KÖNIGSBERGER BRÜCKENPROBLEM
|
|
|
- Krista Zimmermann
- vor 8 Jahren
- Abrufe
Transkript
1 VOM PROBLEM ZUM PROGRAMM NUTZEN EINES FORMALEN MODELLS (U. A.) Was ist ein Problem? Ein Problem im Sinne der ierung ist durch Computer lösbar. Man kann leichter sehen, ob das Problem - oder Teile davon - bereits in einem anderen Zusammenhang gelöst wurde. Aspekte -> es läßt sich hinreichend genau spezifizieren (z. B. als Funktion Eingabewerte -> Ausgabewerte) -> das spezifizierte Verhalten läßt sich durch einen Algorithmus implementieren. Man kann bekannte Eigenschaften des Modells ausnutzen, um eine gute Lösung zu finden. Als erster Lösungsansatz läßt sich ein INFORMELLER ALGORITHMUS in der Sprache und Begriffswelt des Modells formulieren. Problem Lösung Dieser erste INFORMELLE ALGORITHMUS (-> ABSTRAKTE ALGORITHMUS) kann dann durch SCHRITTWEISE VERFEINERUNG zur IMPLEMENTIERUNG führen! Spezifikation Entwurf/ Implementierung [email protected] WS / 0 [email protected] WS / 0 VOM PROBLEM - ÜBER MODEL - ZUM PROGRAMM Relevante Aspekte eines solchen Problems können häufig durch ein formales Modell ausgedrückt werden, z. B. numerische Probleme Lineare Gleichungssysteme, Differentialgleichungen,... Symbol-/Textverarbeitung Zeichenketten, formale Grammatiken,... KÖNIGSBERGER BRÜCKENPROBLEM... Graphen [email protected] WS / 0 [email protected] WS / 0
2 (A) PROBLEM (C) MATHEMATISCHES MODELL Gibt es eine Weg über alle sieben Brücken -> von einem beliebigen Ausgangspunkt -> zurück zum Ausgangspunkt? Wobei jede Brücke nur einmal benutzt werden darf! Norden 3 4 Pregel 6 Insel Neuer Pregel 5 Osten 1 7 Alter Pregel Süden ungerichteter Graph Knoten Insel, Landgebiete Kanten Brücken Kantenbewertung Brückennamen bzw. Anzahl der Brücken N 3 4 I 1 S O Es interessiert nur die Anzahl der Kanten zwischen Knoten I N S O Grapheigenschaften: symmetrisch & irreflexiv [email protected] WS / 0 [email protected] WS / 0 (B) PROGRAMM (D) PROBLEM IN DER SPRACHE DES MODELLS Eingabe: Welche Brücke führt von wo nach wo? Ausgabe: Ja (es gibt einen geeigneten geschlossenen/offenen Weg) oder Nein (es gibt keine Lösung) Gibt es einen Weg (zusammenhängende Folge von Kanten), -> der alle Kanten genau einmal enthält (Knoten beliebig oft) und -> möglichst geschlossen ist (d. h. Anfangsknoten = Endknoten)? kurz: besitzt der Graph einen Eulerweg bzw. Eulerkreis? Anmerkung Wir beschränken uns hier (zunächst) auf die Frage nach der Existenz eines solchen Weges und verzichten auf den Weg als solches (falls es diesen gibt). Aufweichung: zur Not akzeptieren wir auch einen offenen Weg! [email protected] WS / 0 [email protected] WS / 0
3 (E) PROBLEMERÖRTERUNG AUF MODELLNIVEAU Beim Passieren eines Knotens (hin- und wieder wegkommen) werden zwei anliegende Kanten abgearbeitet. Ein Knoten u mit einer ungeraden Anzahl von anliegenden Kanten kann also nur ein Randknoten des gesuchten Weges sein. Die Anzahl U solcher Knoten u (mit ungerader Anzahl von anliegenden Kanten) kann nur 0 oder geradzahlig sein. Wenn U = 0 : exisiert Eulerkreis (mit beliebigem Anfang) U = : existiert Eulerweg mit u 1 und u als Anfangs- bzw. Endknoten U > : existiert keine Lösung (G) PSEUDOKODE-ALGORITHMUS (AUF ADT GRAPH) procedure EULER (in G : GraphT, out antwort : (nein,geschlossen,offen)) var U: Integer; begin /* 1. Bestimme die Anzahl U */ U := 0; loop Knoten von G do if Anzahl der anliegenden Kanten ungerade then U := U + 1 endif endloop; /*. Auswerten der ermittelten Anzahl U */ switch U : case 0: /* geschlossen, d.h. ex Eulerkreis */ case : /* offen, d.h. es ex Eulerweg */ default /* nein, d.h. es ex keine Lösung */ endswitch end EULER. [email protected] WS / 0 [email protected] WS / 0 (F) INFORMELLER ALGORITHMUS AUF MATHEMATISCHEN MODELL (H) INFORMELLE SPEZIFIKATION VON ADT GRAPH GraphT, NodeT, benutzte Operationen Bestimme die Anzahl U der Knoten u mit ungerader Anzahl von anliegenden Kanten! Bestimme die Antwort in Abhängigkeit von U! Knoten von G abhängig von verfügbaren Steuerstrukturen der anvisierten PS; i. allg. wird Verfeinerung notwendig sein zum schrittweisen sequentiellen Durchmustern, z. B. -> firstnode (in GraphT, out NodeT) -> nextnode (in GraphT, inout NodeT, out Boolean) -> lastnode (in GraphT, in NodeT, out Boolean) Anzahl anliegender Kanten für einen geg. Knoten -> neighbours (in GraphT, in NodeT, out Integer) Einlesen des konkreten Graphen -> initgraph (inout GraphT) -> addnode (inout GraphT, in NodeT) -> addarc (inout GraphT, in NodeT, in NodeT, in Integer) [email protected] WS / 0 [email protected] WS / 0
4 ENTWICKLUNG VON PROGRAMMEN, ZUSAMMENFASSUNG ADT ALS BRÜCKENPFEILER VOM PROBLEM ZUM PROGRAMM Problem Problem Lösung (Math.) Modell Informeller Algorithmus Abstrakte Datentypen (ADT) Pseudokode-Algorithmus Verfahren zur prinzipiellen Lösung des Problems Spezifikation Entwurf/ Implementierung Datenstrukturen (DS) C / Java / Ada / Modula Oberon / Pascal Implementierung des allg. Vorgehens in einer best. PS [email protected] WS / 0 [email protected] WS / 0 VORLESUNGSTHEMEN ADT (KLASSEN) IM ENTWURFSPROZESS grundlegende ADT -> Listen (lists) -> Stapel (Keller, stacks) -> Warteschlangen (queues) -> Mengen (sets) -> Abbildungen (maps) -> Graphen (graphs) weitere spezielle ADT -> Bäume (trees) -> Verzeichnisse (dictionaries) (math.) Modell ADT DS schrittweise Verfeinerung, i. allg. so lange, bis Schritt zur DS überschaubar [email protected] WS / 0 [email protected] WS / 0
5 IMPLEMENTIERUNG VON ADT VORTEILE für Benutzer eines ADT sichtbar PS Algebra ADT Interface (export) (Definition) Vertrag Signatur - Sorten - Operation ADT-Interface - (opake) Typen -> Typnamen - Prozedurköpfe Die Implementierung des ADT (Implementation-) kann ausgewechselt werden, ohne daß die darauf aufbauenden Algorithmen (Applikations-) angepaßt werden müssen. Die Implementierungs-/Validierungsmühen, die man bei der Realisierung der investiert hat, können auch von anderen Algorithmen (derselben Problemklasse) nachgenutzt werden. für Benutzer verborgen Implementation Träger mengen und Funktionen ADT-Implementierung - Implementierung der Typen (Angabe einer Datenstruktur) - Implementierung der Prozeduren (Angabe der Prozedurkörper) Nach Festlegen der Schnittstelle können die ADT-Implementierungen und Applikations-Algorithmen unabhängig voneinander, z.b. -> parallel, -> räumlich verteilt, bearbeitet werden. [email protected] WS / 0 [email protected] WS / 0 ZUSAMMENFASSUNG DES VORGEHENS NACHTEILE Ein solcher ierstil ist zunächst aufwendiger! Algorithmus 1 Algorithmus Algorithmus 3. Applikations- Er lohnt sich dann, wenn -> größere Projekte (mit einer erwarteten längeren Lebensdauer) -> arbeitsteilig ADT.DEF 1. Interface- -> über einen längeren Zeitraum entwickelt werden. Compileroptimierung laufzeit Impl.1 Impl. Impl.3 3. Implementation- (# GEBEN REIHENFOLGE AN) [email protected] WS / 0 [email protected] WS / 0
Was ist ein Problem? Ein Problem im Sinne der Programmierung ist durch Computer lösbar. Programmieren Entwurf/ Implementierung
VOM PROBLEM ZUM PROGRAMM Was ist ein Problem? Ein Problem im Sinne der Programmierung ist durch Computer lösbar. Aspekte -> es läßt sich hinreichend genau spezifizieren (z. B. als Funktion Eingabewerte
[email protected] SS 2013 1.4-1 / 16 schrittweise Verfeinerung -> Wirth, 1971, Programm Development by Stepwise Refinement
IMPLEMENTIERUNGSSTRATEGIE bis jetzt: Programmstruktur für Programmieren im Kleinen jetzt: Programmstruktur für Programmieren im Großen zunächst allgemein, d. h. sprachunabhängig [email protected]
SS 2013 1.1-1 / 12
AMPELSTEUERUNG EINER KREUZUNG [email protected] SS 2013 1.1-1 / 12 (A) PROBLEM D C E B A Ziel (1) Sicherheit: keine kollidierenden Wege gleichzeitig, z.b. EB und AD Ziel (2) Maximierung:
4. Kreis- und Wegeprobleme
4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung
Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke
Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale
Minimal spannende Bäume
http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen
Konzepte der Programmiersprachen
Konzepte der Programmiersprachen Sommersemester 2010 4. Übungsblatt Besprechung am 9. Juli 2010 http://www.iste.uni-stuttgart.de/ps/lehre/ss2010/v_konzepte/ Aufgabe 4.1: Klassen in C ++ Das folgende C
Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal
3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition
Wiederholung: Zusammenfassung Felder. Algorithmen und Datenstrukturen (für ET/IT) Definition Abstrakter Datentyp. Programm heute
Wiederholung: Zusammenfassung Felder Algorithmen und Datenstrukturen (für ET/IT) Wintersemester / Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Ein Feld A kann repräsentiert
Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:
KAPITEL 3 Graphen Man kann als Ursprung der Graphentheorie ein Problem sehen, welches Euler 1736 von Studenten aus Königsberg gestellt bekam. Der Fluss Pregel wird von 7 Brücken überquert, und die Frage
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /
1 Algorithmische Grundlagen
1 Algorithmische Grundlagen Klocke/17.03.2003 1.1 1.1 Begriffsklärung Fragen Begriffsklärungen Abstraktionsebenen für Algorithmen und Datenstrukturen Algorithmus Qualität von Algorithmen Klocke/17.03.2003
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 2. Spezifikation Schrittweise Verfeinerung
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 2 Spezifikation Schrittweise Verfeinerung Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69,
Programmiertechnik II
Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind
Graphdurchmusterung, Breiten- und Tiefensuche
Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg [email protected] Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,
13 Abstrakte Datentypen
13 Abstrakte Datentypen Bisher: Konkrete Datentypen Menge von Elementen Operationen auf den Elementen (Konstruktoren, Selektoren, Typprädikate) Eigenschaften abgeleitet Jetzt: Abstrakte Datentypen (ADT)
Praktische Grenzen der Berechenbarkeit
Arno Schwarz Praktische Grenzen der Berechenbarkeit Während es im ersten Abschnitt um prinzipiell unlösbare Probleme ging, wenden wir uns nun Aufgaben zu, deren Lösbarkeit praktische Grenzen gesetzt sind.
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. (Sortierte) Listen 2. Stacks & Queues 3. Datenstrukturen 4. Rekursion und vollständige Induktion
3. Die Datenstruktur Graph
3. Die Datenstruktur Graph 3.1 Einleitung: Das Königsberger Brückenproblem Das Königsberger Brückenproblem ist eine mathematische Fragestellung des frühen 18. Jahrhunderts, die anhand von sieben Brücken
Logische Datenstrukturen
Lineare Listen Stapel, Warteschlangen Binärbäume Seite 1 Lineare Liste Begriffe first Funktion: sequentielle Verkettung von Datensätzen Ordnungsprinzip: Schlüssel Begriffe: first - Anker, Wurzel; Adresse
Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit
Counting-Sort Counting - Sort ( A,B,k ). for i to k. do C[ i]. for j to length[ A]. do C[ A[ j ] C[ A[ j ] +. > C[ i] enthält Anzahl der Elemente in 6. for i to k. do C[ i] C[ i] + C[ i ]. > C[ i] enthält
Fragenkatalog 1. Kurseinheit
katalog 1. Kurseinheit 1. Wie sind Algorithmen und Datenstrukturen untrennbar miteinander verknüpft? 2. Worin besteht das Ziel einer Beschreibung auf algorithmischer Ebene? 3. Welche Kriterien gibt es
Geheimnisprinzip: (information hiding principle, Parnas 1972)
2. Abstrakte Datentypen 2.0 Begriffe Geheimnisprinzip: (information hiding principle, Parnas 1972) Zugriffe auf Teile einer Programmeinheit, die für die reguläre Benutzung nicht erforderlich sind, sollten
1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen
1 Datenstrukturen 1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen 1 Abstrakte Datentypen Spezifizieren Form und Funktionalität der zu verarbeitenden Daten
Algorithmen und Datenstrukturen
Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe
Was bisher geschah Modellierung von Daten durch Mengen Beziehungen (Zusammenhänge und Eigenschaften) durch Relationen, Graphen und Funktionen
Was bisher geschah Modellierung von Daten durch Mengen Beziehungen (Zusammenhänge und Eigenschaften) durch Relationen, Graphen und Funktionen Anforderungen durch Logiken Modellierung zusammenhängender
Inhalt. Einführung in die Strukturierte Programmierung 15
Inhalt Einführung in die Strukturierte Programmierung 15 1.1 Was bedeutet Programmieren? 17 1.2 Was bedeutet Strukturierte Programmierung? 18 1.3 Was ist Pascal? 19 1.4 Was ist PS/k? 20 1.5 Warum wird
Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken.
Abstrakte Datentypen und Datenstrukturen/ Einfache Beispiele Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Datenstruktur (DS): Realisierung
Zweizusammenhang und starker Zusammenhang
.. Zeizusammenhang und starker Zusammenhang Carsten Gutenger Vorlesung Algorithmen und Datenstrukturen WS /. Januar Zeizusammenhang Betrachte ein Netzerk (Graph) Z.B. Computernetzerk, Flug- oder Schienennetzerk
Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22
Graphalgorithmen II Werner Sembach 14.04.2014 Werner Sembach Graphalgorithmen II 14.04.2014 1 / 22 Übersicht Datenstrukturen Union-Find Fibonacci-Heap Werner Sembach Graphalgorithmen II 14.04.2014 2 /
10 Abstrakte Datentypen
10 Abstrakte Datentypen abstrakte Datentypen generische Implementierung datengesteuerte Programmierung Operationstabelle 10.1 Abstrakte Datentypen Bisher: Konkrete Datentypen Menge von Elementen Operationen
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Vorrechnen von Aufgabenblatt 1. Wohlgeformte Klammerausdrücke 3. Teile und Herrsche Agenda 1.
Willkommen zur Vorlesung. Algorithmen und Datenstrukturen
Willkommen zur Vorlesung Algorithmen und Datenstrukturen Mein Name: Andreas Berndt Zum Dozenten Diplom-Informatiker (TU Darmstadt) Derzeit Software-Entwickler für Web- Applikationen Derzeitige Sprachen:
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung
Seminar: Einladung in die Mathematik
Seminar: Einladung in die Mathematik Marius Kling 11.11.2013 Übersicht 1. Königsberger Brückenproblem 2. Diskrete Optimierung 3. Graphentheorie in der Informatik 4. Zufällige Graphen 5. Anwendungen von
Euler und Hamiltonkreise
Euler und Hamiltonkreise 1. Königsberger Brücken 2. Eulerwege und Kreise Definition, Algorithmus mit Tiefensuche 3. Hamiltonwege und Kreise Definition 4. Problem des Handlungsreisenden Enumeration und
Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph
Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Sortierte Listen 2. Stacks & Queues 3. Teile und Herrsche Nächste Woche: Vorrechnen (first-come-first-served)
Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke
Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,
Algorithmische Graphentheorie
Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 17. April 2018 1/96 WIEDERHOLUNG Eulersche
Abschnitt 19: Sortierverfahren
Abschnitt 19: Sortierverfahren 19. Sortierverfahren 19.1 Allgemeines 19.2 Einfache Sortierverfahren 19.3 Effizientes Sortieren: Quicksort 19.4 Zusammenfassung 19 Sortierverfahren Informatik 2 (SS 07) 758
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)
ABITURPRÜFUNG 2001 GRUNDFACH INFORMATIK (HAUPTTERMIN)
ABITURPRÜFUNG 2001 GRUNDFACH INFORMATIK (HAUPTTERMIN) Arbeitszeit: 210 Minuten Hilfsmittel: Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik mbh; PC mit
Bemerkung: Der vollständige Graph K n hat n(n 1)
Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel
Datenstrukturen und Algorithmen 2. Klausur SS 2001
UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens [email protected] Überblick Grundlagen Definitionen Eigene Entwicklungen Datenstrukturen Elementare Datentypen Abstrakte Datentypen Elementare
Algorithmen & Komplexität
Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik [email protected] Breitensuche, Tiefensuche Wir besprechen nun zwei grundlegende Verfahren, alle Knoten eines Graphen zu
6. Verkettete Strukturen: Listen
6. Verkettete Strukturen: Listen 5 K. Bothe, Inst. f ür Inf., HU Berlin, PI, WS 004/05, III.6 Verkettete Strukturen: Listen 53 Verkettete Listen : Aufgabe Vergleich: Arrays - verkettete Listen Listenarten
Inhaltsübersicht. Vorwort 15. Vorwort zur deutschen Ausgabe 22. Kapitel 1 Elemente der Programmierung 25. Kapitel 2 Funktionen und Module 203
Inhaltsübersicht Vorwort 15 Vorwort zur deutschen Ausgabe 22 Kapitel 1 Elemente der Programmierung 25 Kapitel 2 Funktionen und Module 203 Kapitel 3 Objektorientierte Programmierung 335 Kapitel 4 Algorithmen
Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen
Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2016 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Grundlagen von Algorithmen
Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.813 Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS 2014 22. Oktober
Pro Informatik 2009: Objektorientierte Programmierung Tag 18. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik
Tag 18 Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik 09.09.2009 Agenda Tag 16 Datenstrukturen Abstrakte Datentypen, ADT Folge: Stack, Queue, Liste, ADT Menge: Bäume:
15. Elementare Graphalgorithmen
Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen
B2.1 Abstrakte Datentypen
Algorithmen und Datenstrukturen 21. März 2018 B2. Abstrakte Datentypen Algorithmen und Datenstrukturen B2. Abstrakte Datentypen B2.1 Abstrakte Datentypen Marcel Lüthi and Gabriele Röger B2.2 Multimengen,
Graphen. Leonhard Euler ( )
Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),
Kapitel 1 Einleitung. Definition: Algorithmus nach M. Broy: aus: Informatik: Eine grundlegende Einführung, Band 1, Springer-Verlag, Berlin
Kapitel 1 Einleitung 1.1. Begriff des Algorithmus Eine der ältesten Beschreibungstechniken für Abläufe: Benannt nach dem Mathematiker Al-Khwarizmi (ca. 780...840), der am Hof der Kalifen von Bagdad wirkte.
Diskrete Mathematik für Informatiker
Universität Siegen Lehrstuhl Theoretische Informatik Carl Philipp Reh Daniel König Diskrete Mathematik für Informatiker WS 016/017 Übung 7 1. Gegeben sei folgender Graph und das Matching M = {{h, f}, {c,
Klausur Algorithmentheorie
Prof. Dr. G. Schnitger Frankfurt, den 24.02.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen
Klausur Informatik B April Teil I: Informatik 3
Informatik 3 Seite 1 von 8 Klausur Informatik B April 1998 Teil I: Informatik 3 Informatik 3 Seite 2 von 8 Aufgabe 1: Fragekatalog (gesamt 5 ) Beantworten Sie folgende Fragen kurz in ein oder zwei Sätzen.
Sprechen Sie Java? Hanspeter Mössenböck. Tm\ dpunkt.verlag. Eine Einführung in das systematische Programmieren
Hanspeter Mössenböck Sprechen Sie Java? Eine Einführung in das systematische Programmieren 3., überarbeitete und erweiterte Auflage Tm\ dpunkt.verlag 1 Grundlagen 1 1.1 Daten und Befehle 2 1.2 Algorithmen
1 Abstrakte Datentypen
1 Abstrakte Datentypen Spezifiziere nur die Operationen! Verberge Details der Datenstruktur; der Implementierung der Operationen. == Information Hiding 1 Sinn: Verhindern illegaler Zugriffe auf die Datenstruktur;
Teil IV : Abstrakte Datentypen (ADT)
Teil IV : Abstrakte Datentypen (ADT) Abstraktion ADT in Modula-2 K. Murmann, H. Neumann, Fakultät für Informatik, Universität Ulm, 2001 1. Abstraktion Rekapitulation Realisation eines Stacks Idee für ADT-Konzept
Kapitel IV Minimale Spannbäume
Kapitel IV Minimale Spannbäume 1. Grundlagen Ein Graph G = (V, E) besteht aus einer Menge V von Knoten und einer Menge E von Kanten. Wir werden nur endliche Knoten- (und damit auch Kanten-) Mengen betrachten.
Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)
WS 2015/16 Diskrete Strukturen Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
1 Beispiele für Graphen
Beispiele für Graphen 1 Beispiele für Graphen 1. Kreuzungsproblem : 3 Häuser sollen mit einem Wasser-, Gas- und Elektroanschluß verbunden werden, wobei keine Kreuzung entstehen darf. Abbildung 1: Kreuzungsproblem
Lösungsvorschlag Serie 2 Rekursion
(/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma
Algorithmen und Datenstrukturen Übung #4 BFS/DFS, Wachstum von Funktionen
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Algorithmen und Datenstrukturen Übung #4 BFS/DFS, Wachstum von Funktionen Christian Rieck, Arne Schmidt 22.11.2018 Heute 12 Breiten-
Quicksort ist ein Divide-and-Conquer-Verfahren.
. Quicksort Wie bei vielen anderen Sortierverfahren (Bubblesort, Mergesort, usw.) ist auch bei Quicksort die Aufgabe, die Elemente eines Array a[..n] zu sortieren. Quicksort ist ein Divide-and-Conquer-Verfahren.
Graphen. Definitionen
Graphen Graphen werden häufig als Modell für das Lösen eines Problems aus der Praxis verwendet, wie wir im Kapitel 1 gesehen haben. Der Schweizer Mathematiker Euler hat als erster Graphen verwendet, um
Algorithmen und Datenstrukturen I Grundlagen
Algorithmen und Datenstrukturen I Grundlagen Prof. Dr. Oliver Braun Letzte Änderung: 01.11.2017 14:15 Algorithmen und Datenstrukturen I, Grundlagen 1/24 Algorithmus es gibt keine präzise Definition Handlungsvorschrift
Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S
Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt
14. Rot-Schwarz-Bäume
Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).
1. Einleitung wichtige Begriffe
1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Listen. M. Jakob. Gymnasium Pegnitz. 20. September Hinführung: Wartenschlangen. Grundprinzip von Listen Rekursion
M. Jakob Gymnasium Pegnitz 20. September 2015 Inhaltsverzeichnis Grundprinzip von Rekursion (10 Std.) Die einfach verkettete Liste als Kompositum (10 Std.) Klasse LISTENELEMENT? Entwurfsmuster Kompositum
\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.
Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )
Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7
1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten
5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen
Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten
VBA-Programmierung: Zusammenfassung
VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung
Aufgaben zur Klausurvorbereitung
Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014
Informatik I 2. Kapitel. Elementare Datenstrukturen. Datenstrukturen. Datenstrukturen. Rainer Schrader. 28. Mai 2008
Informatik I. Kapitel Rainer Schrader Elementare Zentrum für Angewandte Informatik Köln 8. Mai 008 / / bisher haben wir nur Arrays verwendet, Gliederung Einführung abstrakte Datentypen Listen Stacks und
Programmierung im Grossen
1 Letzte Aktualisierung: 16. April 2004 Programmierung im Grossen Bertrand Meyer 2 Vorlesung 4: Abstrakte Daten-Typen Übungen 3 Passe die vorhergehende Spezifikation von Stacks (LIFO, Last-In First-Out
