Alkoholkranke (Testaufgabe)
|
|
|
- Margarete Morgenstern
- vor 8 Jahren
- Abrufe
Transkript
1 Alkoholkranke (Testaufgabe) In einer Zeitschrift ist zu lesen: ''Untenstehende Graphik demonstriert, dass die Anzahl der Alkoholkranken in der Stadt X von 2007 bis 2008 stark zugenommen hat.'' Ist diese Aussage gerechtfertigt?
2 Durchschnittliches Monatsgehalt 2 Für die sieben Mitarbeiter/innen eines Betriebes fallen monatlich folgende Bruttogehälter (in ) an: 1.240,- 980, ,- 950, , , ,- Die Berechnung des arithmetischen Mittels dieser Bruttogehälter liefert einen um mehr als 1.000,- höheren Wert als der Median. Kreuze an, welche Gründe es dafür geben könnte. trifft zu trifft nicht zu Beim arithmetischen Mittel werden alle Gehälter addiert, daher muss das arithmetische Mittel immer größer sein als der Median. Beim Median wirkt sich der hohe Wert 8.760,- nicht sehr stark aus, beim arithmetischen Mittel hingegen schon. Beim Median wirken sich die beiden niedrigen Gehälter (unter 1.000,-) sehr stark aus. Da der Median den zufällig in der Mitte stehenden Wert (hier 950,-) angibt, kann der Median auch ein (im Vergleich zu den anderen Werten) sehr niedriger Wert sein.
3 Stundenlöhne Das folgende Kreisdiagramm gibt Auskunft über die Stundenlöhne der 24 Mitarbeiter/innen eines Unternehmens. Welche der folgenden Informationen kann man dem Kreisdiagramm entnehmen? Information Richtig Falsch Mehr als die Hälfte aller Mitarbeiter/innen haben einen Stundenlohn von 12,-- oder mehr. Ein Viertel aller Mitarbeiter/innen hat einen Stundenlohn unter 8, Mitarbeiter/innen haben einen Stundenlohn von 20,-- oder mehr. Zwei Mitarbeiter/innen verdienen weniger als 5,--. Die Anzahl der Mitarbeiter/innen mit einem Stundenlohn von 8,-- bis unter 12,-- ist größer als 6.
4 Umfrage Die folgende Tabelle ist unvollständig. Anton weiß aber noch, dass die durchschnittliche Taschengeldhöhe (Mittelwert) in der Klasse 4 betragen hat. Taschengeld Anzahl der Schülerinnen Ergänze den fehlenden Taschengeldbetrag in der Tabelle. Durchschnittliches Monatsgehalt 1 Das durchschnittliche Monatsgehalt (arithmetisches Mittel) aller Mitarbeiter/innen eines Betriebes beträgt 2.150,-. In dem Betrieb sind 21 Männer und 7 Frauen beschäftigt, das durchschnittliche Monatsgehalt (arithmetisches Mittel) der Frauen beträgt 1.850,-. Ermittle das durchschnittliche Monatsgehalt (arithmetisches Mittel) der in diesem Betrieb tätigen Männer! Das durchschnittliche Monatsgehalt der Männer beträgt Durchschnittliche Körpergröße Für sieben Spieler einer Basketballmannschaft wurden folgende Körpergrößen (in cm) gemessen: Ermittle den Median der angegebenen Körpergrößen! Der Median beträgt.. cm.
5 Holzeinschlag Ein Forstbetrieb hat den Holzeinschlag (in Festmeter fm) der letzten 12 Jahre in folgender Form notiert: 10-Jahres-Durchschnitt Vier Angestellte machen folgende Aussagen: A: Im Zeitraum von 1999 bis 2010 konnten erstmals im Jahr 2010 über fm Holz eingebracht werden. B: Im Zeitraum von 1999 bis 2010 konnten im Mittel mehr als fm Holz pro Jahr eingebracht werden. C: Im Zeitraum von 1999 bis 2008 gab es mindestens ein Jahr mit einem geringeren Holzeinschlag als fm Holz. D: Im Zeitraum von 1999 bis 2010 ist der Holzeinschlag von Jahr zu Jahr gewachsen. Welche Aussage ist wahr, falsch bzw. von welcher Aussage lässt sich das nicht eindeutig feststellen? Kreuze in der Tabelle das Entsprechende an und gib eine Begründung deiner Entscheidung an. Aussage wahr falsch nicht eindeutig Begründung feststellbar A B C D
6 Bevölkerungswachstum in Österreich Man weiß, dass die Bevölkerung Österreichs in den Jahren recht langsam, in den Jahren besonders rasch gewachsen ist. Begründe, warum dieses Wachstumsverhalten in der angegeben Grafik nicht erkennbar ist! Durchschnittszahl (Testaufgabe) Das arithmetische Mittel (die Durchschnittszahl) von fünf Zahlen ist 65. Vier der Zahlen lauten 43, 38, 83 und 76. Wie lautet die fehlende Zahl?
7 Plakat zuordnen Im Mathematikunterricht werden in Gruppen verschiedene Daten erhoben. Gruppe 1 zählt die Fahrzeuge in einer Straße. Es wurden 5 LKW, 15 Mopeds und 27 PKW gezählt. Gruppe 2 erhebt, wie viele Minuten ihre Mitschüler/innen für das Lösen einer Mathematikaufgabe gebraucht haben. Sie erhalten folgende Liste: 5, 7, 7, 8, 8, 12, 12, 13, 15, 15, 15, 15, 15, 16, 17, 20, 22, 27 Gruppe 3 befragt die Mitschüler/innen nach der Höhe des Taschengeldes und stellt fest, dass das geringste Taschengeld 5 und das höchste Taschengeld 27 ausmacht. Die Hälfte der Kinder erhält ein Taschengeld zwischen 8 und 16. Der Median beträgt 15. Gruppe 4 fragt nach der Länge des Schulweges in Minuten. Das arithmetische Mittel berechnen sie mit 15 Minuten. Samuel braucht nur 5 Minuten in die Schule, Marianne braucht 27 Minuten. Die Gruppen stellen ihre Daten auf einem Plakat dar. Es findet sich folgende Zeichnung auf einem Plakat. Zu welchen Gruppen kann diese Zeichnung gehören? Begründe deine Ansicht.
8 Alkoholkranke: nein, Zuwachs nur 1,3% Durchschnittliches Monatsgehalt 2: nein/ja/nein/ja Stundenlöhne: richtig/falsch/falsch/falsch/richtig Umfrage: 5 Durchschnittliches Monatsgehalt: 2250 Durchschnittliche Körpergröße: 195 cm Holzeinschlag: A nicht eindeutig, da man Werte von nicht kennt B wahr, arith.mittel ergibt 4716,7 C wahr, arith.mittel kann nicht niedrigster Wert sein (außer: jedes Jahr genau 4500 fm) D nicht eindeutig, siehe A Bevölkerungswachstum: Skalierung der x-achse: zuerst 10er Schritte, dann 2er Schritte Durchschnittszahl: 85 Plakat zuordnen: Gruppe 2 oder 3
Alkoholkranke (Testaufgabe)
Alkoholkranke (Testaufgabe) In einer Zeitschrift ist zu lesen: ''Untenstehende Graphik demonstriert, dass die Anzahl der Alkoholkranken in der Stadt X von 2007 bis 2008 stark zugenommen hat.'' Ist diese
Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man:
Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: a) Die absoluten Häufigkeit: Sie gibt an, wie oft ein Variablenwert vorkommt b) Die relative Häufigkeit: Sie erhält
Math-Champ M8 Klasse: Datum: Name:
Math-Champ M8 Klasse: Datum: Name: 1) Britta erzählt ihrer Freundin: ist keine rationale, sondern eine irrationale Zahl. Ihre Freundin möchte nun wissen, warum keine rationale Zahl ist. Welche der folgenden
8a 41,5 27, , ,5 8b ,5 41,5 36, ,5 29, ,5 25
8 Aufgaben im Dokument Aufgabe P7/2009 Die Jungen der Klassen 8a und 8b werden gemeinsam in einer Sportgruppe unterrichtet. Beim Ballwurf werden von den 10 Schülern der 8a und den 13 Schülern der 8b folgende
BOXPLOT 1. Begründung. Boxplot A B C
BOXPLOT 1 In nachstehender Tabelle sind drei sortierte Datenreihen gegeben. Zu welchem Boxplot gehört die jeweilige Datenreihe? Kreuze an und begründe Deine Entscheidung! Boxplot A B C Begründung 1 1 1
Lerneinheit Statistik
Lerneinheit Statistik In dieser Lerneinheit findest du zu verschiedenen statistischen Themen jeweils ein durchgerechnetes Musterbeispiel und anschließend ähnliche Beispiele zum eigenständigen Arbeiten.
Lösungen. bv3c4y Lösungen. bv3c4y. Name: Klasse: Datum: Mehr als die Hälfte aller Besucher der Ausstellung waren männlich.
Testen und Fördern Name: Klasse: Datum: 1) Ordne die Beschreibung der richtigen Grafik zu! Mehr als die Hälfte aller Besucher der Ausstellung waren männlich. 2) Auf der linken Seite sind die absoluten
2006/1. Ist diese Aussage gerechtfertigt? Schreib deine Begründung im Antwortbogen auf. Zuordnung: H3/I4
2006/1. In einer Zeitschrift ist zu lesen: Untenstehende Graphik demonstriert, dass die Anzahl der Alkoholkranken in der Stadt X von 2002 bis 2003 stark zugenommen hat Ist diese Aussage gerechtfertigt?
Vergleichsarbeit Wie weit ist sie nach 7 Sprüngen gekommen? Antwort: Sie ist nach 7 Sprüngen.. cm weit gekommen. 1
Vergleichsarbeit 2011 1 Name: (Eichstrich, Länge 8,0 cm) Aufgabe 1 Die Springmaus Flinki springt abwechselnd zuerst 30 cm vorwärts, dann 20 cm rückwärts. Wie weit ist sie nach 7 Sprüngen gekommen? Antwort:
Standards Mathematik Klasse 7
Standards Mathematik Klasse 7 ) Ein Hobby-Imker füllt seinen Jahresertrag an Honig in Gläser mit je 500 g Inhalt ab. Er kann Gläser füllen. Wie viele Gläser zu je 50 g Inhalt könnte er mit diesem Jahresertrag
Arithmetischer Mittelwert
Lies dir folgende Informationen zu einer statistischen Kenngröße gut durch. Rechne auch die angegebenen Beispiele noch einmal durch. Du bist der Experte für diese Kenngröße in deiner Gruppe! Überlege dir
Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2010 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten Wenn du deine Arbeit abgibst,
2. Mathematik-Schularbeit für die 6. Klasse Autor: Gottfried Gurtner
2. Mathematik-Schularbeit für die 6. Klasse Autor: Gottfried Gurtner Arbeitszeit: 100 Minuten Lernstoff: Mathematische Grundkompetenzen: AG2.1, AG2.2, AG2.3 FA1.1, FA1.5, FA1.6, FA1.7, FA1.9 FA2.1, FA2.2,
benötigen. Die Zeit wird dabei in Minuten angegeben und in einem Boxplot-Diagramm veranschaulicht.
, D 1 Kreuze die richtige Aussage an und stelle die anderen Aussagen richtig. A Das arithmetische Mittel kennzeichnet den mittleren Wert einer geordneten Datenliste. B Die Varianz erhält man, wenn man
Exemplar für Prüfer/innen
Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2015 Mathematik Kompensationsprüfung Angabe für Prüfer/innen Hinweise zur Kompensationsprüfung
1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43
1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Übungen für die kompetenzbasierte Abschlussprüfung 1. 60 Äpfel wurden gewogen und die Ergebnisse in einem Boxplot-Diagramm dargestellt. Ergänzen Sie die folgenden
Mathematik. Hauptschulabschlussprüfung Saarland. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse:
Hauptschulabschlussprüfung 2010 Schriftliche Prüfung Pflichtaufgaben 1. Teil Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 45 Minuten Seite 2 von 10 Alle Aufgaben
Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:
GRUNDWISSENTEST 05 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 7 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Bei formalen
Übungen. a) 7+6y = 37 (G) b) 9y-39 = 7 (U) c) 1+y = 6 (L) d) 4+3y = 13 (R) e) 3y-6 = 9 (Ü) f) 4+5y = 29 (C) g) y:2+2,5 = 5 (K) h) 2y-7,2 = 2,8 (S)
Übungen Inhalt 5. Gleichungen... 1 6. Daten, Diagramme und Prozentrechnung... 3 7. Kongruenz und Dreiecke... 4 8. Besondere Linien im Dreieck und Konstruktionen... 5 [nach Lambacher Schweizer 7, Arbeitsheft]
Statistische Darstellungen und Kenngrößen
1 Statistische Darstellungen und Kenngrößen In der Klasse 3B gab es bei einer Deutschschularbeit 5 Sehr gut, 4 Gut, 6 Befriedigend, 4 Genügend und 3 Nicht genügend. Welche der folgenden Tabellen stellt
Prüfung aus Statistik 1 für SoziologInnen
Prüfung aus Statistik 1 für SoziologInnen 14. Oktober 2006 Nachname: Vorname: Matrikelnummer: Studienkennzahl: Beispiel 1: Kreuze die jeweils richtige Antwort an (maximal 6 Punkte) 1.1. Bei einer rechtsschiefen
Tägliche Nutzungsdauer in Minuten
Mathematik 6. Schulstufe 1) Von einem Dreieck sind die Winkel α = 20 und β = 70 bekannt. Warum muss in diesem Dreieck der dritte Winkel 90 betragen? 2) Bei der Schuluntersuchung stellte der Schularzt fest,
Setze bei allen drei folgenden Rechnungen Klammern so, dass die angeführten Ergebnisse richtig sind.
1. Klammern setzen Setze bei allen drei folgenden Rechnungen Klammern so, dass die angeführten Ergebnisse richtig sind. 80 30 + 20 = 30 80 30 20 = 70 80 + 30 20 = 90 2. Sebastians Hausübung Sebastian hat
2012/13 Jahrgangsstufe 7 A. Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2012
2012/13 Jahrgangsstufe 7 A Jahrgangsstufentest im Fach Mathematik am Hanns-Seidel-Gymnasium am 28.9.2012 Name: Note: Klasse: Punkte: 1 Aufgabe 1 In einer Umfrage wurden 640 Schüler befragt: "Für welche
z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm².
Einsetzbar ab Lerneinheit Zuordnungen a) Runde 34,92 auf Zehntel. 35,0 b) Berechne: 3 5 11 3 +. = 1 4 8 8 8 z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne
Konsumverhalten von Jugendlichen
Auswertung einer Umfrage der Schülerinnen und Schüler der 7B des Adalbert-Stifter- Gymnasiums Linz zum Thema Konsumverhalten von Jugendlichen anlässlich der Fachtagung Maßvoll im Maßlosen der SCHULDNERHILFE
Statistik. Jahr Mittlerer Wasserstand in cm
Statistik 1. In der folgenden Tabelle sind die mittleren Wasserstände der Donau an einer bestimmten Stelle in cm von 2007 bis 2014 dokumentiert: Jahr 2007 2008 2009 2010 2011 2012 2013 2014 Mittlerer Wasserstand
Name: Klasse: Datum: 2 Überlege, bei welchen Längenberechnungen du den pythagoräischen Lehrsatz anwenden kannst.
Mach mit Mathematik 4: Wiederholung aus der 3. Klasse Name: Klasse: Datum: 1 Berechne den Flächeninhalt des rechtwinkligen Dreiecks. Der rechte Winkel ist bei Punkt C. Kreuze danach die richtige Lösung
Hauptschule G-Kurs. Testform B
Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Hauptschule G-Kurs Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau
ZENTRALE KLASSENARBEIT 2015 GYMNASIUM. Mathematik. Schuljahrgang 6
GYMNASIUM Mathematik Schuljahrgang 6 Arbeitszeit: 45 Minuten Alle Aufgaben sind auf den Arbeitsblättern zu bearbeiten. Dazu gehören auch eventuell erforderliche Nebenrechnungen, Skizzen oder Ähnliches.
Math-Champ M7 Klasse: Datum: Name:
Math-Champ M7 Klasse: Datum: Name: 1) Die Abbildung zeigt den unvollständigen Schrägriss eines Würfels. Vervollständige die Figur richtig. Verwende dein Geo-Dreieck. 2) In der Grafik ist der Grundriss
G-Kurs. c) Berechne, wie viele Freundinnen sich am Geschenk beteiligen müssten, wenn jede nur 15 ausgeben will.
Abschlussarbeiten 2017 Hauptschulabschluss 9 Mathematik 04.05.2017 Pflichtteil / Wahlteile G-Kurs Schülermaterial Hauptschule 9 Name:. Klasse: Beachte: - Alle Rechenwege müssen klar und übersichtlich aufgeschrieben
x-beliebig 401 Ein Würfel liegt auf dem Pult. Man kann ihn von allen Seiten betrachten. So sind fünf Würfelflächen sichtbar.
x-beliebig 10 1 6 Sichtbare und unsichtbare 401 Ein Würfel liegt auf dem Pult. Man kann ihn von allen Seiten betrachten. So sind fünf sichtbar. Die Fläche am Boden ist verdeckt, also unsichtbar. Ergänze
Übungsheft Hauptschulabschluss Mathematik. Korrekturanweisung. Zentrale Abschlussarbeit 2014
Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 04 Übungsheft Hauptschulabschluss Mathematik Korrekturanweisung Herausgeber Ministerium für Bildung und Wissenschaft
Prüfungsaufgaben Wahrscheinlichkeit und Statistik
Aufgabe P8: 2008 Aufgabe 1 von 17 In einem Behälter liegen fünf blaue, drei weiße und zwei rote Kugeln. Mona zieht eine Kugel, notiert die Farbe und legt die Kugel wieder zurück. Danach zieht sie eine
JAHRGANGSSTUFENTEST 2012 IM FACH MATHEMATIK WAHLPFLICHTFÄCHERGRUPPE I NAME: KLASSE: 8 PUNKTE: / 21 NOTE:
JAHRGANGSSTUFENTEST 2012 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 8 DER REALSCHULEN WAHLPFLICHTFÄCHERGRUPPE I (ARBEITSZEIT: 45 MINUTEN) NAME: KLASSE: 8 PUNKTE: / 21 NOTE: 1 Auf dem Oktoberfest wirbt die
1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober
1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße
1. Schularbeit - Gruppe A M 0 1(1) 6C A
. Schularbeit - Gruppe A M 0 () 6C 3 0 97 A. Ergänze folgende Tabelle: Potenz Bruch / Wurzel numerischer Wert 3-5 n -5 8 0,00 3 5 4 x 3 8 7. Berechne: a) ( x y) ( x + y) 0 = b) 9x 6ax : = 5 4a 3 3. Rechne
Mathematik 1. Klassenarbeit Klasse 10e- Gr. A 28. Sept Quadratische Funktionen - ups -
Mathematik. Klassenarbeit Klasse 0e- Gr. A 8. Sept. 006 Quadratische Funktionen - ups - Name:.... Aufgabe:. Die Tabellen gehören zu quadratischen Funktionen der Form y=x²+bx+c. ergänze die fehlenden Zahlen
Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,
Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.
Zahlenstrahl. Zahlenvergleich 0,554 0,5 0 0, Kaufpreis ermitteln
Zahlenstrahl Welche Zahlen gehören an den Zahlenstrahl? Schreiben Sie die fehlenden Zahlen an den Zahlenstrahl. Zahlenvergleich Kreuzen Sie die den größten Zahlenwert an. 000,0000 0 6 0 0-6, Millionen
Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 8. Klasse
Kantonale Prüfungen 2012 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik II Serie H8 Gymnasien des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten:
Harry Potter und die Kammer des Schreckens : m, s, g, a, a, a, sg, g, a, g, m, m, g, g, sg, s, a, a, a, g, a, a, g, g, a
Aufgabe 1: Harry Potters Filmkritik 25 Schüler und Schülerinnen der Klasse 9 sollten die ersten beiden Harry-Potter- Filme mit ausgezeichnet (a), sehr gut (sg), gut (g), mittelprächtig (m), schlecht (s)
GRUNDWISSENTEST 2013 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 7 DER REALSCHULE (ARBEITSZEIT: 45 MINUTEN)
GRUNDWISSENTEST 03 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 7 DER REALSCHULE (ARBEITSZEIT: 45 MINUTEN) NAME: Lösungsmuster KLASSE: 7 PUNKTE: /3 NOTE: Berechne. a) 53 b) 8 4 3 40 c) 0, 0,5 d) 4 : 5 3 0,05
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
E-Kurs. 50 g 100 g. a) Berechne, wie viele 50 g Knäuele Wolle Lisa für den Pullover benötigt und gib den Preis an.
Abschlussarbeiten 2017 Hauptschulabschluss 9 Mathematik 04.05.2017 Pflichtteil / Wahlteile E-Kurs Schülermaterial Hauptschule 9 Name:. Klasse: Beachte: - Alle Rechenwege müssen klar und übersichtlich aufgeschrieben
Modulare Förderung Mathematik
1) 1 Umfang und Fläche begrifflich verstehen Welche Aussagen stimmen? Kreuze an. Der Umfang einer Figur ist immer größer als sein Flächeninhalt. Der Flächeninhalt wird kleiner, wenn ich eine Fläche zerschneide
Auswerten von Daten, Mittelwerte
Auswerten von Daten, Mittelwerte 1. Finde jeweils das passende Diagramm. Es veranschaulicht (a) die Notenübersicht bei der vorletzten Mathematikschulaufgabe; der Notendurchschnitt war 3,0. Wie viel Prozent
Prüfung aus Statistik 1 für SoziologInnen
Prüfung aus Statistik 1 für SoziologInnen 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 120 Minuten netto Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort gibt 2 Punkte. Pro falsche
Prüfungsteil I. Aufgabe 1. Wie viele Stunden und Minuten sind Sekunden? Kreuze an.
Prüfungsteil I Aufgabe 1 Wie viele Stunden und Minuten sind 15 120 Sekunden? Kreuze an. 2 Stunden 52 Minuten 25 Stunden 6 Stunden 30 Minuten 4 Stunden 12 Minuten 630 Minuten Aufgabe 2 Bestimme das Volumen
absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten
Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit
2 5 + = b) In der Broschüre der Deutschen Post hat man die wichtigsten Preise im Überblick:
Niedersächsisches Abschlussprüfung zum Erwerb des Hauptschulabschlusses Schuljahrgang 9, Schuljahr 2007/2008 Fach Mathematik Allgemeiner Teil 30. Mai 2008 Name: 1. Ergänze die fehlenden Zahlen. a) 4 0
Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.
FrauOelschlägel Mathematik8 Lineare Funktionen Ü Datum 1. Die Punkte A 0 4 und liegen auf der Geraden h. und Q8,5,5 B10 0 liegen auf der Geraden g, die Punkte P 0,5 11 Bestimme durch Rechnung die Funktionsgleichungen
Mathematik II Prüfung für den Übertritt aus der 9. Klasse
Kantonale Prüfungen 2012 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik II Serie H9 Gymnasien des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 9. Klasse Bitte beachten:
Mathematik Aufnahmeprüfung. Aufnahmeprüfung BMS
Mathematik Aufnahmeprüfung Aufnahmeprüfung BMS NAME:.. 1. Vereinfachen Sie den Term: Term ( ( ) ) ( ) 2 2 2 12a 25a 17a 20 13a 10a 15 ( ) a + b ab a a + 2ab + b 2 2 (2P) 2. Setzen Sie die Zahlen in den
Freigegebene Items aus der Pilotierung 2011 Mathematik 8
Freigegebene Items aus der Pilotierung 2011 Mathematik 8 I1/H4 I1 = Zahlen und Maße H4 = Argumentieren, Begründen K2 = Herstellen von Verbindungen In zwei Gefäßen A und B befindet sich jeweils eine Flüssigkeit
Fach Mathematik. (Schuljahr 2006/2007) Name: Klasse: Schülercode:
Kompetenztest für Schülerinnen und Schüler der Klassenstufe 8 an Regelschulen, Gymnasien, Gesamtschulen und Förderzentren mit dem Bildungsgang der Regelschule Fach Mathematik (Schuljahr 2006/2007) Name:
1. Schularbeit Gruppe A Seite 1 7E, 7. November 2011
1. Schularbeit Gruppe A Seite 1 7E, 7. November 2011 NAME Für den Computerteil gilt: Die Verwendung von Excel, Word und GeoGebra (oder vergleichbaren Programmen) ist erlaubt. Das Internet darf verwendet
BEISPIELARBEIT. erstmalig 2017 ZENTRALE KLASSENARBEIT MATHEMATIK. Schuljahrgang 6. Gymnasium
ARBEIT erstmalig 2017 ZENTRALE KLASSENARBEIT Schuljahrgang 6 Gymnasium Arbeitszeit: 45 Minuten Alle Aufgaben sind auf den Arbeitsblättern zu bearbeiten. Dazu gehören auch eventuell erforderliche Nebenrechnungen,
a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält!
1) Wasserstand Der Wasserstand eines Gartenteichs wird durch Verdunstung und Niederschlag reguliert. Im Sommer kann mit einer täglichen Verdunstung von 4 % des am Morgen vorhandenen Wassers gerechnet werden.
3x 5 7x Die folgenden Zahlenpaare gehören zu einer indirekten Proportionalität. Bestimme und ergänze die fehlenden Werte.
JAHRGANGSSTUFENTEST 2013 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 8 DER REALSCHULEN IN BAYERN WAHLPFLICHTFÄCHERGRUPPE I (ARBEITSZEIT: 45 MINUTEN) NAME: KLASSE: 8 PUNKTE: / 21 NOTE: 1 Bestimme die Lösungsmenge
Zentrale Prüfungen 2014 Mathematik
Zentrale Prüfungen 2014 Mathematik Realschule / Gesamtschule (Erweiterungskurs) / Hauptschule (Klasse 10 Typ B) Prüfungsteil I Aufgabe 1 Wie viele Stunden und Minuten sind 15 120 Sekunden? Kreuze an. 2
Fach Mathematik. (Schuljahr 2008/2009) Name: Klasse: Schülercode:
Kompetenztest für Schülerinnen und Schüler der Klassenstufe 6 an Regelschulen, Gymnasien, Gesamtschulen und Förderzentren mit dem Bildungsgang der Regelschule Fach Mathematik (Schuljahr 2008/2009) Name:
Auswertung der Daten von 2 Mehrfamilienwohnhäusern in Spremberg Anhang 1 Wetter: Wetterverlauf, Datengrundlagen, Gradtagszahlen, Witterungsbereinigung
DIMaGB MFH Spremberg Energieverbrauchsanalyse S. 1/9 Auswertung der Daten von 2 Mehrfamilienwohnhäusern in Spremberg Anhang 1 Wetter: Wetterverlauf, Datengrundlagen, Gradtagszahlen, Witterungsbereinigung
Übungsblatt 3. Größe in cm Anzahl der (Klassenmitten) Studenten ges:100
Aufgabe 1: Übungsblatt 3 Die Körpergröße von 100 Studenten sei wie folgt verteilt: Größe in cm Anzahl der (Klassenmitten) Studenten 158 1 162 6 166 10 170 22 174 21 178 17 182 14 186 5 190 3 194 1 ges:100
2.3 Potenzen (Thema aus dem Bereichen Algebra)
. Potenzen Thema aus dem Bereichen Algebr Inhaltsverzeichnis 1 Repetition: Potenzen mit natürlichen Exponenten Potenzen mit ganzzahligen Exponenten 4 Potenzen mit rationalen Exponenten 8 1 Potenzen 19.11.007
Mathematik I Prüfung für den Übertritt aus der 9. Klasse
Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
STATISTIK. Erinnere dich
Thema Nr.20 STATISTIK Erinnere dich Die Stichprobe Drei Schüler haben folgende Noten geschrieben : Johann : 4 6 18 7 17 12 12 18 Barbara : 13 13 12 10 12 3 14 12 14 15 Julia : 15 9 14 13 10 12 12 11 10
Korrekturanweisung Mathematik 2017
Korrekturanweisung Mathematik 2017 Erster allgemeinbildender Schulabschluss Herausgeber Ministerium für Schule und Berufsbildung des Landes Schleswig-Holstein Jensendamm 5, 24103 Kiel Aufgabenentwicklung
Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2010 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 60 Minuten Fach: Mathematik Wahlaufgaben
Mathematik II Prüfung für den Übertritt aus der 8. Klasse
Kantonale Prüfungen 2012 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik II Serie H8 Gymnasien des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten:
Orientierungsarbeit in der Jahrgangsstufe 4. Schuljahr 2014/2015. Mathematik
Ministerium für Bildung, Jugend und Sport Orientierungsarbeit in der Jahrgangsstufe 4 Schuljahr 2014/2015 Mathematik Name:... Klasse:... Name: Klasse: Orientierungsarbeit Mathematik Schuljahr 2014/2015
Teilaufgabe 1 Teilaufgabe 2
20 Prozent Akrobatik Teilaufgabe Teilaufgabe 2 Teilaufgabe 3 2 Ampelkarte Teilaufgabe Teilaufgabe 2 2 Anzahl von Nullen Teilaufgabe Teilaufgabe 2 Aussagen über Dreiecke Teilaufgabe Teilaufgabe 2 In einem
ZENTRALE KLASSENARBEIT 2011 SEKUNDARSCHULE. Mathematik. Schuljahrgang 6
SEKUNDARSCHULE Mathematik Schuljahrgang 6 Arbeitszeit: 45 Minuten Alle Aufgaben sind auf den Arbeitsblättern zu bearbeiten. Dazu gehören auch eventuell erforderliche Nebenrechnungen, Skizzen oder Ähnliches.
Thema aus dem Bereich Analysis Funktionen 1.Grades
Thema aus dem Bereich Analysis -. Funktionen.Grades Inhaltsverzeichnis Einführung in den Funktionsbegriff Der Funktionsgraph und die Wertetabelle Was ist eine Funktion.Grades? Die Steigung einer Geraden
Deskriptive Statistik Erläuterungen
Grundlagen der Wirtschaftsmathematik und Statistik Erläuterungen Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen 7 2.1 Einfache Lageparameter aus einer gegebenen Messreihe ablesen Erklärung
Kompetenztest. Wiederholung aus der 3. Klasse. Kompetenztest. Testen und Fördern. Wiederholung aus der 3. Klasse. Name: Klasse: Datum:
Testen und Fördern Name: Klasse: Datum: 1) Berechne und entscheide dich für das richtige Ergebnis. (-10) + (-12) : (-2) = (-4) (-16) (-2) (+5) (-2) + (-4) = (-6) (-4) (-14) (+12) : (-2) (-6) = (-6) 0 (+6)
Thüringer Kultusministerium
Prüfungstag: Donnerstag, 8. Juni 2 Prüfungsbeginn: 8. Uhr Thüringer Kultusministerium Qualifizierender Hauptschulabschluss Schuljahr 1999/2 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer
Addieren und Subtrahieren ganzer Zahlen
Addieren und Subtrahieren ganzer Zahlen Jahrgangsstufe 5 Fach/Fächer Zeitrahmen Benötigtes Material Mathematik 1 2 Unterrichtsstunden Laminierte Kärtchen oder Kopie aller Aufgabenblätter mit allen Aufgaben
Arbeitsblatt: Erstellen von Boxplots. Aufgabe: Frisörbesuch (Lernstandserhebung NRW 2008)
Arbeitsblatt: Erstellen von Boxplots Aufgabe: Frisörbesuch (Lernstandserhebung NRW 2008) Aufgabe: Klimazonen (Hinweis: Löst die Aufgabe arbeitsteilig in Kleingruppen.) Aus vier en in Europa liegen Durchschnittstemperaturen
Demo-Text für Klasse 6. Vergleichsarbeiten. Mecklenburg-Vorpommern INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.
Vergleichsarbeiten Klasse 6 2010 Mecklenburg-Vorpommern Mit ausführlicher Lösung Text 19060 Stand: 13. November 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 19060 Vergleichsarbeit Klasse
Aufgabe P3/2012 Auf einem gleichschenkligen Dreiecksprisma liegt der Streckenzug +,-. mit der Länge 23,4. Es gilt:
Abschluss Realschule BW 2012 Aufgabe P1/2012 Die Rechtecke und sind kongruent. Sie haben die Punkte und gemeinsam, wobei auf der Strecke liegt. Es gilt: 4,5 29 Berechnen Sie den Flächeninhalt des Vierecks.
HAK, HUM, HLSF, BAKIP (HTL1) Geogebra
Finale Vorbereitung auf die srdp 2016 HAK, HUM, HLSF, BAKIP (HTL1) Geogebra Lösung der Bewegungsaufgabe a) Ansicht: Algebra und Grafik Eingabefenster : s(t)= Funktion[- x^3/180+x^2/2,0,100] ENTER 0der
Hauptschule G-Kurs. Testform A
Mathematiktest für Schülerinnen und Schüler der 8. Klassenstufe Teil 1 Hauptschule G-Kurs Testform A Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau
Abschlussprüfung NRW Hauptschulabschluss 2016 Zentrale Aufgaben
1 (Bearbeitungszeit: 1. Prüfungsteil: 30 Minuten; 2. Prüfungsteil: 90 Minuten) Prüfungsteil I Aufgabe 1 Die Abbildung zeigt, welche höchsten und niedrigsten Temperaturen von Montag bis Mittwoch erwartet
MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500
MATHEMATIK-STAFFEL 2013 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 1 (20 Punkte) Eine lange Zahl Es werden die Jahreszahlen von 1 bis 2013 hintereinander (ohne Leerzeichen,
9.4 Boxplots zeichnen, beschreiben und interpretieren Bearbeitung unterschiedlich schwieriger Übungsaufgaben mittels der Methode Lerntempoduett
9.4 Boxplots zeichnen, beschreiben und interpretieren Bearbeitung unterschiedlich schwieriger Übungsaufgaben mittels der Methode Lerntempoduett Thema der Unterrichtsstunde Ich bestimme mein individuelles
VORANSICHT. Daten in Strichlisten sortieren. kurze Haare. Kleid mit Punkten. Mädchen Junge lange Haare
2 Daten in Strichlisten sortieren VORANSI 1. Schaue dir das Bild an. Worin unterscheiden sich die Kinder? 2. Welche Merkmale kommen wie oft vor? Erstelle eine Strichliste. Mädchen Junge lange Haare kurze
Aufgabe P8/2010 Die Grafik veranschaulicht die Zuschauerentwicklung eines Fußballvereins von der Spielzeit 03/04 bis zur Spielzeit 08/09.
6 Aufgaben im Dokument Aufgabe P8/2003 Das Diagramm zeigt die Aufteilung des Wasserverbrauchs eines Vier-Personen- Haushalts in den Jahren 1992 und 2002. Um wie viel Prozent liegt der Wasserverbrauch 2002
Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse
netzwerk sims Sprachförderung in mehrsprachigen Schulen 1 von 11 Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse à Zusatzmaterial zum Dokument «Mathe-Wortschatz für Textaufgaben 2. Klasse bis
Neue Fakten zur Lohnentwicklung
DR. WOLFGANG KÜHN [email protected] Neue Fakten zur Lohnentwicklung Die seit Jahren konstant große Lücke in der Entlohnung zwischen den neuen Bundesländern und dem früheren Bundesgebiet bleibt auch
Heft 2 Komplexaufgaben
Heft 2 Komplexaufgaben Du musst vier Aufgaben bearbeiten. Eine Aufgabe wurde durchgestrichen und darf nicht bearbeitet werden. Die Bearbeitung der Aufgaben erfolgt auf dem bereitliegenden, gestempelten
Stichproben Parameterschätzung Konfidenzintervalle:
Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,
Wiederholung aus der 3. Klasse Lösungen
1) Berechne und entscheide dich für das richtige Ergebnis. (-10) + (-12) : (-2) = (-4) (-16) (-2) (+5) (-2) + (-4) = (-6) (-4) (-14) (+12) : (-2) (-6) = (-6) 0 (+6) (-10) + (-4) : (+2) = (-8) (-12) (-6)
