KÖNIGSBERGER BRÜCKENPROBLEM

Größe: px
Ab Seite anzeigen:

Download "KÖNIGSBERGER BRÜCKENPROBLEM"

Transkript

1 VOM PROBLEM ZUM PROGRAMM NUTZEN EINES FORMALEN MODELLS (U. A.) Was ist ein Problem? Ein Problem im Sinne der ierung ist durch Computer lösbar. Man kann leichter sehen, ob das Problem - oder Teile davon - bereits in einem anderen Zusammenhang gelöst wurde. Aspekte -> es läßt sich hinreichend genau spezifizieren (z. B. als Funktion Eingabewerte -> Ausgabewerte) -> das spezifizierte Verhalten läßt sich durch einen Algorithmus implementieren. Man kann bekannte Eigenschaften des Modells ausnutzen, um eine gute Lösung zu finden. Als erster Lösungsansatz läßt sich ein INFORMELLER ALGORITHMUS in der Sprache und Begriffswelt des Modells formulieren. Problem Lösung Dieser erste INFORMELLE ALGORITHMUS (-> ABSTRAKTE ALGORITHMUS) kann dann durch SCHRITTWEISE VERFEINERUNG zur IMPLEMENTIERUNG führen! Spezifikation Entwurf/ Implementierung [email protected] WS / 0 [email protected] WS / 0 VOM PROBLEM - ÜBER MODEL - ZUM PROGRAMM Relevante Aspekte eines solchen Problems können häufig durch ein formales Modell ausgedrückt werden, z. B. numerische Probleme Lineare Gleichungssysteme, Differentialgleichungen,... Symbol-/Textverarbeitung Zeichenketten, formale Grammatiken,... KÖNIGSBERGER BRÜCKENPROBLEM... Graphen [email protected] WS / 0 [email protected] WS / 0

2 (A) PROBLEM (C) MATHEMATISCHES MODELL Gibt es eine Weg über alle sieben Brücken -> von einem beliebigen Ausgangspunkt -> zurück zum Ausgangspunkt? Wobei jede Brücke nur einmal benutzt werden darf! Norden 3 4 Pregel 6 Insel Neuer Pregel 5 Osten 1 7 Alter Pregel Süden ungerichteter Graph Knoten Insel, Landgebiete Kanten Brücken Kantenbewertung Brückennamen bzw. Anzahl der Brücken N 3 4 I 1 S O Es interessiert nur die Anzahl der Kanten zwischen Knoten I N S O Grapheigenschaften: symmetrisch & irreflexiv [email protected] WS / 0 [email protected] WS / 0 (B) PROGRAMM (D) PROBLEM IN DER SPRACHE DES MODELLS Eingabe: Welche Brücke führt von wo nach wo? Ausgabe: Ja (es gibt einen geeigneten geschlossenen/offenen Weg) oder Nein (es gibt keine Lösung) Gibt es einen Weg (zusammenhängende Folge von Kanten), -> der alle Kanten genau einmal enthält (Knoten beliebig oft) und -> möglichst geschlossen ist (d. h. Anfangsknoten = Endknoten)? kurz: besitzt der Graph einen Eulerweg bzw. Eulerkreis? Anmerkung Wir beschränken uns hier (zunächst) auf die Frage nach der Existenz eines solchen Weges und verzichten auf den Weg als solches (falls es diesen gibt). Aufweichung: zur Not akzeptieren wir auch einen offenen Weg! [email protected] WS / 0 [email protected] WS / 0

3 (E) PROBLEMERÖRTERUNG AUF MODELLNIVEAU Beim Passieren eines Knotens (hin- und wieder wegkommen) werden zwei anliegende Kanten abgearbeitet. Ein Knoten u mit einer ungeraden Anzahl von anliegenden Kanten kann also nur ein Randknoten des gesuchten Weges sein. Die Anzahl U solcher Knoten u (mit ungerader Anzahl von anliegenden Kanten) kann nur 0 oder geradzahlig sein. Wenn U = 0 : exisiert Eulerkreis (mit beliebigem Anfang) U = : existiert Eulerweg mit u 1 und u als Anfangs- bzw. Endknoten U > : existiert keine Lösung (G) PSEUDOKODE-ALGORITHMUS (AUF ADT GRAPH) procedure EULER (in G : GraphT, out antwort : (nein,geschlossen,offen)) var U: Integer; begin /* 1. Bestimme die Anzahl U */ U := 0; loop Knoten von G do if Anzahl der anliegenden Kanten ungerade then U := U + 1 endif endloop; /*. Auswerten der ermittelten Anzahl U */ switch U : case 0: /* geschlossen, d.h. ex Eulerkreis */ case : /* offen, d.h. es ex Eulerweg */ default /* nein, d.h. es ex keine Lösung */ endswitch end EULER. [email protected] WS / 0 [email protected] WS / 0 (F) INFORMELLER ALGORITHMUS AUF MATHEMATISCHEN MODELL (H) INFORMELLE SPEZIFIKATION VON ADT GRAPH GraphT, NodeT, benutzte Operationen Bestimme die Anzahl U der Knoten u mit ungerader Anzahl von anliegenden Kanten! Bestimme die Antwort in Abhängigkeit von U! Knoten von G abhängig von verfügbaren Steuerstrukturen der anvisierten PS; i. allg. wird Verfeinerung notwendig sein zum schrittweisen sequentiellen Durchmustern, z. B. -> firstnode (in GraphT, out NodeT) -> nextnode (in GraphT, inout NodeT, out Boolean) -> lastnode (in GraphT, in NodeT, out Boolean) Anzahl anliegender Kanten für einen geg. Knoten -> neighbours (in GraphT, in NodeT, out Integer) Einlesen des konkreten Graphen -> initgraph (inout GraphT) -> addnode (inout GraphT, in NodeT) -> addarc (inout GraphT, in NodeT, in NodeT, in Integer) [email protected] WS / 0 [email protected] WS / 0

4 ENTWICKLUNG VON PROGRAMMEN, ZUSAMMENFASSUNG ADT ALS BRÜCKENPFEILER VOM PROBLEM ZUM PROGRAMM Problem Problem Lösung (Math.) Modell Informeller Algorithmus Abstrakte Datentypen (ADT) Pseudokode-Algorithmus Verfahren zur prinzipiellen Lösung des Problems Spezifikation Entwurf/ Implementierung Datenstrukturen (DS) C / Java / Ada / Modula Oberon / Pascal Implementierung des allg. Vorgehens in einer best. PS [email protected] WS / 0 [email protected] WS / 0 VORLESUNGSTHEMEN ADT (KLASSEN) IM ENTWURFSPROZESS grundlegende ADT -> Listen (lists) -> Stapel (Keller, stacks) -> Warteschlangen (queues) -> Mengen (sets) -> Abbildungen (maps) -> Graphen (graphs) weitere spezielle ADT -> Bäume (trees) -> Verzeichnisse (dictionaries) (math.) Modell ADT DS schrittweise Verfeinerung, i. allg. so lange, bis Schritt zur DS überschaubar [email protected] WS / 0 [email protected] WS / 0

5 IMPLEMENTIERUNG VON ADT VORTEILE für Benutzer eines ADT sichtbar PS Algebra ADT Interface (export) (Definition) Vertrag Signatur - Sorten - Operation ADT-Interface - (opake) Typen -> Typnamen - Prozedurköpfe Die Implementierung des ADT (Implementation-) kann ausgewechselt werden, ohne daß die darauf aufbauenden Algorithmen (Applikations-) angepaßt werden müssen. Die Implementierungs-/Validierungsmühen, die man bei der Realisierung der investiert hat, können auch von anderen Algorithmen (derselben Problemklasse) nachgenutzt werden. für Benutzer verborgen Implementation Träger mengen und Funktionen ADT-Implementierung - Implementierung der Typen (Angabe einer Datenstruktur) - Implementierung der Prozeduren (Angabe der Prozedurkörper) Nach Festlegen der Schnittstelle können die ADT-Implementierungen und Applikations-Algorithmen unabhängig voneinander, z.b. -> parallel, -> räumlich verteilt, bearbeitet werden. [email protected] WS / 0 [email protected] WS / 0 ZUSAMMENFASSUNG DES VORGEHENS NACHTEILE Ein solcher ierstil ist zunächst aufwendiger! Algorithmus 1 Algorithmus Algorithmus 3. Applikations- Er lohnt sich dann, wenn -> größere Projekte (mit einer erwarteten längeren Lebensdauer) -> arbeitsteilig ADT.DEF 1. Interface- -> über einen längeren Zeitraum entwickelt werden. Compileroptimierung laufzeit Impl.1 Impl. Impl.3 3. Implementation- (# GEBEN REIHENFOLGE AN) [email protected] WS / 0 [email protected] WS / 0

Was ist ein Problem? Ein Problem im Sinne der Programmierung ist durch Computer lösbar. Programmieren Entwurf/ Implementierung

Was ist ein Problem? Ein Problem im Sinne der Programmierung ist durch Computer lösbar. Programmieren Entwurf/ Implementierung VOM PROBLEM ZUM PROGRAMM Was ist ein Problem? Ein Problem im Sinne der Programmierung ist durch Computer lösbar. Aspekte -> es läßt sich hinreichend genau spezifizieren (z. B. als Funktion Eingabewerte

Mehr

[email protected] SS 2013 1.4-1 / 16 schrittweise Verfeinerung -> Wirth, 1971, Programm Development by Stepwise Refinement

monika.heiner@informatik.tu-cottbus.de SS 2013 1.4-1 / 16 schrittweise Verfeinerung -> Wirth, 1971, Programm Development by Stepwise Refinement IMPLEMENTIERUNGSSTRATEGIE bis jetzt: Programmstruktur für Programmieren im Kleinen jetzt: Programmstruktur für Programmieren im Großen zunächst allgemein, d. h. sprachunabhängig [email protected]

Mehr

SS 2013 1.1-1 / 12

SS 2013 1.1-1 / 12 AMPELSTEUERUNG EINER KREUZUNG [email protected] SS 2013 1.1-1 / 12 (A) PROBLEM D C E B A Ziel (1) Sicherheit: keine kollidierenden Wege gleichzeitig, z.b. EB und AD Ziel (2) Maximierung:

Mehr

4. Kreis- und Wegeprobleme

4. Kreis- und Wegeprobleme 4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Konzepte der Programmiersprachen

Konzepte der Programmiersprachen Konzepte der Programmiersprachen Sommersemester 2010 4. Übungsblatt Besprechung am 9. Juli 2010 http://www.iste.uni-stuttgart.de/ps/lehre/ss2010/v_konzepte/ Aufgabe 4.1: Klassen in C ++ Das folgende C

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Wiederholung: Zusammenfassung Felder. Algorithmen und Datenstrukturen (für ET/IT) Definition Abstrakter Datentyp. Programm heute

Wiederholung: Zusammenfassung Felder. Algorithmen und Datenstrukturen (für ET/IT) Definition Abstrakter Datentyp. Programm heute Wiederholung: Zusammenfassung Felder Algorithmen und Datenstrukturen (für ET/IT) Wintersemester / Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Ein Feld A kann repräsentiert

Mehr

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert: KAPITEL 3 Graphen Man kann als Ursprung der Graphentheorie ein Problem sehen, welches Euler 1736 von Studenten aus Königsberg gestellt bekam. Der Fluss Pregel wird von 7 Brücken überquert, und die Frage

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

1 Algorithmische Grundlagen

1 Algorithmische Grundlagen 1 Algorithmische Grundlagen Klocke/17.03.2003 1.1 1.1 Begriffsklärung Fragen Begriffsklärungen Abstraktionsebenen für Algorithmen und Datenstrukturen Algorithmus Qualität von Algorithmen Klocke/17.03.2003

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 2. Spezifikation Schrittweise Verfeinerung

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 2. Spezifikation Schrittweise Verfeinerung UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 2 Spezifikation Schrittweise Verfeinerung Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69,

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg [email protected] Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

13 Abstrakte Datentypen

13 Abstrakte Datentypen 13 Abstrakte Datentypen Bisher: Konkrete Datentypen Menge von Elementen Operationen auf den Elementen (Konstruktoren, Selektoren, Typprädikate) Eigenschaften abgeleitet Jetzt: Abstrakte Datentypen (ADT)

Mehr

Praktische Grenzen der Berechenbarkeit

Praktische Grenzen der Berechenbarkeit Arno Schwarz Praktische Grenzen der Berechenbarkeit Während es im ersten Abschnitt um prinzipiell unlösbare Probleme ging, wenden wir uns nun Aufgaben zu, deren Lösbarkeit praktische Grenzen gesetzt sind.

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. (Sortierte) Listen 2. Stacks & Queues 3. Datenstrukturen 4. Rekursion und vollständige Induktion

Mehr

3. Die Datenstruktur Graph

3. Die Datenstruktur Graph 3. Die Datenstruktur Graph 3.1 Einleitung: Das Königsberger Brückenproblem Das Königsberger Brückenproblem ist eine mathematische Fragestellung des frühen 18. Jahrhunderts, die anhand von sieben Brücken

Mehr

Logische Datenstrukturen

Logische Datenstrukturen Lineare Listen Stapel, Warteschlangen Binärbäume Seite 1 Lineare Liste Begriffe first Funktion: sequentielle Verkettung von Datensätzen Ordnungsprinzip: Schlüssel Begriffe: first - Anker, Wurzel; Adresse

Mehr

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit Counting-Sort Counting - Sort ( A,B,k ). for i to k. do C[ i]. for j to length[ A]. do C[ A[ j ] C[ A[ j ] +. > C[ i] enthält Anzahl der Elemente in 6. for i to k. do C[ i] C[ i] + C[ i ]. > C[ i] enthält

Mehr

Fragenkatalog 1. Kurseinheit

Fragenkatalog 1. Kurseinheit katalog 1. Kurseinheit 1. Wie sind Algorithmen und Datenstrukturen untrennbar miteinander verknüpft? 2. Worin besteht das Ziel einer Beschreibung auf algorithmischer Ebene? 3. Welche Kriterien gibt es

Mehr

Geheimnisprinzip: (information hiding principle, Parnas 1972)

Geheimnisprinzip: (information hiding principle, Parnas 1972) 2. Abstrakte Datentypen 2.0 Begriffe Geheimnisprinzip: (information hiding principle, Parnas 1972) Zugriffe auf Teile einer Programmeinheit, die für die reguläre Benutzung nicht erforderlich sind, sollten

Mehr

1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen

1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen 1 Datenstrukturen 1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen 1 Abstrakte Datentypen Spezifizieren Form und Funktionalität der zu verarbeitenden Daten

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

Was bisher geschah Modellierung von Daten durch Mengen Beziehungen (Zusammenhänge und Eigenschaften) durch Relationen, Graphen und Funktionen

Was bisher geschah Modellierung von Daten durch Mengen Beziehungen (Zusammenhänge und Eigenschaften) durch Relationen, Graphen und Funktionen Was bisher geschah Modellierung von Daten durch Mengen Beziehungen (Zusammenhänge und Eigenschaften) durch Relationen, Graphen und Funktionen Anforderungen durch Logiken Modellierung zusammenhängender

Mehr

Inhalt. Einführung in die Strukturierte Programmierung 15

Inhalt. Einführung in die Strukturierte Programmierung 15 Inhalt Einführung in die Strukturierte Programmierung 15 1.1 Was bedeutet Programmieren? 17 1.2 Was bedeutet Strukturierte Programmierung? 18 1.3 Was ist Pascal? 19 1.4 Was ist PS/k? 20 1.5 Warum wird

Mehr

Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken.

Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Abstrakte Datentypen und Datenstrukturen/ Einfache Beispiele Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Datenstruktur (DS): Realisierung

Mehr

Zweizusammenhang und starker Zusammenhang

Zweizusammenhang und starker Zusammenhang .. Zeizusammenhang und starker Zusammenhang Carsten Gutenger Vorlesung Algorithmen und Datenstrukturen WS /. Januar Zeizusammenhang Betrachte ein Netzerk (Graph) Z.B. Computernetzerk, Flug- oder Schienennetzerk

Mehr

Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22

Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22 Graphalgorithmen II Werner Sembach 14.04.2014 Werner Sembach Graphalgorithmen II 14.04.2014 1 / 22 Übersicht Datenstrukturen Union-Find Fibonacci-Heap Werner Sembach Graphalgorithmen II 14.04.2014 2 /

Mehr

10 Abstrakte Datentypen

10 Abstrakte Datentypen 10 Abstrakte Datentypen abstrakte Datentypen generische Implementierung datengesteuerte Programmierung Operationstabelle 10.1 Abstrakte Datentypen Bisher: Konkrete Datentypen Menge von Elementen Operationen

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Vorrechnen von Aufgabenblatt 1. Wohlgeformte Klammerausdrücke 3. Teile und Herrsche Agenda 1.

Mehr

Willkommen zur Vorlesung. Algorithmen und Datenstrukturen

Willkommen zur Vorlesung. Algorithmen und Datenstrukturen Willkommen zur Vorlesung Algorithmen und Datenstrukturen Mein Name: Andreas Berndt Zum Dozenten Diplom-Informatiker (TU Darmstadt) Derzeit Software-Entwickler für Web- Applikationen Derzeitige Sprachen:

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Seminar: Einladung in die Mathematik

Seminar: Einladung in die Mathematik Seminar: Einladung in die Mathematik Marius Kling 11.11.2013 Übersicht 1. Königsberger Brückenproblem 2. Diskrete Optimierung 3. Graphentheorie in der Informatik 4. Zufällige Graphen 5. Anwendungen von

Mehr

Euler und Hamiltonkreise

Euler und Hamiltonkreise Euler und Hamiltonkreise 1. Königsberger Brücken 2. Eulerwege und Kreise Definition, Algorithmus mit Tiefensuche 3. Hamiltonwege und Kreise Definition 4. Problem des Handlungsreisenden Enumeration und

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Sortierte Listen 2. Stacks & Queues 3. Teile und Herrsche Nächste Woche: Vorrechnen (first-come-first-served)

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Abschnitt 19: Sortierverfahren

Abschnitt 19: Sortierverfahren Abschnitt 19: Sortierverfahren 19. Sortierverfahren 19.1 Allgemeines 19.2 Einfache Sortierverfahren 19.3 Effizientes Sortieren: Quicksort 19.4 Zusammenfassung 19 Sortierverfahren Informatik 2 (SS 07) 758

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

ABITURPRÜFUNG 2001 GRUNDFACH INFORMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2001 GRUNDFACH INFORMATIK (HAUPTTERMIN) ABITURPRÜFUNG 2001 GRUNDFACH INFORMATIK (HAUPTTERMIN) Arbeitszeit: 210 Minuten Hilfsmittel: Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik mbh; PC mit

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Datenstrukturen und Algorithmen 2. Klausur SS 2001 UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Eigene Entwicklungen Datenstrukturen Elementare Datentypen Abstrakte Datentypen Elementare

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik [email protected] Breitensuche, Tiefensuche Wir besprechen nun zwei grundlegende Verfahren, alle Knoten eines Graphen zu

Mehr

6. Verkettete Strukturen: Listen

6. Verkettete Strukturen: Listen 6. Verkettete Strukturen: Listen 5 K. Bothe, Inst. f ür Inf., HU Berlin, PI, WS 004/05, III.6 Verkettete Strukturen: Listen 53 Verkettete Listen : Aufgabe Vergleich: Arrays - verkettete Listen Listenarten

Mehr

Inhaltsübersicht. Vorwort 15. Vorwort zur deutschen Ausgabe 22. Kapitel 1 Elemente der Programmierung 25. Kapitel 2 Funktionen und Module 203

Inhaltsübersicht. Vorwort 15. Vorwort zur deutschen Ausgabe 22. Kapitel 1 Elemente der Programmierung 25. Kapitel 2 Funktionen und Module 203 Inhaltsübersicht Vorwort 15 Vorwort zur deutschen Ausgabe 22 Kapitel 1 Elemente der Programmierung 25 Kapitel 2 Funktionen und Module 203 Kapitel 3 Objektorientierte Programmierung 335 Kapitel 4 Algorithmen

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2016 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Grundlagen von Algorithmen

Mehr

Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014

Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.813 Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS 2014 22. Oktober

Mehr

Pro Informatik 2009: Objektorientierte Programmierung Tag 18. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik

Pro Informatik 2009: Objektorientierte Programmierung Tag 18. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik Tag 18 Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik 09.09.2009 Agenda Tag 16 Datenstrukturen Abstrakte Datentypen, ADT Folge: Stack, Queue, Liste, ADT Menge: Bäume:

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

B2.1 Abstrakte Datentypen

B2.1 Abstrakte Datentypen Algorithmen und Datenstrukturen 21. März 2018 B2. Abstrakte Datentypen Algorithmen und Datenstrukturen B2. Abstrakte Datentypen B2.1 Abstrakte Datentypen Marcel Lüthi and Gabriele Röger B2.2 Multimengen,

Mehr

Graphen. Leonhard Euler ( )

Graphen. Leonhard Euler ( ) Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),

Mehr

Kapitel 1 Einleitung. Definition: Algorithmus nach M. Broy: aus: Informatik: Eine grundlegende Einführung, Band 1, Springer-Verlag, Berlin

Kapitel 1 Einleitung. Definition: Algorithmus nach M. Broy: aus: Informatik: Eine grundlegende Einführung, Band 1, Springer-Verlag, Berlin Kapitel 1 Einleitung 1.1. Begriff des Algorithmus Eine der ältesten Beschreibungstechniken für Abläufe: Benannt nach dem Mathematiker Al-Khwarizmi (ca. 780...840), der am Hof der Kalifen von Bagdad wirkte.

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Universität Siegen Lehrstuhl Theoretische Informatik Carl Philipp Reh Daniel König Diskrete Mathematik für Informatiker WS 016/017 Übung 7 1. Gegeben sei folgender Graph und das Matching M = {{h, f}, {c,

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 24.02.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen

Mehr

Klausur Informatik B April Teil I: Informatik 3

Klausur Informatik B April Teil I: Informatik 3 Informatik 3 Seite 1 von 8 Klausur Informatik B April 1998 Teil I: Informatik 3 Informatik 3 Seite 2 von 8 Aufgabe 1: Fragekatalog (gesamt 5 ) Beantworten Sie folgende Fragen kurz in ein oder zwei Sätzen.

Mehr

Sprechen Sie Java? Hanspeter Mössenböck. Tm\ dpunkt.verlag. Eine Einführung in das systematische Programmieren

Sprechen Sie Java? Hanspeter Mössenböck. Tm\ dpunkt.verlag. Eine Einführung in das systematische Programmieren Hanspeter Mössenböck Sprechen Sie Java? Eine Einführung in das systematische Programmieren 3., überarbeitete und erweiterte Auflage Tm\ dpunkt.verlag 1 Grundlagen 1 1.1 Daten und Befehle 2 1.2 Algorithmen

Mehr

1 Abstrakte Datentypen

1 Abstrakte Datentypen 1 Abstrakte Datentypen Spezifiziere nur die Operationen! Verberge Details der Datenstruktur; der Implementierung der Operationen. == Information Hiding 1 Sinn: Verhindern illegaler Zugriffe auf die Datenstruktur;

Mehr

Teil IV : Abstrakte Datentypen (ADT)

Teil IV : Abstrakte Datentypen (ADT) Teil IV : Abstrakte Datentypen (ADT) Abstraktion ADT in Modula-2 K. Murmann, H. Neumann, Fakultät für Informatik, Universität Ulm, 2001 1. Abstraktion Rekapitulation Realisation eines Stacks Idee für ADT-Konzept

Mehr

Kapitel IV Minimale Spannbäume

Kapitel IV Minimale Spannbäume Kapitel IV Minimale Spannbäume 1. Grundlagen Ein Graph G = (V, E) besteht aus einer Menge V von Knoten und einer Menge E von Kanten. Wir werden nur endliche Knoten- (und damit auch Kanten-) Mengen betrachten.

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton) WS 2015/16 Diskrete Strukturen Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

1 Beispiele für Graphen

1 Beispiele für Graphen Beispiele für Graphen 1 Beispiele für Graphen 1. Kreuzungsproblem : 3 Häuser sollen mit einem Wasser-, Gas- und Elektroanschluß verbunden werden, wobei keine Kreuzung entstehen darf. Abbildung 1: Kreuzungsproblem

Mehr

Lösungsvorschlag Serie 2 Rekursion

Lösungsvorschlag Serie 2 Rekursion (/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma

Mehr

Algorithmen und Datenstrukturen Übung #4 BFS/DFS, Wachstum von Funktionen

Algorithmen und Datenstrukturen Übung #4 BFS/DFS, Wachstum von Funktionen Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Algorithmen und Datenstrukturen Übung #4 BFS/DFS, Wachstum von Funktionen Christian Rieck, Arne Schmidt 22.11.2018 Heute 12 Breiten-

Mehr

Quicksort ist ein Divide-and-Conquer-Verfahren.

Quicksort ist ein Divide-and-Conquer-Verfahren. . Quicksort Wie bei vielen anderen Sortierverfahren (Bubblesort, Mergesort, usw.) ist auch bei Quicksort die Aufgabe, die Elemente eines Array a[..n] zu sortieren. Quicksort ist ein Divide-and-Conquer-Verfahren.

Mehr

Graphen. Definitionen

Graphen. Definitionen Graphen Graphen werden häufig als Modell für das Lösen eines Problems aus der Praxis verwendet, wie wir im Kapitel 1 gesehen haben. Der Schweizer Mathematiker Euler hat als erster Graphen verwendet, um

Mehr

Algorithmen und Datenstrukturen I Grundlagen

Algorithmen und Datenstrukturen I Grundlagen Algorithmen und Datenstrukturen I Grundlagen Prof. Dr. Oliver Braun Letzte Änderung: 01.11.2017 14:15 Algorithmen und Datenstrukturen I, Grundlagen 1/24 Algorithmus es gibt keine präzise Definition Handlungsvorschrift

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Listen. M. Jakob. Gymnasium Pegnitz. 20. September Hinführung: Wartenschlangen. Grundprinzip von Listen Rekursion

Listen. M. Jakob. Gymnasium Pegnitz. 20. September Hinführung: Wartenschlangen. Grundprinzip von Listen Rekursion M. Jakob Gymnasium Pegnitz 20. September 2015 Inhaltsverzeichnis Grundprinzip von Rekursion (10 Std.) Die einfach verkettete Liste als Kompositum (10 Std.) Klasse LISTENELEMENT? Entwurfsmuster Kompositum

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

Aufgaben zur Klausurvorbereitung

Aufgaben zur Klausurvorbereitung Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014

Mehr

Informatik I 2. Kapitel. Elementare Datenstrukturen. Datenstrukturen. Datenstrukturen. Rainer Schrader. 28. Mai 2008

Informatik I 2. Kapitel. Elementare Datenstrukturen. Datenstrukturen. Datenstrukturen. Rainer Schrader. 28. Mai 2008 Informatik I. Kapitel Rainer Schrader Elementare Zentrum für Angewandte Informatik Köln 8. Mai 008 / / bisher haben wir nur Arrays verwendet, Gliederung Einführung abstrakte Datentypen Listen Stacks und

Mehr

Programmierung im Grossen

Programmierung im Grossen 1 Letzte Aktualisierung: 16. April 2004 Programmierung im Grossen Bertrand Meyer 2 Vorlesung 4: Abstrakte Daten-Typen Übungen 3 Passe die vorhergehende Spezifikation von Stacks (LIFO, Last-In First-Out

Mehr