Prof. Dr. Caren Hagner
|
|
|
- Katarina Hausler
- vor 8 Jahren
- Abrufe
Transkript
1 Prof. Dr. Caren Hagner Borexino Experiment (Gran Sasso, Italien) Universität Hamburg Institut für Experimentalphysik Luruper Chaussee Hamburg Büro: DESY Gelände Bahrenfeld, Geb. 62, Zi. 210 Telefon: Webseite: Sprechstunden: nach Vereinbarung ( ) OPERA Experiment (Neutrinooszillationen) am Gran Sasso Untergrundlabor (Italien) Forschungsgebiet: Neutrinophysik (Elementarteilchenphysik, Astroteilchenphysik) 1
2 Programm: Elektrizität und Magnetismus Optik Atom- und Kernphysik 2
3 Struktur der Materie 3
4 Das heutige Bild vom Aufbau eines Atoms Größe < m Kern Größe m p n Größe < m n p Größe m Größe m 4
5 Reibungselektrizität Altgriechisch: ἤλεκτρον = Bernstein Versuch: Erzeugung von elektrischer Ladung durch Reibung (Genauer: Die Reibung trennt positive und negative Ladungen) 1. Fell und Hartgummistab Elektronen fließen vom Fell auf den Kunststoffstab. Kunststoffstab ist negativ geladen. 2. Seidentuch und Glasstab Elektronen fließen vom Glasstab auf das Seidentuch. Glastab ist positiv geladen
6 Elektrische Leiter: z.b. Elektronen in Metallen, Ionen in Flüssigkeiten Wie sind die Ladungen in einem Metall verteilt? Nichtleiter = Isolatoren: z.b. Glas, Gummi, Kunststoffe 6
7 Influenz Metallkugel (neutral) Plastikstab (geladen) Beim Annähern des Stabes werden die Ladungen im Metall getrennt. Auf der einen Seite befinden sich die positiven, auf der anderen die negativen Ladungen. Man bezeichnet die so entstandenen Ladungen als Influenzladungen. 7
8 Versuch: Messung der elektrischen Ladung mit Elektrometer Ein geladener Stab nähert sich dem Elektroskop und berührt die obere Metallplatte. Vom Stab fließen Ladungen auf das Elektroskop. Die Ladungen verteilen sich auf den Oberflächen der Metallteile. Da sich gleiche Ladungen abstoßen schlägt der Zeiger aus. 8
9 Becherelektroskope: Ladung kann zwischen beiden Elektroskopen transportiert werden Ausschlag bei aufgebrachter Ladung Ausschlag ohne Ladung 9
10 Einheit der elektrischen Ladung: Die kleinste Einheit der elektrischen Ladung ist die sogenannte Elementarladung e Alle freien Ladungen die man jemals in Experimenten beobachtet hat, waren Vielfache dieser Ladung! Ladung des Protons: q p = +1e Ladung des Neutrons: q n = 0 Ladung des Elektrons: q e = -1e Achtung:Die Quarks haben entweder q = -1/3e oder q = +2/3e, sie kommen aber nie einzeln vor, sondern nur in solchen Kombinationen die ganzzahliges Vielfaches von e ergeben! 10
11 Versuch: Van de Graaff Generator Vorrichtung die durch Reibung positive und negative Ladungen trennt. Eine Elektrode wird stark aufgeladen. 11
12 Versuch: Van de Graaff Generator Hier wird die Ladung aufgebracht Band 12
13 Coulomb-Gesetz: Kraft F, die Ladung 1 auf die Ladung 2 ausübt: Wichtig! F 12 = F 21 Richtung von F: entlang der Verbindungslinie zwischen den Ladungen F < 0 F > 0 anziehende Kraft abstoßende Kraft 13
14 Das elektrische Feld Eine Ladungsverteilung erzeugt um sich ein elektrisches Feld (An jedem Punkt um eine Ladungsverteilung herrscht ein elektrisches Feld.) 14
15 Versuch: Sichtbarmachen der Richtung der Feldstärke durch Grieskörner Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien aus (Die Spannung zwischen + und beträgt hier 10000V). + - Schematische Darstellung der el. Feldlinien zwischen zwei gleichgroßen, entgegengesetzten Ladungen 15
16 Visualisierung des elektrischen Feldes durch Feldlinien 16
17 Regeln zur Bestimmung von Feldlinien: 1.) Elektrische Feldlinien beginnen bei + und enden bei -. 2.) Elektrische Feldlinien schneiden sich nie. 3.) Elektrische Feldlinien stehen senkrecht auf Metalloberflächen. 17
18 Wiederholung: Elektrische Ladung: Einheit 1 Coulomb = 1 C (= 1 As) Elementarladung e = C Kraft zwischen zwei elektrischen Ladungen: r F ' Q1 Q = f 2 r 2 r e r f ' = Nm 2 C 2 Elektrische Feldstärke: r r F E = und q r F = q r E 18
19 Versuch: Ausrichten eines Dipols im elektrischen Feld Die Platten werden auseinanderbewegt. -> Der Dipol beginnt sich zu drehen, bis seine negative Seite der positiven Platte gegenüber liegt (und umgekehrt) Die Hochspannung wird umgepolt. -> Der Dipol dreht sich wieder, bis seine negative Seite der positiven Platte gegenüber liegt (und umgekehrt). 19
20 Versuch: Ausrichten eines Dipols im elektrischen Feld +Q -Q Elektrischer Dipol (hier: 2 Metallkugeln, mit entgegengesetzter Ladung) 1. Hochspannung wird an die beiden Platten eines Plattenkondensators angelegt. (+3000V linke Platte, -3000V rechte Platte). Der Dipol berührt beide Platten und wird aufgeladen. 20
21 Versuch: Sichtbarmachen der Richtung der Feldstärke durch Grieskörner Zwei parallele gerade Metallplatten Zwischen zwei Platten herrscht ein homogenes elektrisches Feld. (d.h. Feld ist zwischen den Platten überall gleich stark und hat die gleiche Richtung). 21
22 Versuch: Sichtbarmachen der Richtung der Feldstärke durch Grieskörner Ungeladener Metallring zwischen zwei parallelen, unterschiedlich geladenen Metallplatten Kein Feld in Inneren des Metallrings! Der Ring wirkt als Faraday-Käfig und schirmt das elektrische Feld ab. 22
23 Beispiel: Auto oder Flugzeug wirken im Gewitter als Faradayscher Käfig. Problem: Immer mehr Teile von Auto und Flugzeug werden aus Kunststoff gefertigt. 23
24 Im Inneren eines Faraday Käfigs gibt es kein elektrisches Feld (z.b. Schutz vor Blitz, aber auch allgemein zur Abschirmung elektrischer Felder) 24
25 Boston Science Museum 25
26 Arbeit im elektrischen Feld 26
27 Arbeit und Spannung Zusammenhang zwischen E und U im homogenen Feld (Plattenkondensator) 27
28 Kondensatoren: Speichern Ladung (und elektrische Energie) 28
29 Kondensator und Kapazität d U 29
30 Versuch: Plattenkondensator mit Dielektrikum Messung der Ladung Dielektrikum (hier: Plexiglas) Spannungsversorgung Die Spannung wird konstant gehalten. Beim Einschieben des Dielektrikums nimmt die Ladung auf den Platten zu. -> Die Kapazität des Kondensators nimmt zu! 30
31 Kondensator (mit Dielektrikum): Kapazität: C = Q U Einheit 1 Farad, 1 F = 1 C/V +Q -Q Kapazität eines Plattenkondensators: ε Fläche A C = ε 0 ε A d Dielektrizitätskonstante ε (Permittivität): d U Vakuum 1 Luft Plexiglas 3.40 Glas 5-10 Wasser 80 31
32 Elektrischer Strom 32
33 Wiederholung: Stromstärke: I = Q t Einheit 1 Ampere, C = A s Versuch zur Stromwirkung: Leuchtende Gurke 33
34 Stromwirkungen: 34
35 Elektrischer Widerstand 35
36 Standard Widerstände: Aber auch dies sind Widerstände: Verstellbare Widerstände (Potentiometer) E-Herd Lampen El. Heizofen 36
37 Menschlicher Körper als Leiter für elektrischen Strom? Stromwirkung, Gefahr für den Organismus durch elektrischen Strom: Besonders gefährlich: 50 Hz Wechselstrom aus Steckdose Höhere Frequenz ist weniger gefährlich (Reizleitung über Stofftransport zu langsam) 37
38 Grenze für Dauer t des Elektroschocks mit Strom I max bei der gerade noch kein Herzflimmern auftritt: I = max t As 1/ 2 Beispiel: 38
39 Stromarbeit und Elektrische Leistung Die Ladung Q fließt in der Zeit t durch das Material, dazu ist Arbeit nötig: Wohin geht die Energie? Erwärmt den Stromleiter 39
40 Elektrische Netzwerke Kirchhoffsche Regeln: 1.) In einem Knotenpunkt eines Netzwerkes ist die Summe der einfließenden Ströme gleich der Summe der ausfließenden Ströme. 2.) Die Summe aller Quellenspannungen und Spannungsabfälle längs einer beliebigen, geschlossenen Schleife (Masche) eines Netzwerkes ist gleich Null. 40
41 Serienschaltung (Hintereinanderschaltung) von Widerständen U U R 1 R 2 R = R 1 +R 2 41
42 Parallelschaltung von Widerständen R 1 R = R1R 2 R + R 1 2 R 2 U U 42
43 Beispiel zur Berechnung des Gesamtwiderstands eines Netzwerkes: 1.Schritt 2.Schritt 43
44 Beispiel für Netzwerk aus Spannungsquellen und Widerständen: Zitteraal (Electrophorus electricus) Wie erzeugt ein Zitteraal im Wasser einen Strom von ca. 1A um Beute zu erlegen? Warum stirbt er selbst nicht daran? Alexander von Humboldt (Südamerika-Expedition Anfang des 19. Jahrhunderts): "Die Furcht vor den Schlägen des Zitteraals ist im Volke so übertrieben, dass wir in den ersten drei Tagen keinen bekommen konnten. Unsere Führer brachten Pferde und Maultiere und jagten sie ins Wasser. Ehe fünf Minuten vergingen, waren zwei Pferde ertrunken. Der 1,6 Meter lange Aal drängt sich dem Pferde an den Bauch und gibt ihm einen Schlag. Aber allmählich nimmt die Hitze des ungleichen Kampfes ab, und die erschöpften Aale zerstreuen sich. In wenigen Minuten hatten wir fünf große Aale. Nachdem wir vier Stunden lang an ihnen experimentiert hatten, empfanden wir bis zum anderen Tage Muskelschwäche, Schmerz in den Gelenken, allgemeine Übelkeit."
45 Beispiel für Netzwerk aus Spannungsquellen und Widerständen: Zitteraal Spannungszelle (Elektroplax): ε = 0.15V r = 0.25Ω 5000 Spannungszellen/Reihe 140 Reihen R wasser = 800Ω Caren Hagner / PHYSIK 2 / Wintersemester 2008/2009 Kapitel 2: Elektrischer Strom / 45
46 Auf- und Entladen von Kondensatoren a) Ladevorgang Caren Hagner / PHYSIK 2 / Wintersemester 2008/2009 Kapitel 2: Elektrischer Strom / 46
47 Auf- und Entladen von Kondensatoren b) Entladevorgang Caren Hagner / PHYSIK 2 / Wintersemester 2008/2009 Kapitel 2: Elektrischer Strom / 47
48 Versuch: Entladen von Kondensatoren über Alubrücke 1.) Zunächst werden die Kondensatoren über die Spannungsquelle langsam aufgeladen 2.) Beim Entladen explodiert die Alubrücke an der engsten Stelle mit lautem Knall, denn: Da P=IR 2 tritt an der engsten Stelle (größtes R!) die höchste Wärmeleistung auf. Caren Hagner / PHYSIK 2 / Wintersemester 2008/2009 Kapitel 2: Elektrischer Strom / 48
Prof. Dr. Caren Hagner
Prof. Dr. Caren Hagner Borexino Experiment (Gran Sasso, Italien) Universität Hamburg Institut für Experimentalphysik Luruper Chaussee 149 22761 Hamburg Email: [email protected] Büro: DESY Gelände Bahrenfeld,
PhysikI und II fürstudentender Zahnmedizinund Biologie-2. Teil Universität Hamburg Wintersemester 2016/17
PhysikI und II fürstudentender Zahnmedizinund Biologie-2. Teil Universität Hamburg Wintersemester 2016/17, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed Mein Arbeitsgebiet: ExperimentelleElementarteilchenphysikan
Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)
Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien
Vorlesung 2: Elektrostatik II
Einheit der elektrischen Ladung: Das Millikan-Experiment (1910, Nobelpreis 1923) Vorlesung 2: Elektrostatik II Sehr feine Öltröpfchen (
2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB
2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB Auf dem Weg zum Quantennormal für die Stromstärke Doris III am DESY 1 Versuch zur Stromwirkung: Leuchtende Gurke 2 2.1.2 Stromdichte
1 Elektrostatik 1.1 Ladung 1.1.1 Eigenschaften
1 Elektrostatik 1.1 Ladung 1.1.1 Eigenschaften 1 Das heutige Bild vom Aufbau eines Atoms Größe < 10-18 m Größe 10-14 m Größe < 10-18 m Größe 10-15 m Größe 10-10 m 2 Ausblick: Ladung der Quarks & Hadronen
Vorlesung 3: Elektrodynamik
Vorlesung 3: Elektrodynamik, [email protected] Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed [email protected] 1 WS 2015/16 Der elektrische Strom Elektrodynamik:
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #2 am
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #2 am 24.04.2007 Vladimir Dyakonov Inhalt Elektrizitätslehre Magnetismus Wellenlehre - Optik
PN 2 Einführung in die Experimentalphysik für Chemiker
PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität
1. Statisches elektrisches Feld
. Statisches elektrisches Feld. Grundlagen der Elektrizitätslehre.. Elektrizität in Natur, Technik und Alltag Altertum: Bernstein reiben Staubteilchen und Wollfasern werden angezogen 794 Coulomb: Gesetz
= Dimension: = (Farad)
Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:
Elektrostatik. Elektrische Ladung. Reiben von verschiedenen Materialien: Kräfte treten auf, die auf Umgebung wirken
Elektrostatik 1. Ladungen Phänomenologie 2. Eigenschaften von Ladungen i. Arten ii. Quantisierung iii. Ladungserhaltung iv.ladungstrennung v. Ladungstransport 3. Kräfte zwischen Ladungen, quantitativ 4.
1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität
1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute
Elektrizität. Eledrisch is pradisch: wann'st 'as oreibst brennt's!
Elektrizität Eledrisch is pradisch: wann'st 'as oreibst brennt's! Reibungselektrizität schon vor mehr als 2000 Jahren bei den Griechen bekannt: Reibt man Bernstein mit einem Tuch, zieht er danach Federn
Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12
Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011
2 Das elektrostatische Feld
Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche
Das statische elektrische Feld
M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis (6 Std.) (10 Std.) In diesem Abschnitt (6 Std.) (10 Std.) Elektrischer Strom E Elektrischer Strom In Metallen befinden sich frei bewegliche
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov [email protected] Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus
Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert.
Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. 11.1 Grundlagen Versuch 1: "Der geladene Schüler" Beobachtungen:
Elektrostatik. wie 1., ein Stab aus Glas (GS) Anziehung
Elektrostatik (Die Lehre von quasi ruhenden elektrischen Ladungen) Erstelle ein Versuchsprotokoll! Verwendete Geräte: Kunststoffstäbe (KS), von denen einer frei drehbar gelagert ist Glasstab (GS) Polyestertuch
K l a u s u r N r. 2 Gk Ph 12
0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität
5.5 Elektrisches Zentralfeld, Coulombsches Gesetz
5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)
3. Elektrische Felder
3. Elektrische Felder Das dem Menschen wohl am längsten bekannte elektrische Phänomen ist der Blitz. Aufgrund der Urgewalt von Blitzen wurden diese in der Antike Gottheiten wie dem Donnergott Thor zugeschrieben.
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................
Aufgaben zur Elektrizitätslehre
Aufgaben zur Elektrizitätslehre Elektrischer Strom, elektrische Ladung 1. In einem Metalldraht bei Zimmertemperatur übernehmen folgende Ladungsträger den Stromtransport (A) nur negative Ionen (B) negative
Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz
KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,
PHYSIK. 2. Klausur - Lösung
EI PH3 2010-11 PHYSIK 2. Klausur - Lösung 1. Aufgabe (2 Punkte) Unten befindet sich ein Proton im elektrischen Feld zwischen einer ortsfesten positiven sowie einer ortsfesten negativen Ladung. a) Beschreibe,
Elektrostatik. 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab
Elektrostatik 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab Beschreibe und erkläre die Exp. stichpunkartig. Ergebnis: - Es gibt
Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.
16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der
Physik. Abiturwiederholung. Das Elektrische Feld
Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,
Tutorium Physik 2. Elektrizität
1 Tutorium Physik 2. Elektrizität SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 10. ELEKTRIZITÄT 4 10.1 Coulombkraft:
Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:
3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren
9. Elektrostatik Physik für Informatiker. 9. Elektrostatik
9. Elektrostatik 9.1 Elektrische Ladung 9.2 Coulombsches Gesetz 9.3 Elektrisches Feld 9.4 Kraft auf Ladungen 9.5 Elektrisches Potential 9.6 Elektrische Kapazität 9.1 Elektrische Ladung Es gibt (genau)
ELEKTRISCHE SPANNUNGSQUELLEN
Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN
Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12
Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in
Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst.
I. Elektrostatik ==================================================================. Das elektrische Feld eines Plattenkondensators Ein Plattenkondensator besteht aus zwei sich parallel gegenüberliegenden
1. Elektrizität & Magnetismus
1. Elektrizität & Magnetismus 1.1 Einleitung Elektrische und magnetische Phänomene in der Natur Die vier (bekannten) Wechselwirkungen Elektrometer in der Vorlesung Selbstgebautes Elektrometer -dasideale
Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen
Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle
ELEKTRIZITÄT & MAGNETISMUS
ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung
Maßeinheiten der Elektrizität und des Magnetismus
Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange
Inhalt. 10. Elektrostatik. 10. Elektrostatik
Inhalt 10. Elektrostatik 10.1 Elektrische Ladung 10.2 Coulombsches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 1.1 Der Raum 10.1 Elektrische
Elektrisches Feld. Faszinierende bunte Leuchterscheinungen gehen von einer kleinen Kugel zu einer Glas hülle, vergleichbar mit ungefährlichen Blitzen.
Elektrisches Feld Faszinierende bunte Leuchterscheinungen gehen von einer kleinen Kugel zu einer Glas hülle, vergleichbar mit ungefährlichen Blitzen. Berührt man die Glaswand mit der Hand, so verändern
1 Grundlagen der Elektrizitätslehre
1 GRUNDLAGEN DER ELEKTRIZITÄTSLEHRE 1 1 ( 1 ) S t r o m q u e l l e ( ) S c h a l t e r ( 3 ) G l ü h b i r n e O 3 Abbildung 1: Ein einfacher Stromkreis I = 0 : I > 0 : ( 1 ) S t r o m l e i t e r ( )
VORANSICHT. Multiple-Choice-Tests zur Elektrizitätslehre. Multiple-Choice-Test: einfache und objektive Auswertungsmöglichkeiten!
21. Multiple-hoice-Tests zur lektrizitätslehre 1 von 20 Multiple-hoice-Tests zur lektrizitätslehre r. Wolfgang Tews, erlin Mit diesen Tests, die viele Themenbereiche der lektrizitätslehre in der Sek I
Grundwissen. Physik. Jahrgangsstufe 7
Grundwissen Physik Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Seite 1 1. Aufbau der Materie 1.1 Atome Ein Atom besteht aus dem positiv geladenen Atomkern und der negativ geladenen Atomhülle aus
2. Elektrisches Feld 2.2 Elektrostatisches Feld
Definition Verschiebungsfluß und Verschiebungsflußdichte Arbeit im elektrostatischen Feld Feld einer geladenen Kugel, Zylinder Potential im elektrischen Feld Feld einer Linienladung 1 Feldbegriff Elektrisches
Atom Strom Elektron Stromkreis
Atom Strom Elektron Stromkreis Aufbau eines Atoms Name Ort Ladung Proton Kern positiv + Neutron Kern neutral n Elektron Hülle negativ - Elektroskop Elektrische Ladungen können mit dem Elektroskop nachgewiesen
Physik LK 12, Klausur 02 Elektrisches Feld und Kondensator Lösung
Konstanten: Elementarladung e=,602 0 9 2 As 2 C. Elektrische Feldkonstante: 8,8542 0 N m 2 Dielektrizitätszahl: r Luft = Aufgabe : Eine studentische Hilfskraft wurde eingestellt, um acht Stunden lang Ladungen
Übungsblatt 4 ( )
Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt 4 (08.06.0) ) Geladene Kugeln Zwei homogen geladene Eisenkugeln mit den Ladungen Q = q = q = 0, 0µC haben einen
1. Klausur in K1 am
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60
Physik II. SS 2006 Vorlesung Karsten Danzmann
Physik II SS 2006 Vorlesung 1 13.4.2006 Karsten Danzmann Max-Planck-Institut für Gravitationsphysik (Albert Einstein Institut) und Universität Hannover Physik bis zum Vordiplom Physik I RdP I Mechanik,
Pfui Teufel, ein widerlicher Österreicherwitz! So etwas könnte sich tatsächlich zugetragen haben. Begründung: Antwort richtig nur mit Begründung!
Musterprüfung: 1. Was ist ein Faradayscher Käfig? 2. Millikan fand auf einem Öltröpfchen eine Ladung Q von 8 10-19 C. Wie gross war die Ladung des Öltröpfchens wahrscheinlich auf vier signifikante Ziffern
Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für
+ Kapitel 4 KAPAZITÄT und ENERGIE 4. Kondensator Ein Kondensator besteht typischerweise aus zwei Leiterplatten, die sich in einem kleinen Abstand voneinander befinden. Meist liegt zwischen den Elektroden
Elektrische Ladung und elektrischer Strom
Elektrische Ladung und elektrischer Strom Es gibt positive und negative elektrische Ladungen. Elektron Atomhülle Atomkern Der Aufbau eines Atoms Alle Körper sind aus Atomen aufgebaut. Ein Atom besteht
Elektrizitätslehre 2.
Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig
1. Theorie: Kondensator:
1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und
Elektrotechnik Formelsammlung v1.2
Inhaltsverzeichnis 3. Das Coulombsches Gesetz...2 3.. Elementarladung...2 32. Elektrische Arbeit...2 33. Elektrische Feldstärke...2 34. Elektrische Spannung...3 34.. Ladung Q...3 34... Kondensatoren-Gesetz...3
Tutorium Physik 2. Elektrizität
1 Tutorium Physik. Elektrizität SS 16.Semester BSc. Oec. und BSc. CH 4.016 Tutorium Physik Elektrizität Großmann Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 1. Radioaktivität
PN 2 Einführung in die Experimentalphysik für Chemiker
PN 2 Einführung in die Experimentalphysik für Chemiker 2. Vorlesung 25.4.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität
Atomaufbau / Ladung. (Atomkern). In Metallen sind die Elektronen frei beweglich. In Isolatoren dagegen sind alle
Atomaufbau / Ladung Definition Ladung: Es gibt negative und positive Ladungen. Gleichnamige Ladungen stoßen sich ab. Träger der negativen Ladung sind die Elektronen (Atomhülle). Träger der Positiven Ladung
Elektrizitätslehre. Aufgabe: Fülle die freien Felder aus!
1. Das Lämpchen wird mit einer Batterie geprüft. Ein intaktes Lämpchen würde nicht Die Batterie wird auf diese Art kurzgeschlossen. Ein intaktes Lämpchen würde 2. Was wird hier gemessen? Strom Spannung
1 Dann macht es Zack! :Elektrische Ladungen
29 Teil I: Elektrostatik Das Thema des ersten Teils dieses Buchs ist die Elektrostatik, also die Lehre von ruhenden elektrischen Ladungen. Dementsprechend ist dieses erste Kapitel den Ladungen gewidmet,
Basiswissen Physik Jahrgangsstufe (G9)
Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.
4.2 Gleichstromkreise
4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()
Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005
Abschlussprüfung an Fachoberschulen im Schuljahr 200/200 Haupttermin: Nach- bzw Wiederholtermin: 0909200 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk
Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen
Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung
IIE2. Modul Elektrizitätslehre II. Dielektrika
IIE2 Modul Elektrizitätslehre II Dielektrika Ziel dieses Versuches ist, die Funktionsweise eines Kondensators mit Dielektrikum zu verstehen. Des weiteren soll die Kapazität des Kondensators und die relative
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #5 am 27.04.2007 Vladimir Dyakonov Frage des Tages Kupfermünze hat die Masse 0.003 kg Atomzahl
Aufgaben zum Kondensator - ausgegeben am
Aufgaben zum Kondensator - ausgegeben am 17.09.2012 konden2_17_09_2012.doc 1.Aufgabe: Ein Kondensator hat die Plattenfläche A 1,2 10-2 m 2, den Plattenabstand d 0,5 mm und die Ladung Q 2,6 10-7 C. Berechnen
Übungsaufgaben z. Th. Plattenkondensator
Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,
Begriffe zur Elektrik und Elektrochemie
Staatsinstitut für Schulqualität und Bildungsforschung Begriffe zur Elektrik und Elektrochemie Akkumulator Atom Atomkern Batterie Ein Akkumulator ist eine Energiequelle, die wie eine Batterie Gleichstrom
2. Klausur in K1 am
Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60
Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)
Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.
1.1 Wiederholung des Grundwissens der Mittelstufe. In der Atomhülle befinden sich die negativ geladenen Elektronen.
Kapitel 1 Statisches elektrisches Feld 1.1 Wiederholung des Grundwissens der Mittelstufe 1.1.1 Elektrisch geladene Teilchen und Körper Alle Körper sind aus Atomen bzw. Molekülen aufgebaut, wobei Moleküle
1.Schulaufgabe aus der Physik Lösungshinweise
1.Schulaufgabe aus der Physik Lösungshinweise Gruppe A Aufgabe 1 (Grundwissen) Größe Energie Stromstärke Widerstand Ladung Kraft Buchstabe E I R Q F Einheit Joule: J Ampere: A Ohm: Ω Coulomb: C Newton:
Aufgabe III: Die Erdatmosphäre
Europa-Gymnasium Wörth Abiturprüfung 212 Leistungskurs Physik LK2 Aufgabe III: Die Erdatmosphäre Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Taschenrechner
Elektrotechnik & Elektronik allgegenwärtig: Beleuchtung, Heizung, E-Motore, Haushaltsgeräte, Computer...
4. Elektrizitätslehre tslehre Elektrotechnik & Elektronik allgegenwärtig: Beleuchtung, Heizung, E-Motore, Haushaltsgeräte, Computer... Vielfältige Anwendungsmöglichkeiten sind (prinzipiell) schon durch
Übung 3 - Musterlösung
Experientalphysik 2 für Lehratskandidaten und Meteorologen 5. Mai 200 Übungsgruppenleiter: Heiko Dulich Übung 3 - Musterlösung Aufgabe 6: Wann funkt es? Eigene Koordinaten r 2, 2. Hohlkugel: Koordinaten
Elektrizität und Magnetismus - Einführung
Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009
Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:...
Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS03/04 Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N
Das elektrische Feld
I Das elektrische Feld 0 Wiederholung: Elektrostatik (ruhende Ladungen) Elektrische Ladung ist ebenso wie Masse eine fundamentale Eigenschaft der Materie. Niemand weiß, was Ladung oder Masse letztendlich
Körper besitzt 2 Arten
Elektrizitäts lehre Schülerversuch 1: Schallplatte und Folie Beobachtung 1: Werden Folie und Platte einander genähert, ziehen sie sich an. Schülerversuch 2: 2 Folien Beobachtung 2: Die 2 Folien stoßen
Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG
3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt
Elektromagnetismus und Optik
Elektromagnetismus und Optik Bilder, Diagramme und Tabellen zur Vorlesung PHYSIK-II -Elektromagnetismus und Optik- SS 2004, Universität Freiburg Prof. Dr. K. Jakobs Physikalisches Institut Universität
14. Stromkreis(el circuito)
14 Stromkreis Hofer 1 14. Stromkreis(el circuito) Grundkräfte der Natur Es gibt vier Grundkrafte mit denen wir alle physikalischen Vorgänge der Natur beschreiben können. Starke Wechselwirkung Schwache
Spule, Kondensator und Widerstände
Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische
Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke.
Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. 2) Zwischen zwei Aluminum-Folien eines Wickelkondensators,der an einer Gleichspannung vo 60 V liegt,
5 Elektrizität und Magnetismus
5.1 Elektrische Ladung q Ursprung: Existenz von subatomaren Teilchen Proton: positive Ladung Elektron: negative Ladung besitzen jeweils eine Elementarladung e = 1.602 10 19 C (Coulomb) Ladung ist gequantelt
Klausur, Sommer 2013, Physik II
D-MATH/D-PHYS Prof. R. Wallny Studienjahr FS 2013 ETH Zürich Klausur, Sommer 2013, Physik II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus, und kreuzen Sie Ihre Studienrichtung
Physik Klausur
Physik Klausur 1.1 1 6. November 00 Aufgaben Aufgabe 1 a) Eine Kugel mit der Ladung q 3 nc und der Masse m 1 g hängt an einem Faden der Länge l 1 m. Der Kondersator hat den Plattenabstand d 0 10 cm und
Nikolaus-von-Kues-Gymnasium BKS Sehr gute Leiter. Physik Der elektrische Strom. Cu 108. 1 Valenzelektron
Sehr gute Leiter Cu Z=29 Ag Z=47 Au Z=79 64 29 Cu 108 47 Ag 197 79 Au 1 Valenzelektron Die elektrische Ladung e - p + Die Grundbausteine der Atome (und damit aller Materie) sind Elektronen und Protonen
Reihen- und Parallelschaltung von Kondensatoren
Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen
11. Elektrischer Strom und Stromkreise
nhalt 11. Elektrischer Strom und Stromkreise 11.1 Elektrischer Strom und Stromdichte 11.2 Elektrischer Widerstand 11.3 Elektrische Leistung in Stromkreisen 11.4 Elektrische Schaltkreise 11.5 Amperemeter
Schaltung von Messgeräten
Einführung in die Physik für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #18 am 25.05.2007 Vladimir Dyakonov Schaltung von Messgeräten Wie schließt man ein Strom- bzw.
Übungen: Kraftwirkung in magnetischen Feldern
Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis
PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken
PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Messung von Kapazitäten Auf- und Entladung von Kondensatoren Sebastian Finkel Sebastian Wilken Versuchsdurchführung: 23. November 2005 0. Inhalt 1. Einleitung 2.
Physikalische Anwendungen Elektrotechnik
Physikalische Anwendungen Elektrotechnik Zum Mathematik-Lehrbuch Notwendig und zunächst hinreichend (Shaker Verlag, Aachen) gibt es mehrere PDF-Dokumente mit ergänzenden Beispielen und Aufgaben, die die
Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r
Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche
