Exkurs: Datenstruktur Quad Tree
|
|
|
- Friederike Lange
- vor 8 Jahren
- Abrufe
Transkript
1 Exkurs: Datenstruktur Quad Tree Prof. Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering LS11 Universität Dortmund 27. VO WS07/ Februar
2 Mehrdimensionale Suchstrukturen Gegeben: Menge S von N Punkten in R k Familie U von Untermengen von R k (Ranges) δ U Gesucht: Vorverarbeitung von S, so dass Abfragen der Art: ``Berichte alle Punkte in S δ effizient berichtet werden können. Beispiel: Datenbankabfragen 2
3 Anwendungsbereiche Datenbanken Computergraphik / Computer Vision Computer-Aided Design Geographische Informationssysteme Bildverarbeitung Mustererkennung Document-Retrieval Data Mining... 3
4 Charakterisierung (1) Welche Datentypen werden gespeichert? S ist ungeordnete Menge (z.b. Index) S ist kartes. Produkt S 1 х S 2 х...х S k geordn. Mengen Dimension: k ist kleiner gleich 10 Operationen: Find, Insert, Delete, (Pred., Succ., Min, Max) Welche Speichermedien? intern vs. extern 4
5 Charakterisierung (2) Welche Objekttypen werden gespeichert? Punkte, Container (z.b. Quader in 3D), komplexere Lage fixiert oder beweglich? Welche Abfragen und wie oft? Ist Punkt enthalten? Aufzählung aller Punkte, die in gewünschtem k-dim. Bereich liegen Welche Punkte liegen in der Nähe eines Punktes? Finde die n nächsten Nachbarn eines Punktes Exakte vs. partielle Abfragen Einmalige vs. viele Abfragen 5
6 Wir betrachten folgende Abfragen: Punkt-Abfrage (Point Query): Ist ein gegebener Datenpunkt in S R k enthalten, und falls ja, dann finde diesen. Bereichsabfrage (Range Query): Berichte alle Punkte aus S, deren k Schlüssel in den gewünschten Bereichen liegen. 6
7 Einfache Datenstrukturen Name X-key Y-key Sequentielle Liste Aufwand: O(N k) D C O M Invertierte Liste (Knuth 1973) Sortierte Liste pro Schlüssel Durchschnittlicher Aufwand: O(N 1-1/k ) Aufwand: O(N k) X-key D O C M Y-key M O C D 7
8 ``Fixed Grid Methode Suchraum wird in gleiche Teile (Buckets) der Größe r aufgeteilt, wobei r der Suchradius ist Realisiert als k-dim. Array mit einem Eintrag per Bucket; jeder Bucket enthält Punkte in Form einer einfachen Liste Durchschnittlicher Suchaufwand für Bereichssuche (Bentley 1977): O(F 2 k ), wobei F die Anzahl der berichteten Punkte ist Effizient, wenn fixer Radius und Datenpunkte gleichmäßig im Raum verteilt sind (Kartographie) Teilt den Raum auf 8
9 Region Quadtrees Repräsentation eines 2-dim. Binärbildes (Region Data) Rekursive Teilung eines 0/1-Bereiches in vier gleich große Quadranten, STOP falls Block nur 0 oder nur 1 enthält Suchbaum mit Grad 4 (s. Beispiel) Jedes Kind eines Knotens repräsentiert Quadranten (NW,NE,SW,SE) Blätter Aufteilung nicht weiter notwendig Blätter sind entweder ``weiß oder ``schwarz, innere Knoten sind ``grau 9
10 Point-Region Quadtrees Repräsentation von eines Punkten 2-dim. in einem Binärbildes k-dim. Bereich (Region Data) Rekursive Teilung eines quadratischen 0/1- Bereiches in vier gleich große Quadranten, STOP falls Block nur 0 oder nur 1 Punkt enthält Jedem Feld wird ein Knoten in einem Suchbaum mit Maximal- Grad 4 zugeordnet Jedes Kind eines Knotens repräsentiert Quadranten (NW,NE,SW,SE) Blätter Aufteilung nicht weiter notwendig Blätter sind entweder ``weiß (falls kein Punkt enthalten ist) oder ``schwarz (sonst), innere Knoten sind ``grau 10
11 Point-Region Quadtrees: Beispiel N=10 Punkte (0,100) (100,100) y (0,0) x (100,0)
12 PR Quadtree für Beispiel (50,50) (75,75) (25,25) (75,25) 12
13 Aufbau eines PR Quadtrees Top-Down Aufbau: Starte mit Feld B, das alle Knoten enthält Sei v B der zugehörige Knoten im Suchbaum Falls B mehr als einen Knoten enthält, dann erzeuge 4 Kinder von v B im Suchbaum weise jedem Kind-Feld B i alle Knoten aus B zu, welche in B i enthalten sind entferne leere Kind-Felder v Bi im Baum Alternativ: Insert-Aufbau: Starte mit leerem Feld B und füge iterativ die Knoten ein Einfügen geht ähnlich wie bei binären Suchbäumen: suche das richtige Feld, Suche endet an Blatt, füge ein.
14 Morton Order Morton 1966, space filling curve Abb. aus Wikipedia
15 Laufzeit? Baum hat Tiefe N Laufzeiten beider Aufbau-Algorithmen: O(N 2 ) (0,100) (100,100) 1 1 y (0,0) x (100,0) 4 5
16 Point Quadtrees Eingeführt von Finkel & Bentley 1974 Multidimensionale Verallgemeinerung von binären Suchbäumen Verheiratung von ``Fixed Grid mit binären Suchbäumen Rekursive Teilung an Datenpunkten in jeweils vier Teile: NW,NE,SW, SE Hier Annahme: k=2, Verallg. einfach Jeder Punkt wird nur einmal besetzt 16
17 Beispiel: K L J D B H E C F G I A M N
18 Point Quadtree zu Beispiel A J F M N K L H G B I D C E
19 Point Quadtrees: Operation Insert Jeder innere Knoten enthält Zeiger zu Kindern NW,NE,SW,SE CHILD(P,I): gibt Kind im Quadranten I von Knoten P an XCOORD, YCOORD: Koordinaten von Punkt NAME: Information über Punkt (z.b. Name) Ähnlich wie für binäre Suchbäume: Suche den Punkt (nach x und y-key) Wenn Blatt erreicht ist, dann bestimme Position, an die eingefügt werden muss. 19
20 Beispiel: Insert Z K L J D B H E C F Z G I A M N 20
21 Point Quadtree zu Beispiel: Insert Z A J F M N K L H G B I D C E Z
22 Point Quadtrees: Analyse Aufbau Aufbau eines Point Quadtrees: Aufwand ist äquivalent zur Gesamtpfadlänge = Kosten, um nach allen Elementen einmal zu suchen Gesamtpfadlänge: Hängt von Reihenfolge der Einfügungen der Punkte ab Empirisch: N log 4 N (Finkel & Bentley) Worst Case: θ(n 2 ) Aufwand für Insert und Search Empirisch: O(log 4 N) Worst Case: O(N) Re-Balancing Methoden sind möglich 24
23 Point Quadtrees: Deletion Problem: Geht nicht so leicht wie bei binären Suchbäumen Beispiel: Deletion of A 25
24 Deletion of A Beispiel: Deletion K L J D B H E C F G I A M N
25 Beispiel: Deletion K L J D B H E C F G I A M N
26 Point Quadtrees: Deletion Problem: Unterbäume des gelöschten Knotens müssen eventuell neu eingefügt werden, denn sie sind nicht mehr im richtigen Quadranten bzgl. der neuen Wurzel Original-Vorschlag war daher: alle diese Unterbäume neu einfügen Besser: Vorschlag von Samet: 28
27 Point Quadtrees: Deletion Problem: Unterbäume der Wurzel müssen neu eingefügt werden Alle Knoten mit deren Unterbäumen, die in der Zwischenregion liegen, müssen neu eingefügt werden. Idee: Wähle in jedem Unterquadranten des zu entfernenden Knotens einen Kandidaten aus, der am nächsten bei x oder y-koordinate ist. Wähle aus diesen vier Kandidaten dann den besten aus. 29
28 Delete Punkt A Beispiel: K L J D B H E C F G I A M N
29 Beispiel nach Deletion von A K D H F G L J B E C I M N
30 Quadtree zu Beispiel nach Deletion von A B J F M N K D H G C L E I 39
31 Point Quadtree vor Delete A A J F M N K L H G B I D C E
32 Point Quadtrees: Analyse Theoretisch (Bentley 1988): Deletion Aufwand bei gleichmäßig verteilten Daten für die Anzahl der Neueinfügungen geht um 83% zurück gegenüber der Neueinfügung aller Teilbäume. Empirisch (Bentley 1988): Empirisch: N log 4 N vs. deutlich größer in Original Gesamtpfadlänge verringert sich leicht vs. deutlich Verlängerung in Original Worst Case: O(N 2 ) Deletion sehr komplex! Alternative: Pseudo Quadtrees 47
33 Pseudo Quadtrees Overmars und van Leeuwen 1982 Idee: Rekursive Aufteilung des Raumes an Punkten, die nicht Datenpunkte sind, in Quadranten, Unterquadranten, etc., bis jeder Unterquadrant höchstens einen Datenpunkt enthält. 48
34 Pseudo Quadtrees: Beispiel (0,100) (100,100) (60,75) TORONTO 70,70 y (5,45) DENVER (25,35) OMAHA (40,50) (35,40) CHICAGO (26,37) (65,12) (80,65) BUFFALO (85,15) ATLANTA (50,10) (90,5) Mobile MIAMI (0,0) x (100,0) 49
35 Pseudo Quadtree für Beispiel (40,50) (70,70) (26,37) (65,12) TORONTO BUFFALO DENVER OMAHA CHICAGO ATLANTA MIAMI MOBILE 50
36 Pseudo Quadtrees: Aufbau: Für je N Datenpunkte im k-dim. Raum existiert ein Partitionierungspunkt, so dass jeder Quadrant höchstens N/(k+1) Datenpunkte enthält. Analyse: Dann besitzt der Pseudo Quadtree eine Tiefe von höchstens log k+1 N und kann in Zeit O(N log k+1 N) gebaut werden. 51
37 Point Quadtrees: Diskussion Nachteile bei höheren Dimensionen: An jedem Knoten des Baumes sind k Vergleiche notwendig (um den Quadranten zu bestimmen) Hoher Speicherplatzverbrauch: Jedes Blatt benötigt k viele NULL Pointer, auch jeder innere Knoten besitzt immer wieder NULL Pointer Speicherplatzverbrauch pro Knoten: k+2 k +1 Wörter für Koordinaten, Kinder und Info 52
38 K-D Trees: Bentley 1975 Idee: Binärer Suchbaum mit der Eigenschaft, dass in jeder Tiefe nach einer anderen Dimension orthogonal aufgeteilt wird. Z.B. k=2: nach x-koordinaten auf den Schichten mit gerader Nummer (Beginn bei Schicht 0), nach y- Koordinaten auf den ungeraden Schichten. Aufteilung basiert auf den Datenpunkten BSP Trees (Fuchs, Kedem, Naylor 1980): K-D Trees, bei denen nicht orthogonal aufgeteilt wird (beliebige Hyperebenen) 53
39 K-D Tree: Beispiel (0,100) (100,100) (60,75) TORONTO (80,65) BUFFALO y (5,45) DENVER (25,35) OMAHA (35,40) CHICAGO (85,15) ATLANTA (50,10) Mobile (90,5) MIAMI (0,0) x (100,0)
40 K-D Trees: Datenstruktur: LEFT, RIGHT: linkes und rechtes Kind (referenziert als SON(P,I) bzw. LOSON(P) und HISON(P)) XCOORD, YCOORD,... NAME DISC: Diskriminator bzgl. k-tem Schlüssel Abmachung für Diskriminatoren: gleiche Schlüsselwerte befinden sich im rechten Teilbaum 55
41 K-D Tree: Einfügen (0,100) (100,100) y (5,45) DENVER (60,75) TORONTO Z (80,65) BUFFALO (25,35) OMAHA (35,40) CHICAGO (85,15) ATLANTA (50,10) Mobile (90,5) MIAMI (0,0) x (100,0)
42 K-D Trees: INSERT Analog zu binären Suchbäumen: Wir suchen den Punkt abwechselnde basierend auf den k Schlüsseln Wenn das Blatt erreicht ist, haben wir die Einfüge- Position gefunden Analyse: Form des Baumes hängt von Einfügereihenfolge ab Durchschnittliche Tiefe: O(log 2 N) Worst Case Tiefe: O(N), Aufbau: O(N 2 ) Optimierung ähnlich wie bei Quad Trees Alternative: Adaptive K-D Tree 57
43 K-D Trees: Bereichssuche Ausgabe aller Knoten (x,y), die sich innerhalb des Gebietes mit Radius d (euklidisch) um (a,b) befinden,d.h. (a-x) 2 +(b-y) 2 d 2 70
44 K-D Trees: Bereichssuche (0,100) (100,100) (60,75) TORONTO (80,65) BUFFALO y (5,45) DENVER (25,35) OMAHA (35,40) CHICAGO (85,15) ATLANTA (50,10) Mobile (90,5) MIAMI d=3 (0,0) x (100,0) (88,6), 71
45 K-D Trees: Bereichssuche Analyse: Worst Case für vollständigen K-D Tree: O(kN 1-1/k ) 72
46 Diskussion K-D Trees An jedem Knoten muss nur jeweils ein Schlüsselvergleich durchgeführt werden. Speicherplatz: Blätter: es gibt nur maximal zwei NULL-Pointer Benötigter Speicherplatz pro innerer Knoten: k für LEFT, RIGHT, NAME, DISC + k Wörter für k Schlüssel Adaptive K-D Trees: Innere Knoten benötigen nur 5 Wörter Nachteil gegenüber Quadtree: Quadtree ist eine parallele Datenstruktur (k Schlüsselvergleiche), K-D Trees nicht 73
Informatik II, SS 2014
Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Algorithmen und Datenstrukturen Suchbaum
Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen
13. Binäre Suchbäume
1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest
Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps
Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer
Kap. 4.2: Binäre Suchbäume
Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:
Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen
Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter
1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert
Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume
Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)
Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der
Algorithmen und Datenstrukturen 1
Algorithmen und Datenstrukturen 1 7. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] aufbauend auf den Kursen der letzten Jahre von E. Rahm, G. Heyer,
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
Balancierte Bäume. Minimale Knotenanzahl von AVL-Bäumen. AVL-Bäume. Definition für "balanciert":
Balancierte Bäume Aufwand, ein Element zu finden, entspricht der Tiefe des gefundenen Knotens im worst case = Tiefe des Baumes liegt zwischen log N und N Definition für "balanciert": es gibt verschiedene
Kapitel 9 Suchalgorithmen
Kapitel 9 Suchalgorithmen Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für Suchverfahren: u.a. Suchen in
Geometrische Algorithmen
Geometrische Algorithmen Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich für Algorithmen und Datenstrukturen Institut für Computergraphik und Algorithmen Technische Universität Wien Einführung
Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone
Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer
Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1
Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer
Datenstrukturen. einfach verkettete Liste
einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten
Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche
Folie 1 von 51 Geometrische Algorithmen Punkt-in-Polygon-Suche Folie 2 von 51 Punkt-in-Polygon-Suche Übersicht Praxisbeispiel/Problemstellung Zählen von Schnittpunkten Schnitt einer Halbgerade mit der
Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April
Algorithmen und Datenstrukturen Balancierte Suchbäume
Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen
14. Rot-Schwarz-Bäume
Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).
Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda
Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume
Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK
Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.05.2012 Nachtrag: Dynamische Bereichsabfragen Letzte Woche: kd-trees und Range-Trees
Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften:
Binäre Suchbäume (a, b)-bäume (Folie 173, Seite 56 im Skript) Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: 1 Jeder Knoten hat höchstens b Kinder. 2 Jeder
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16.
Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16. Januar 2013 (Balancierte Suchbäume) Junior-Prof. Dr. Olaf Ronneberger
Abschnitt 18: Effizientes Suchen in Mengen
Abschnitt 18: Effizientes Suchen in Mengen 18. Effizientes Suchen in Mengen 18.1 Vollständig ausgeglichene binäre Suchbäume 18.2 AVL-Bäume 18.3 Operationen auf AVL-Bäumen 18.4 Zusammenfassung 18 Effizientes
Höhe eines B + -Baums
Höhe eines B + -Baums Anzahl der Blätter bei minimaler Belegung Anzahl von (eindeutigen) Elementen bei minimaler Belegung Anzahl der Blätter bei maximaler Belegung Anzahl von Elementen bei maximaler Belegung
Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12
Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.
Copyright, Page 1 of 8 AVL-Baum
www.mathematik-netz.de Copyright, Page 1 of 8 AVL-Baum 1. Motivation und Einleitung Das Suchen, Einfügen und entfernen eines Schlüssels in einem zufällige erzeugten binären Suchbaum mit N Schlüsseln ist
Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6
Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer
Suchen und Sortieren
(Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten
Suchbäume mit inneren Knoten verschiedener Knotengrade.
Was bisher geschah rekursive Datenstrukturen: lineare Datenstrukturen: Liste, Stack, Queue hierarchische Datenstrukturen: Bäume allgemeine Bäume Binäre Bäume Unäre Bäume = Listen Tiefe eines Knotens in
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 Bäume [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden
Datenstruktur, die viele Operationen dynamischer Mengen unterstützt
Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)
AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:
AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls
Algorithmen und Datenstrukturen Bereichsbäume
Algorithmen und Datenstrukturen Bereichsbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung k-d Baum BSP Baum R Baum Motivation
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes
3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1
3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)
Algorithmische Geometrie 1. Einführung
Algorithmische Geometrie 1. Einführung JProf. Dr. Heike Leitte Computergraphik und Visualisierung Algorithmische Geometrie Veranstaltung: 2 SWS Vorlesung: Mi, 9:15 10:45 1 SWS Übung: Do 14:00 16:00 Übungen:
9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen
9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel
Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen
Datenstrukturen & Algorithmen Übersicht Rot-schwarz Bäume Eigenschaften Einfügen Matthias Zwicker Universität Bern Frühling 2009 2 Rot-schwarz Bäume Binäre Suchbäume sind nur effizient wenn Höhe des Baumes
Kapitel 8: Physischer Datenbankentwurf
8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen
12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang
12 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne
Präfx Trie zur Stringverarbeitung. Cheng Ying Sabine Laubichler Vasker Pokhrel
Präfx Trie zur Stringverarbeitung Cheng Ying Sabine Laubichler Vasker Pokhrel Übersicht: Einführung Eigenschaften von Tries Verwendung von Tries Allgemeine Defnition von Patricia Tries Eigenschaften von
Tutorium Algorithmen & Datenstrukturen
June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten
Programmiertechnik II
2007 Martin v. Löwis Priority Queues and Heapsort 2007 Martin v. Löwis 2 Priority Queue Abstrakter Datentyp Inhalt: Elemente mit Priorität Operationen: Einfügen: Angabe des Elements und seiner Priorität
Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)
Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/2, Folie 1 2014 Prof. Steffen Lange - HDa/FbI
11.1 Grundlagen - Denitionen
11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die
Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.
Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens
Übung zur Vorlesung Algorithmische Geometrie
Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)
Grundlagen der Programmierung
Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung
Dateiorganisation und Zugriffsstrukturen
Dateiorganisation und Zugriffsstrukturen Prof. Dr. T. Kudraß 1 Mögliche Dateiorganisationen Viele Alternativen existieren, jede geeignet für bestimmte Situation (oder auch nicht) Heap-Dateien: Geeignet
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale
B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write
B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write Thomas Maier Proseminar: Ein- / Ausgabe Stand der Wissenschaft Seite 1 von 13 Gliederung 1. Hashtabelle 3 2.B-Baum 3 2.1 Begriffserklärung 3 2.2
Agenda. 1 Einleitung. 2 Binäre Bäume. 3 Binäre Suchbäume. 4 Rose Trees. 5 Zusammenfassung & Ausblick. Haskell Bäume. Einleitung.
Vortrag: Bäume in Haskell Bäume in Haskell Vortrag Christoph Forster Thomas Kresalek Fachhochschule Wedel University of Applied Sciences 27. November 2009 Christoph Forster, Thomas Kresalek 1/53 Vortrag
Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany [email protected]. Stammbaum. Stammbaum. Stammbaum
lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany [email protected]. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum
Kapitel 5: Dynamisches Programmieren Gliederung
Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen
Vorkurs Informatik WiSe 15/16
Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner
KD-Bäume. ein Vortrag von Jan Schaefer
ein Vortrag von Jan Schaefer Überblick - Kurzer Rückblick: Quad Trees - KD-Baum bauen - Effizienz des Konstruktionsalgorithmus - Regionen - Bereichssuche - Effizienz des Suchalgorithmus - Anwendungsgebiete
DATENSTRUKTUREN UND ZAHLENSYSTEME
DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: [email protected] Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden
2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form.
für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Vollständige Induktion): Finden Sie eine geschlossene Form für die
Verkettete Datenstrukturen: Bäume
Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller
Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative
Bäume, Suchbäume und Hash-Tabellen
Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche
Übungen zu Programmierung I - Blatt 8
Dr. G. Zachmann A. Greß Universität Bonn Institut für Informatik II 1. Dezember 2004 Wintersemester 2004/2005 Übungen zu Programmierung I - Blatt 8 Abgabe am Mittwoch, dem 15.12.2004, 15:00 Uhr per E-Mail
R-Baum R + -Baum X-Baum M-Baum
R-Baum und Varianten R-Baum R + -Baum X-Baum M-Baum [email protected] 1 R-Baum R-Baum: Guttman 1984 Erweiterung B-Baum um mehrere Dimensionen Standardbaum zur Indexierung im niedrigdimensionalen Raum
Kapitel 9 Suchalgorithmen
Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für
Programmieren I. Kapitel 7. Sortieren und Suchen
Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren
Programmierung und Modellierung
Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:
Algorithmen und Datenstrukturen 1
Algorithmen und Datenstrukturen 1 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] 4. Sortierverfahren Elementare Sortierverfahren - Sortieren durch
Tutoraufgabe 1 (2 3 4 Bäume):
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Übungsblatt (Abgabe.0.0) F. Corzilius, S. Schupp, T. Ströder Allgemeine Hinweise: Die Hausaufgaben sollen in Gruppen von je bis Studierenden aus
Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06
Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
Herbst. Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen. Prüfungsteilnehmer prüfungstermin Einzelprüfungsnummei. - Prüfungsaufgaben -
Prüfungsteilnehmer prüfungstermin Einzelprüfungsnummei Kennzahl: Kennwort: Arbeitsplatz-Nr.: Herbst 2000 46114 Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben - Fach: Einzelprüfung:
Dynamisches Huffman-Verfahren
Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über
Kapiteltests zum Leitprogramm Binäre Suchbäume
Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm
Binäre Bäume Darstellung und Traversierung
Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail [email protected] Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.
Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).
8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN
KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: [email protected] Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume
Balancierte Suchbäume
Foliensatz 10 Michael Brinkmeier echnische Universität Ilmenau Institut für heoretische Informatik Sommersemester 2009 U Ilmenau Seite 1 / 74 Balancierte Suchbäume U Ilmenau Seite 2 / 74 Balancierte Suchbäume
Suchen und Sortieren Sortieren. Heaps
Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Elementare Datenstrukturen für dynamische Mengen Stapel & Warteschlangen Verkettete Listen Bäume Anwendungsbeispiel:
Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.
Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen
Geordnete Binärbäume
Geordnete Binärbäume Prof. Dr. Martin Wirsing in Zusammenarbeit mit Gilbert Beyer und Christian Kroiß http://www.pst.ifi.lmu.de/lehre/wise-09-10/infoeinf/ WS 09/10 Einführung in die Informatik: Programmierung
Quadtrees. Christian Höner zu Siederdissen
Quadtrees Christian Höner zu Siederdissen Quadtrees Zum Verständnis benötigt... Was sind Quadtrees Datenstruktur Wofür Quadtrees Operationen auf dem Baum Vor- und Nachteile (spezialisierte Formen) Zum
Baum-Indexverfahren. Einführung
Baum-Indexverfahren Prof. Dr. T. Kudraß 1 Einführung Drei Alternativen, wie Dateneinträge k* im Index aussehen können: 1. Datensatz mit Schlüsselwert k 2.
