MATERIE im. Kapitel 13

Größe: px
Ab Seite anzeigen:

Download "MATERIE im. Kapitel 13"

Transkript

1 5 1 Kapitel 13 MATERIE im MAGNETFELD = > Das Magnetfeld einer Stromschleife gleicht im Fernfeld dem Feld eines Permanentmagneten. Das magnetische Moment einer Stromschleife mit einer einzelnen Windung um die Fläche S = a b ist µ mag = I S ˆn (13.1) Der Normalenvektor ˆn auf die Fläche S bildet mit der Umlaufrichtung von I eine Rechtsschraube. Diese Anordnung bezeichnet man magnetischer Dipol. Das atomare magnetische Moment, das mit dem Drehimpuls L verbunden ist, beträgt µ bahn = e 2m L (13.2) Neben dem Bahndrehimpuls liefert auch der Eigendrehimpuls des Elektrons (Spin) einen Beitrag zum magnetischen Moment eines Atoms (siehe Seite 69). In einem homogenen äußerem Magnetfeld B erfährt jeder der Abschnitte a dieser Stromschleife die Kraft ( F mag = a I ê a B ) (13.3) Mit ê a und ê b bezeichnen wir die Einheitsvektoren in den Abschnitten a und b der Schleife. Ist die Stromschleife drehbar um die vertikale Achse (parallel zu 111

2 5 112 KAPITEL 13. MATERIE IM MAGNETFELD den Vektoren ê a ) entsteht das Drehmoment: D mag = 2 b ( ê b F 2 ) ( = a b I ê b ê a B ) ( = I S ˆn B ) = µ mag B (13.4) Die potentielle Energie des Dipols im homogenen Feld beträgt W mag = µ mag B (13.5) Im inhomogenen Feld erfährt der magnetische Dipol die Kraft (siehe Seite 67) F = µ B r (13.6) 13.1 Magnetisierung Das Magnetfeld einer Spule kann verstärkt werden, wenn man in die Spule ein geeignetes Material einbringt. Zum Beispiel steigt das Feld eines Elektromagneten mit Weicheisenkern um den Faktor Wir zeigen das an einem Induktionsexperiment. Zur Charakterisierung der Feldverstärkung führt man eine dimensionslose Größe ein, die relative Permeabilität µ = B mat B vac (13.7) Für die meisten Matrialien ist µ 1. In der Elektrostatik fanden wir, dass Dielektrika immer in ein inhomogenes Feld hineingezogen werden. Im Zusammenhang mit dem Magnetismus findet man Materialien, die in ein inhomogenes Feld hineingezogen werden (paramagnetische), und andere, die aus dem Feld herausgestoßen werden (diamagnetische). Dies zeigt ein Experiment mit Polschuhen, die einen starkem Feldgradienten erzeugen. Diamagnetisch sind zum Beispiel Wismut, H 2 O, Kupfer, Blei. In diesen Fällen liegt ohne externes Feld kein resultierendes permanentes magnetisches Dipolmoment vor. In diamagnetischen Materialien werden beim Einbringen der Substanz in das Magnetfeld atomare Ströme induziert. Nach der Lenz schen Regel ist die Stromwirkung der Zunahme des externen Feldes entgegengerichtet. Das induzierte magnetische Dipolmoment ist dem äußeren Feld entgegengerichtet. Diese Stoffe haben µ < 1. Der Diamagnetismus ist temperaturunabhängig. Paramagnetisch sind zum Beispiel Aluminium und (flüssiger) Sauerstoff. Atomare magnetische Momente sind permanent vorhanden. Diese atomaren Momente werden im Feld ausgerichtet und verstärken das externe Feld. Die Ausrichtung der atomaren Momente wird durch thermische Bewegung behindert. Diese Stoffe haben µ > 1. Ihre Permeabilität ist temperaturabhängig, µ 1/T.

3 MAGNETISIERUNG 113 Analog zur elektrischen Polarisation definiert man eine Magnetisierung. Die Magnetisierung ist die Vektorsumme über alle atomaren magnetischen Momente pro Volumeneinheit: M = 1 V µ mag (13.8) V Schematisch lässt sich für eine magnetisierte Substanz ein Oberflächenstrom (als Resultierende aller atomaren Kreisströme) einführen. Wenn wir das gesamte magnetische Moment eines Zylinders der Länge L und der Querschnittsfläche S mit M V = M L S einführen, dann können wir in Analogie mit dem magnetischen Moment der Stromschleife einen Magnetisierungsstrom pro Längeneinheit einführen als I M = M. Das folgt aus der Definition des magnetischen Momentes pro Längeneinheit als I M S und des gesamten magnetischen Momentes des Zylinders (Volumen V = L S), I M L S 1 Für das Magnetfeld einer Spule in Anwesenheit einer magnetisierten (oder magnetisierbaren) Substanz summieren wir das Feld der externen Stromschleife 1 und das Magnetisierungsfeld der Substanz: B = µ 0 (w I frei + I M ) = µ 0 (w I frei + M) (13.9) 1 B H A E oder B µ 0 M = w I frei (13.10) Für diesen Ausdruck führen wir ein neues Vektorfeld H ein, B µ 0 M = H (13.11) die magnetische Erregung. 2 Sie wird nur durch die freien Ströme erzeugt. Die Dimension von H ist A/m. Die Dimension von B ist V s/m 2 = T esla. Im Gegensatz dazu ist B, die magnetische Feldstärke, mit dem gesamten Strom verbunden (freie und atomare Ströme). Experimentell findet man M = χ H (13.12) wobei χ die magnetische Suszeptibilität genannt wird. Damit gilt in Anwesenheit von Materie: B = µ 0 (1 + χ) H = µ 0 µ H (13.13) 1 w gibt die Zahl der Windungen pro Meter an und I frei den freien Strom, der durch die Windungen fließt. 2 Häufig wird in der Literatur für H der Name magnetische Feldstärke und für B die Bezeichnung magnetische Flussdichte oder magnetische Induktion verwendet.

4 114 KAPITEL 13. MATERIE IM MAGNETFELD wobei µ = 1 + χ ist. Im Vakuum hingegen ist µ = 1 und es gilt B = µ 0 H. Amperesches Gesetz für Materie: H = j frei. Die freien Ströme erzeugen das äußere Magnetfeld B vac = µ 0 H, in dem die Materie gebadet wird. Im Inneren der Materie herrscht das Feld B mat = µ µ 0 H. Analogie: E steht für alle Ladungen, B steht für alle Ströme, D für die freien Ladungen. H für die freien Ströme Diamagnetismus Kennzeichen des Diamagnetismus sind: χ 10 6 µ < 1 B mat < Bvac (13.14) Diamagnetismus ist eine Induktionserscheinung, die bei allen Substanzen auftritt. Allerdings wird dieser Effekt überdeckt, wenn die Substanz paramagnetisch oder ferromagnetisch ist. Beobachtbar ist der Diamagnetismus nur bei Substanzen, die kein permanentes magnetisches Dipolmoment besitzen. Die induzierten Dipolmomente sind dem induzierenden Feld entgegengerichtet. Das Feld im Inneren der Probe ist kleiner. Die Suszeptibilität ist klein und negativ. Atomares Bild: Beim Einschalten des Magnetfeldes (beim Einbringen des Atoms in das Magnetfeld) entsteht über B/ t ein zirkulares E-Feld. Dieses induziert einen Strom in der Elektronendichteverteilung im Atom. Dieser Wahrscheinlichkeitsstrom ist rotationssymmetrisch zur Achse des magnetischen Feldes. Mit diesem Strom verbunden ist ein magnetisches Moment, das dem äußeren Feld entgegengerichtet ist. Ein klassisches Modell geht von einem Elektron der Masse m und Ladung e aus, das sich im Mittel im Abstand R vom Proton befindet. Ein externes Magnetfeld wird eingeschaltet, die Induktion erzeugt ein E-Feld. Aus der zeitlichen Änderung des magnetischen Flusses E d s = d dt Φ m = πr 2 d dt B (13.15) erhalten wir E = R 2 d dt B (13.16) Das elektrische Feld bewirkt ein Drehmoment auf das Elektron D = e E R (13.17) Das entspricht einer zeitlichen Änderung des Drehimpulses dl dt = e R2 2 d dt B (13.18)

5 13.3. PARAMAGNETISMUS 115 Die Integration von t = 0 (kein B-Feld) bis zum Zeitpunkt t (Feld gleich B), ergibt die Änderung des Drehimpulses infolge der Induktion als L = e R2 2 B (13.19) Das magnetische Moment aus der Bahnbewegung war µ bahn = e 2m L. Damit liefert der Diamagnetismus immer folgendes zusätzliches Moment: µ dia = e2 R 2 4m B (13.20) Dieser Beitrag zum magnetischen Moment ist unabhängig vom Umlaufssinn und Vorzeichen der Ladung. Er hängt ab von der räumlichen Ausdehnung der Elektronendichte im Atom. Typisch liegt R für Atome im elektronischen Grundzustand 3 im Bereich von etwa einem Ångstrøm (1 Å m) Paramagnetismus Kennzeichen des Paramagnetismus sind: χ > 0 µ > 1 B mat > B vac (13.21) Paramagnetisch sind z.b. Atome und Moleküle mit einer ungeraden Anzahl von Elektronen. Dann besitzen sie nicht abgesättigte magnetische Momente. Der Paramagnetismus kann als Kopplungsenergie zwischen dem äußeren Magnetfeld und dem mit der Bahnbewegung (bzw. dem Spin) verbundenen magnetischen Moment angesehen werden. µ bahn = e 2m L = µ B h L, (13.22) wobei das Bohrsche Magneton definiert ist als µ B = e h = J/T (13.23) 2m Die potentielle Energie des magnetischen Dipols im äußeren Magnetfeld ist W = µ bahn B = µ B h L B. (13.24) Das magnetische Moment erfährt ein Drehmoment D = µ bahn B. Die Vektoren L und µ bahn präzidieren auf einem Kegelmantel um die z-achse. Gemäß der Quantentheorie bleiben ihre z-komponenten zeitlich konstant und nur solche z-komponenten sind erlaubt, für die sich die Komponente L z um einen Wert von h unterscheidet (siehe Seite 69): L z = m h mit l m l. (13.25) Für B = {0, 0, B}, erhalten wir als zusätzliche potentielle Energie eines wasserstoffartigen Zustandes (n, l, m) in einem Magnetfeld W pot = m µ B B (13.26) 3 Damit ist gemeint, dass die Elektron sich in dem tiefsten Energieniveaus befinden.

6 2 C KAPITEL 13. MATERIE IM MAGNETFELD wobei m die magnetische Quantenzahl ist. Dieses atomare magnetische Moment ist unabhängig von B, man nennt diesen Anteil paramagnetisch. 4 Die atomaren Momente zeigen ohne äußeres Magnetfeld in beliebige Raumrichtungen. Wenn ein Magnetfeld eingeschaltet wird, versucht es, die ato- maren Magnete über das Drehmoment (10.3) auszurichten. Die thermische Bewegung verhindert die völlige Ausrichtung, sodass ein effektives magnetisches 6 Moment! M = N µ (13.27) entsteht, das von der Temperatur abhängt. N gibt die Dichte der paramagnetischen Atome an und µ die mittlere z-komponente der magnetischen Momente der Atome (das externe Magnetfeld ist entlang z angenommen). Bei hohem Feld, bzw. bei kleiner Temperatur tritt Sättigung durch die maximal erlaubte Ausrichtung ein. Adiabatische Entmagnetisierung Ein paramagnetisches Material befindet sich in einem starkem B-Feld bei sehr kleiner Temperatur. Die Magnetisierung ist nahezu gesättigt. Jetzt unterbricht man den Kontakt zum Kühlbad (die Probe befindet sich im Vakuum) und schaltet das Magnetfeld langsam aus. Die geringe, noch vorhandene thermische Energie wird jetzt verwendet, um die atomare Momente isotrop zu verteilen. Der damit verbundene Energieverbrauch (Entropiegewinn) erniedrigt die Temperatur der Probe. Spezielle Substanzen können mit adiabatischer Entmagnetisierung bis auf einige 10 6 K abgekühlt werden Ferromagnetismus Kennzeichen des Ferromagnetismus sind: χ 0 µ 1 B mat B vac (13.28) Die Magnetisierung kann um Größenordnungen über der bei paramagnetischen Stoffen liegen (z. B. hat Mumetall, eine Mischung von Ni, Cu, Co einen Wert von µ 10 5 ). Für ferromagnetische Stoffe ist M ist keine eindeutige Funktion des äußeren Magnetfeldes, sondern hängt von der magnetischen Vorgeschichte des Materials ab. Man unterscheidet magnetisch harte (große Remanenz) und magnetisch weiche Materialien (kleine Remanenz). Die Fläche Hystereseschleife ist ein Maß für die Remanenz. H 0 0 Bei ersten Anschalten einer magnetischen Erregung entwickelt sich das B-Feld 4 Unter Berücksichtigung des Spins gelten analoge Überlegungen für das magnetische Moment, das mit dem Gesamtdrehimpuls J = L + S verbunden ist. 2! 2 H

7 13.4. FERROMAGNETISMUS 117 von 0 nach P 1 entlang der sogenannten Neukurve. Nach Abschalten von H fällt das B-Feld nur langsam auf den Wert B r (das Remanenzfeld) ab. Auf Null kommt man erst durch Anlegen einer gegenpoligen Erregung H k, der sogenannten Koerzitivkraft. Bei Durchlaufen der Hysteresekurve wird Energie zum Ausrichten der Dipole verwendet und in Wärmeenergie der Probe umgewandelt. Für einen Dauermagneten fordert man große Remanenz, für den Eisenkern eines Transformators einen Werkstoff möglichst geringer Hysterese. In der Gasphase (einzelne Atome) ist jedes ferromagnetische Material paramagnetisch. In Festkörpern führt die Wechselwirkung zwischen Elektronenspins benachbarter Atome zu einer spontanten Magnetisierung, wobei eine Ausrichtung der Momente benachbarter Atome in kleinen Bereichen (Weiß sche Bezirke) erfolgt. Das Bild zeigt die mikroskopische Struktur eines Ferromagneten, die Weiß schen Bezirke. Ohne äußeres Feld sind einzelne Weiß sche Bezirke statistisch verteilt. Innerhalb des Bezirkes sind die Dipolmomente ausgerichtet. Bei Anlegen der äußeren Erregung richten sich ganze Bezirke aus. Für durchsichtige ferromagnetische Materialien (dünne Filme im Bereich von wenigen µm) können die Grenzen der Bezirke sichtbar gemacht werden, da an den Grenzen eine vom Bezirk unterschiedliche Polarisationsdrehung von polarisierten Licht stattfindet (Aufnahme über Mikroskop). Eine genaue Beobachtung der Hysteresekurve zeigt, dass diese keine glatte Kurve ist, sondern Barkhausen Sprünge aufweist. Das Umklappen ganzer Bezirke kann hörbar gemacht werden, wenn man die statistisch ansteigende Magnetisierung über eine Induktionsspule einem Verstärker und Lautsprecher zuführt. 0 Der Ferromagnetismus verschwindet oberhalb der Curie-Temperatur. Bei der Curietemperatur übersteigt die thermische Energie (kt ) die Wechselwirkungsenergie aus der geordneten Ausrichtung der magnetischen Dipolmomente. Ferromagentische Stoffe werden oberhalb der Curie-Temperatur paramagnetisch. Mit dem Einstein-de-Haas Experiment konnte man zeigen, daß der Ferromagnetismus seinen Ursprung im Spin der Elektronen hat.

8 118 KAPITEL 13. MATERIE IM MAGNETFELD 13.5 Felder an Grenzflächen Elektrostatik: An einer Oberfläche mit der Flächenladungsdichte σ macht (siehe Seite 16) die Normalkomponente von E einen Sprung von σ/ɛ 0. Wegen der Polarisationsladungen erniedrigt sich beim Übergang vom Vakuum in ein Medium mit der Dielektrizitätskonstante ɛ die Normalkomponente der elektrischen Feldstärke E vac = ɛ E diel (13.29) Mit dem Stokes schen Satz lässt sich aus E = 0 zeigen (siehe Seite 49): Die Tangentialkomponente von E geht stetig über. Im Spezialfall eines leitendes Mediums verschwindet in der Elektrostatik die Feldstärke im Inneren des Leiters. Die freien Ladungen sitzen an der Oberfläche. Auf einer Metalloberfläche gibt es nur eine Normalkomponente von E und diese ist durch die Flächenladungsdichte σ bestimmt. Eine Tangentialkomponente von E würde zu Strömen führen. Diese verschieben die Ladungen solange, bis diese Komponente Null ist. Magnetostatik: Wenn keine freien Ströme vorliegen ( H = j frei = 0 ) gilt analog: Die Tangentialkomponente von H geht stetig über. Daraus folgt, dass sich beim Übergang vom Vakuum in ein Material mit der Permeabilität µ die Tangentialkomponente der magnetischen Feldstärke erhöht B vac = 1 µ Bmat (13.30) und B vac = B mat (13.31) Die Normalkomponente von B geht stetig über. Diese Bedingungen führen zu einem Brechungsgesetz für die Komponenten der magnetischen Feldstärke, das die starken magnetischen Abschirmeigenschaften von Material mit hohem Wert von µ vorhersagt (µ-metall). L =? L =? L =? = J L =? K K = J = J

9 @ ELEKTROMAGNETE Elektromagnete Wir betrachten eine toroidale Spule (Radius R) mit N Windungen, durch die ein Strom I fließt. Die Spule ist mit einem geschlossenen Weicheisenkern gefüllt. Die große Permeabilität des Kerns (µ 10 4 ) erhöht die magnetische Feldstärke im Weicheisenring. Diese Überhöhung kann man in einen kleinen Luftspalt des Rings auskoppeln, das Konzept hinter magnetischen Polschuhen. Auf Grund von H = j frei gilt für den geschlossenen Integrationsweg H d s = 2Rπ H = N I (13.32) da der Strom I N-mal durch die Kreisfläche tritt. Die magnetische Erregung im Kern ist H = N I (13.33) 2πR Die magnetische Feldstärke im Kern ist um den Faktor der relativen Permeabilität gegenüber dem Vakuumwert überhöht: B = µ µ 0 N I 2πR (13.34) Verwendet man nun anstelle des geschlossenen Weicheisenkerns ein Joch mit einem kleinen Luftspalt der Dicke d, dann kann sich diese Feldüberhöhung bis zu einem gewissen Grad ins Vakuum auskoppeln. Damit teilt sich das Linienintegral (13.32) in einen Beitrag des Eisenjoches 1 B H A E und einen Beitrag des Luftspaltes: H d s = (2Rπ d) H F e + d H vac = N I (13.35) Indem wir B = µ µ 0 H setzen erhalten wir 1 (2Rπ d) B F e + d 1 B vac = N I (13.36) µ µ 0 µ 0 Das Magnetfeld steht senkrecht auf den Spaltflächen. Beim Übergang vom Eisenkern ins Vakuum ist die Normalkomponente von B stetig: B F e = B vac (13.37) Die magnetische Feldstärke im Luftspalt wird damit B vac = N I µ µ 0 µ d + 2Rπ d N I µ µ 0 µ d + 2Rπ wenn d R (13.38) Für das Verhältnis von B im Luftspalt mit und ohne Eisenkern ergibt sich B(mitKern) B(ohneKern) = µ µ d 2Rπ + 1 (13.39) Für kleine Werte von d ist die Überhöhung des Feldes gleich dem Betrag von µ. Für große Werte von d ist die Überhöhung nur gleich 2πR/d.

10 120 KAPITEL 13. MATERIE IM MAGNETFELD 13.7 Magnetfeld der Erde Das Erdmagnetfeld ist näherunsgweise gleich dem Feld eines magnetischen Dipols, dessen Achse gegenüber der Erdrotationsachse um etwa 11 o geneigt ist. Am Äquator liegen die magnetischen Feldlinen etwa parallel zur Erdoberfläche. In Freiburg ist die Inklination etwa 60 o. An der Erdoberfläche ist das Feld etwa 0.5 Gauss. Abweichungen vom Dipolfeld entstehen durch lokale Schwankungen des Anteils magnetischer Mineralien in der Erdkruste. Die Magnetpole fallen nicht mit den geographischen Polen zusammen (magnetische Deklination). Die wichtigsten Ursachen für das Dipolfeld sind elektrische Ströme im flüssigen Erdkern. Auf Grund des radialen Temperaturgradienten gibt es Konvektionsströme in radialer Richtung. Durch die Coriolis-Kräfte auf Grund der Erdrotation v ω werden diese tangential abgelenkt und bilden eine Art Kreisstrom um die Rotationsachse. Geladene Teilchen von der Sonne treffen in das inhomogene Erdmagnetfeld. Sie sind Ursache für Leuchterscheinungen wie die Aurora. Weit von der Erde entfernt wird das Dipolfeld durch die elektrischen Ströme des Sonnenwindes stark verändert (Magnetopause, siehe Seite 73). Der Van Allen Strahlungsgürtel in km Höhe stellt eine magnetische Flasche dar. Das Magnetfeld ist relativ schwach in der Äquatorgegend, aber steigt zu den Polen hin an. In dieser Höhe bewegen sich Ladungsträger frei und werden von der Lorentz-Kraft senkrecht zur Einschussbahn und zum Magnetfeld abgelenkt. 2 H J A - A - A J H A Je nach Einschussrichtung in das Feld beschreibt ein geladenes Teilchen eine Spiralbahn um eine Feldlinie und folgt dieser, wenn sich die Feldlinie krümmt. Im inhomogenen Feld bewegt sich das Teilchen in einen Trichter von Feldlinien, sodass rücktreibende Kräfte entstehen, die das Teilchen (bei benügend kleiner Energie und genügend großer Inhomogenität) zurückspiegeln. In der Folge beschleunigt die Inhomogenität das Teilchen zurück zum Äquator, von wo es gegen den gegenüberliegenden Pol anläuft und dort gespiegelt wird. Im inneren Van-Allen Gürtel finden sich Elektronen mit bis zu 0.78 MeV und Protonen mit Energien bis 150 MeV. Die scharfe Grenzenergie der Elektronen deutet auf einen Ursprung aus dem Zerfall eines Neutrons n p+e+ ν hin. Die hohe Konzentration schneller Protonen (sie durchdringen ohne weiteres mehrere mm Blei) macht den Strahlungsgürtel so gefährlich.

MATERIE im Magnetfeld

MATERIE im Magnetfeld 5 1 Kapitel 8 MATERIE im Magnetfeld = > Das Magnetfeld eines Kreisstromes gleicht im Fernfeld dem eines Permanentmagneten. Das magnetische Moment einer Stromschleife der Fläche S = ab ist ~µ mag = ISˆn

Mehr

Magnetisierung der Materie

Magnetisierung der Materie Magnetisierung der Materie Das magnetische Verhalten unterschiedlicher Materialien kann auf mikroskopische Eigenschaften zurückgeführt werden. Magnetisches Dipolmoment hängt von Symmetrie der Atome und

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte: Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

Versuchsvorbereitung P1-80: Magnetfeldmessung

Versuchsvorbereitung P1-80: Magnetfeldmessung Versuchsvorbereitung P1-80: Magnetfeldmessung Kathrin Ender Gruppe 10 5. Januar 2008 Inhaltsverzeichnis 1 Induktivität einer Spule 2 1.1 Entmagnetisieren des Kerns............................ 2 1.2 Induktiver

Mehr

316 - Magnetfeldmessungen

316 - Magnetfeldmessungen 316 - Magnetfeldmessungen 1. Aufgaben 1.1 Die magnetische Induktion B eines Elektromagneten auf der Polschuhachse ist mit einer Hall- Sonde in Abhängigkeit vom Magnetisierungsstrom für unterschiedliche

Mehr

Magnetostatik. Magnetfelder

Magnetostatik. Magnetfelder Magnetostatik 1. Permanentmagnete i. Phänomenologie ii. Kräfte im Magnetfeld iii. Magnetische Feldstärke iv.erdmagnetfeld 2. Magnetfeld stationärer Ströme 3. Kräfte auf bewegte Ladungen im Magnetfeld 4.

Mehr

3. Magnetostatik 3.1. Grundbegriffe

3. Magnetostatik 3.1. Grundbegriffe 3. Magnetostatik 3.1. Grundbegriffe In der Natur existieren magnetische Felder. Es gibt allerdings keine Quellen des magnetischen Feldes, d. h. es wurden noch nie magnetischen Ladungen (magnetische Monopole)

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Hinweise zur Zusatzaufgabe Permanentes magnetisches Moment

Hinweise zur Zusatzaufgabe Permanentes magnetisches Moment 1 Hinweise zur Zusatzaufgabe Permanentes magnetisches Moment Zusatzaufgaben zu Versuch 316 : 1. Berechnen Sie das magnetische Moment des Co + - Ions.. Welche Niveaus der Valenzelektronen sind beim Co +

Mehr

Beschreibung Magnetfeld

Beschreibung Magnetfeld Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #21 am 1.06.2007 Vladimir Dyakonov Beschreibung Magnetfeld Magnetfeld: Zustand des Raumes, wobei

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

Magnetismus - Einführung

Magnetismus - Einführung Magnetismus Magnetismus - Einführung Bedeutung: Technik:Generator, Elektromotor, Transformator, Radiowellen... Geologie: Erdmagnetfeld Biologie: Tiere sensitiv auf Erdmagnetfeld (z.b. Meeresschildkröten)

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment

2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment Prof. Dieter Suter / Prof. Roland Böhmer Magnetische Resonanz SS 03 2. Grundlagen und Wechselwirkungen 2.1 Magnetismus und magnetisches Moment 2.1.1 Felder und Dipole; Einheiten Wir beginnen mit einer

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom 4.4 Induktion Spannungen und Ströme, die durch Veränderungen von Magnetfeldern entstehen, bezeichnet man als Induktionsspannungen,

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B. - 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

Versuch E11 - Hysterese Aufnahme einer Neukurve. Abgabedatum: 24. April 2007

Versuch E11 - Hysterese Aufnahme einer Neukurve. Abgabedatum: 24. April 2007 Versuch E11 - Hysterese Aufnahme einer Neukurve Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Ziel des Versuchs 3 2 Physikalischer Zusammenhang 3 2.1 Magnetisches Feld..........................

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Magnete und ihre Geschichte

Magnete und ihre Geschichte Magnete und ihre Geschichte Die wohl älteste Nutzung des Magnetismus war wohl der Kompass. Quellen belegen dessen Nutzung durch die Chinesen um 1100, Araber um 1220 und Skandinavier um 1250. Untersucht

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

Magnetische Pigmente. Jonas Berg & Michael Luksin

Magnetische Pigmente. Jonas Berg & Michael Luksin Magnetische Pigmente Jonas Berg & Michael Luksin Inhaltsverzeichnis Pigmente Magnetismus Was für Magnetismen gibt es? Welche Bedingungen müssen magnetische Pigmente erfüllen? Magnetische Pigmente Magnetit

Mehr

Heute: Magnetismus. Mathematisch-Naturwissenschaftliche Fakultät. Abteilung Anorganische Festkörperchemie. Prof. Dr. Martin Köckerling.

Heute: Magnetismus. Mathematisch-Naturwissenschaftliche Fakultät. Abteilung Anorganische Festkörperchemie. Prof. Dr. Martin Köckerling. Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Festkörperchemie Vorlesung Anorganische Chemie VI Materialdesign Heute: Magnetismus 1 Gliederung Magnetismus Elektromagnetismus

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

E19 Magnetische Suszeptibilität

E19 Magnetische Suszeptibilität Aufgabenstellung: 1. Untersuchen Sie die räumliche Verteilung des Magnetfeldes eines Elektromagneten und dessen Abhängigkeit vom Spulenstrom. 2. Bestimmen Sie die magnetische Suszeptibilität vorgegebener

Mehr

Physikalisches Grundpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Grundpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Grundpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig E 6 Magnetische Hysterese Aufgaben 1 Nehmen Sie mit Hilfe eines Teslameters die Neukurve und die Hysteresekurve

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

Magnetische Felder, Ferromagnetismus. Magnetische Felder, Ferromagnetismus

Magnetische Felder, Ferromagnetismus. Magnetische Felder, Ferromagnetismus Magnetische Felder, Ferromagnetismus 1.Einführung 1.1.Allgemeiner Zusammenhang Magnetische Wechselwirkungen bestimmen neben den elektrischen Wechselwirkungen wesentlich den Aufbau und die Eigenschaften

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig

Mehr

Ferienkurs Experimentalphysik Lösung zur Übung 2

Ferienkurs Experimentalphysik Lösung zur Übung 2 Ferienkurs Experimentalphysik 4 01 Lösung zur Übung 1. Ermitteln Sie für l = 1 a) den Betrag des Drehimpulses L b) die möglichen Werte von m l c) Zeichnen Sie ein maßstabsgerechtes Vektordiagramm, aus

Mehr

Magnetismus. 3.1 Grunderscheinungen in Experimenten. 3.2 Lorentzkraft, Kraft auf bewegte Ladungen. 3.3 Quellen des magnetischen Feldes

Magnetismus. 3.1 Grunderscheinungen in Experimenten. 3.2 Lorentzkraft, Kraft auf bewegte Ladungen. 3.3 Quellen des magnetischen Feldes 3 Magnetismus Magnetismus 3. Grunderscheinungen in Experimenten 3. Lorentzkraft, Kraft auf bewegte Ladungen 3.3 Quellen des magnetischen Feldes 3.4 Materie im Magnetfeld 3.5 Induktion R. Girwidz 3. Grunderscheinungen

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

Physik II, RWTH, SS 2002, T.Hebbeker

Physik II, RWTH, SS 2002, T.Hebbeker 3. P2 TH 02 Magnetostatik 1 Physik II, RWTH, SS 2002, T.Hebbeker 17-Jul-2002 Skriptteil 3 WWW (Schwebende Magnete, Earnshaw-Theorem): http://www.geocities.com/area51/shire/3075/maglev.html http://www.wundersamessammelsurium.de/magnetisches/magnetisches.html

Mehr

2. Aufgaben: Magnetismus

2. Aufgaben: Magnetismus 2. Aufgaben: Magnetismus 1) Welche toffe sind magnetisierbar (ferromagnetisch)? Eisen (tahl), Gusseisen, ickel und Kobalt 2) Welche Wirkung geht von Magneten aus? Magnete ziehen Teile aus Eisen, ickel

Mehr

3.3. Prüfungsaufgaben zur Magnetostatik

3.3. Prüfungsaufgaben zur Magnetostatik 3.3. Prüfungsaufgaben zur Magnetostatik Aufgabe 1a: Magnetisches Feld a) Zeichne jeweils eine kleine Magnetnadel mit ord- und üdpol an den Orten A und b des rechts skizzierten Magnetfeldes ein. b) Wie

Mehr

Isotrope Dielektrika. Das Coulombsche Gesetz in der Form F =1/(4πɛ 0) q 1 q 2. ist nur für zwei Ladungen im Vakuum gültig.

Isotrope Dielektrika. Das Coulombsche Gesetz in der Form F =1/(4πɛ 0) q 1 q 2. ist nur für zwei Ladungen im Vakuum gültig. Das Coulombsche Gesetz in der Form F =/(4πɛ 0) q q ist nur für zwei Ladungen im Vakuum gültig. r Versuche mit der Cavendish-Drehwaage mit flüssigen oder gasförmigen Isolatoren zwischen den beiden Ladungen

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen.

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. Das stationäre Magnetfeld 16 4 Stationäre Magnetfelder 4.1 Potentiale magnetischer Felder 4.1 Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. a) Berechnen Sie mit

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Magnete die geheimnisvolle Kraft?

Magnete die geheimnisvolle Kraft? Magnete die geheimnisvolle Kraft? Magnete stellen für viele Leute etwas Mysteriöses dar. Schließlich kann der Mensch Magnetismus weder sehen, hören, riechen, schmecken noch direkt fühlen. Zudem ziehen

Mehr

Ph Oberstufe Einführung Magnetismus. Phänomenologie:

Ph Oberstufe Einführung Magnetismus. Phänomenologie: Ph Oberstufe Einführung Magnetismus Phänomenologie: o Es gibt natürliche Eisenmagnete o Kraft eindeutig von Gravitation und Elektrizität unterscheidbar (unabh. Ladung) o Zwei Magnete: Kraft anziehend und

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Inhalt der Vorlesung B2

Inhalt der Vorlesung B2 Inhalt der Vorlesung B2 3. Elektrizitätslehre, Elektrodynamik Einleitung Ladungen & Elektrostatische Felder Elektrischer Strom Magnetostatik Zeitlich veränderliche Felder - Elektrodynamik Wechselstromnetzwerke

Mehr

Das magnetische Feld. Kapitel Lernziele zum Kapitel 7

Das magnetische Feld. Kapitel Lernziele zum Kapitel 7 Kapitel 7 Das magnetische Feld 7.1 Lernziele zum Kapitel 7 Ich kann das theoretische Konzept des Magnetfeldes an einem einfachen Beispiel erläutern (z.b. Ausrichtung von Kompassnadeln in der Nähe eines

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2009-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome)

VL 12. VL11. Das Wasserstofatom in der QM II Energiezustände des Wasserstoffatoms Radiale Abhängigkeit (Laguerre-Polynome) VL 12 VL11. Das Wasserstofatom in der QM II 11.1. Energiezustände des Wasserstoffatoms 11.2. Radiale Abhängigkeit (Laguerre-Polynome) VL12. Spin-Bahn-Kopplung (I) 12.1 Bahnmagnetismus (Zeeman-Effekt) 12.2

Mehr

Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte

Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte Einführung und Erklärung: Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte Die aufgebauten Versuche beinhalten diamagnetische Stoffe. Bei den angelegten inhomogenen Feldern kann beobachtet

Mehr

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse Schulversuchspraktikum WS2000/2001 Redl Günther 9655337 Elektromagnet 7.Klasse Inhaltsverzeichnis: 1) Lernziele 2) Verwendete Quellen 3) Versuch nach Oersted 4) Magnetfeld eines stromdurchflossenen Leiter

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-h. Mertins, MSc. M. Gilbert FK04 Ferromagnetismus & magnetische Werkstoffe (Pr_PhII_FK04_Magnetismus_7, 24.10.2015)

Mehr

Grundwissen. Physik. Jahrgangsstufe 9

Grundwissen. Physik. Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Seite 1 1. Elektrische Felder und Magnetfelder 1.1 Elektrisches Feld Elektrisches Kraftgesetz: Gleichnamige Ladungen stoßen sich

Mehr

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld

Mehr

Magnetische Monopole

Magnetische Monopole Magnetische Monopole Einführung: Aber in der Schule haben wir doch gelernt... Dirac s Idee symmetrischer Maxwell-Gleichungen Konsequenzen aus der Existenz magnetischer Monopole Quantisierung der elektrischen

Mehr

Vorlesung Physik für Pharmazeuten PPh - 09 b

Vorlesung Physik für Pharmazeuten PPh - 09 b Vorlesung Physik für Pharmazeuten PPh - 09 b Elektrizitätslehre (II) 29.01.2007 IONENLEITUNG 2 Elektrolytische Leitfähigkeit Kationen und Anionen tragen zum Gesamtstrom bei. Die Ionenleitfähigkeit ist

Mehr

Fangen wir zunächst mit dem "normalen" Magnetismus an, so wie wir ihn alle kennen. Genau genommen handelt es sich dabei um "Ferromagnetismus".

Fangen wir zunächst mit dem normalen Magnetismus an, so wie wir ihn alle kennen. Genau genommen handelt es sich dabei um Ferromagnetismus. Magnetismus und Elektromagnetismus Jeder von Euch hat bestimmt schon mal einen Magneten in der Hand gehabt und die magnetische Anziehungskraft gespürt, wenn man sich damit einem anderen magnetischen Gegenstand

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

4.7 Magnetfeld der Erde

4.7 Magnetfeld der Erde 4.7 Magnetfeld der Erde 4.7 Magnetfeld der Erde Einzelne Magnete richten sich auf der Erde alle in die gleiche Richtung aus. Das hierfür verantwortliche Magnetfeld der Erde ist ebenfalls näherungsweise

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

M = M i + M r. ist mit dem induzierenden äußeren Feld über die Suszeptibilität χ verknüpft: M i = χ H = χ B / µ 0

M = M i + M r. ist mit dem induzierenden äußeren Feld über die Suszeptibilität χ verknüpft: M i = χ H = χ B / µ 0 C:\soffelskript\MAG_02_12.docBibliothek Seite 1 09.11.01 3.3 Die Magnetisierung von Gesteinen Die Magnetisierung M als magnetisches Moment m / Volumen wurde bereits eingeführt. M ist eine vektorielle Größe

Mehr

Elektrizität und Magnetismus

Elektrizität und Magnetismus 1 Ergänzungen zum Kapitel Elektrizität und Magnetismus 4.7.7 Gefährdung durch Elektrizität Wie ernst ein Stromschlag zu nehmen ist, hängt davon ab, wie groß die durch den Körper fließende Stromstärke ist,

Mehr

Geomagnetismus. Teil 1: Grundprinzipien und Materialien

Geomagnetismus. Teil 1: Grundprinzipien und Materialien Geomagnetismus Teil 1: Grundprinzipien und Materialien Magnetismus Das Verständnis magnetischer Phänomene verlangt häufig einen quantenmechanischen Ansatz. Wir werden versuchen, dies weitgehend zu umgehen.

Mehr

Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld

Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Simon Lewis Lanz 2015 simonlanzart.de Aufspaltung der Energieniveaus von Atomen im homogenen Magnetfeld Zeeman-Effekt, Paschen-Back-Effekt, Fein- und Hyperfeinstrukturaufspaltung Fließt elektrischer Strom

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

ELEKTRIZITÄT UND MAGNETISMUS 27. Quellen des Magnetfeldes (Sources of the magnetic field)

ELEKTRIZITÄT UND MAGNETISMUS 27. Quellen des Magnetfeldes (Sources of the magnetic field) Musso: Physik II Teil 7 Quellen des Magnetfelds Seite 1 Tipler-Mosca ELEKTIZITÄT UND MAGNETISMUS 7. Quellen des Magnetfeldes (Sources of the magnetic field) 7.1 Das Magnetfeld bewegter Punktladungen (The

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelder Abb.1 Magnetfeld Steffen Wendler Seite 1 Inhaltsverzeichnis 1. Was sind statische Magnetfelder? 2. Magnetfeld Erde und Sonne 3. Wie Magnetfelder entstehen 4. Magnetische Kraftwirkung

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

Elektrische und magnetische Felder

Elektrische und magnetische Felder Marlene Marinescu Elektrische und magnetische Felder Eine praxisorientierte Einführung Mit 260 Abbildungen @Nj) Springer Inhaltsverzeichnis I Elektrostatische Felder 1 Wesen des elektrostatischen Feldes

Mehr

Physik 9, Brodscholl, Schuljahr 2016/17: Übungsaufgaben zur Klassenarbeit Nr. 1

Physik 9, Brodscholl, Schuljahr 2016/17: Übungsaufgaben zur Klassenarbeit Nr. 1 Physik 9, Brodscholl, Schuljahr 2016/17: Übungsaufgaben zur Klassenarbeit Nr. 1 Multiple Choice Mehrfachantworten können vorkommen. 1. Welche Stoffe werden von Magneten angezogen? a. alle Metalle. b. Eisen.

Mehr

Michael Faraday Britischer Physiker und Chemiker (22.9.1791-25.8.1867); Autor bedeutender Werke zu experimentellen Versuchen über Elektrizität.

Michael Faraday Britischer Physiker und Chemiker (22.9.1791-25.8.1867); Autor bedeutender Werke zu experimentellen Versuchen über Elektrizität. 1/5 Magnetismus - Geschichte der Erforschung, Elektromagnetische Theorie, Magnetfeld, Magnetische Materialien, Andere magnetische Ordnungen, Anwendungen Magnetische Feldlinien Eisenspäne richten sich nach

Mehr

Experimentalphysik II Strom und Magnetismus

Experimentalphysik II Strom und Magnetismus Experimentalphysik II Strom und Magnetismus Ferienkurs Sommersemester 2009 Martina Stadlmeier 08.09.2009 Inhaltsverzeichnis 1 Der elektrische Strom 2 1.1 Stromdichte................................. 2

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Dauermagnete. Versuch

Dauermagnete. Versuch Dauermagnete Allgemeines Die bekanntesten Dauermagnete sind (künstlich magnetisierte) Ferritmagnete wie man sie etwa als Pinnwand-Haftmagnete oder in Schranktür-Verschlüssen findet. Permanentmagnete -

Mehr