
Kompetenzbereich. Kompetenz
Faltkunst Du vertiefst dein Verständnis für Achsenspiegelungen und achsensymmetrische Figuren, indem du vom einfachen Scherenschnitt bis zur anspruchsvollen Origamifigur vieles mit Papier umsetzt. Die
Vorschlag für ein Schulcurriculum zu Mathematik heute 10 auf Basis des Kernlehrplans Realschule Niedersachsen
Vorschlag für ein Schulcurriculum zu Mathematik heute 0 auf Basis des Kernlehrplans Realschule Niedersachsen Welches sind die wesentlichen Kompetenzen für die Jahrgangsstufen 9 / 0? Die folgende Tabelle
Mathematik. Grundstufe II Aufbau der natürlichen Zahlen. Mathematisches Denken weiter entwickeln und anwenden
Mathematik Grundstufe II Aufbau der natürlichen Zahlen Mathematisches Denken weiter entwickeln und Festigen von Zahlenvorstellungen und Zahlenverständnis im bekannten Zahlenraum Erarbeitung des Zahlenraums
Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6
Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke
KGS Curriculum Mathematik Hauptschule Klasse 5
KGS Curriculum Mathematik Hauptschule Klasse 5 Lehrwerk: Maßstab Band 5 Verlag: Schrödel Inhalte Kapitel 1 Zahlen und Daten - Fragebogen auswerten, Strichlisten, Tabellen und Diagramme anlegen - Zahlen
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
Geometrische Algorithmen
Geometrische Algorithmen Thomas Röfer Motivation Scan-line-Prinzip Konvexe Hülle Distanzprobleme Voronoi-Diagramm Rückblick Manipulation von Mengen Vorrangwarteschlange Heap HeapSort swap(a, 0, 4) 1 5
Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel
Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften
Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel
Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften
Modul 206 Regelmäßige Vielecke!
Modul 206 Regelmäßige Vielecke! Regelmäßige Vielecke In- und Umkreise Gleichseitiges Dreieck h = 3 2 s s h r r s r = 2 3 h = 3 3 s ρ = 1 3 h = 3 6 s s A = 3 4 s2 Gleichseitiges Dreieck Gleichseitiges Dreieck
