= 1. Falls ( a n. ) r i. i=1 ( b p i

Größe: px
Ab Seite anzeigen:

Download "= 1. Falls ( a n. ) r i. i=1 ( b p i"

Transkript

1 Das Jacobi-Symbol Definition Jacobi-Symbol Sei n N ungerade mit Primfaktorzerlegung n = s definieren das Jacobi-Symbol ( a ( ) ri n) := s a i=1 p i. i=1 pr i i. Wir Anmerkungen: Falls a quadratischer Rest mod n ist, dann gilt a b mod n und ( a n ) = ( b n ) = s i=1 ( b p i ) r i = s i=1 ( b p i ) r i = 1. Falls ( a n ) = 1, dann muss a kein quadratischer Rest mod n sein. Es gilt z.b. ( 15 ) = ( 3 )( 5 ) = ( 1) = 1. Nach CRT müsste jede Lösung von x mod 15 auch eine Lösungen von x mod 3 und x mod 5 sein. Beide Kongruenzen besitzen aber keine Lösungen. Übung: ( a n ) ist multiplikativ in a und n. D.h. für a = a 1a und n = n 1 n gilt ( a n ) = ( a n 1 )( a n ) = ( a 1 n 1 )( a n 1 )( a 1 n )( a n ). Zahlentheorie - V Jacobi-Symbol, Quadratwurzeln, Tonelli-Shanks Algorithmus 131 / 143

2 Reziprozität für Jacobi-Symbol Satz Reziprozität Seien m n 3 ungerade natürliche Zahlen. Dann gilt 1 ( 1 n 1 n ) = ( 1). ( n ) = ( 1) n ( m n ) = ( 1) m 1 n 1 ( n m ). Beweis: Obige Identitäten gelten für prime n, m. Die linken Seiten sind multiplikativ in n, m, können also in die Primteiler zerlegt werden. Genügt zu zeigen: Die rechten Seiten sind multiplikativ in n, m. Sei n = n 1 n ungerade, d.h. n 1, n sind ebenfalls ungerade. (1) Wir zeigen ( 1) n 1 n 1 = ( 1) n 1 1 ( 1) n 1. Dies ist äquivalent zu n 1 n 1 n 1+n mod n 1 n n 1 n + 1 = (n 1 1)(n 1) 0 mod 4 Da n 1 1 und n 1 beide gerade sind, folgt die Korrektheit. Zahlentheorie - V Jacobi-Symbol, Quadratwurzeln, Tonelli-Shanks Algorithmus 13 / 143

3 Reziprozität für Jacobi-Symbol Beweis: (Fortsetzung) () zu zeigen: ( 1) n 1 n 1 8 = ( 1) n ( 1) n 1 8. Dies ist äquivalent zu n1 n 1 8 n n 1 8 mod n1 n n 1 n mod 16. Wir formen weiter um zu (n 1 1)(n 1) = (n 1 + 1)(n 1 1)(n + 1)(n 1) 0 mod 16. Die Korrektheit folgt, da alle vier Terme n 1 ± 1, n ± 1 gerade sind. (3) Aus (1) folgt die Multiplikativität von ( ( 1) m 1 n 1 = ( 1) m 1 ) n 1 in n und m. Anmerkung: Für ungerades n und m = k m mit ungeradem m gilt ( m ) ( n = ) k ) n ( m n = ( ) k (m 1)(n 1) ( n ( 1) 4 n ) m. Zahlentheorie - V Jacobi-Symbol, Quadratwurzeln, Tonelli-Shanks Algorithmus 133 / 143

4 Rekursive Berechnung des Jacobi Symbols Definition a mod n Sei a Z und n N. Dann bezeichnen wir mit a mod n dasjenige b Z mit b a mod n und 0 b < n. D.h. b = a a n n. Algorithmus Jacobi-Symbol EINGABE: m, n mit n ungerade und ggt(m, n) = 1. 1 Falls m = 1, Ausgabe 1. Sei m = k m mit m ungerade. 3 Ausgabe ( 1) k(n 1) 8 ( 1) (m 1)(n 1) 4 Jacobi-Symbol(n mod m, m ) AUSGABE: ( ) m n Laufzeit: Analog zum Euklidischen Alg. erhalten wir O(log max{m, n}) rekursive Aufrufe, jeder dieser benötigt O(log max{m, n}). D.h. die Gesamtlaufzeit ist O(log 3 max{m, n}). Zahlentheorie - V Jacobi-Symbol, Quadratwurzeln, Tonelli-Shanks Algorithmus 134 / 143

5 Berechnung von Wurzeln für p 3 mod 4 Bsp: Berechnung von ( 39 ) ( 39 ) = ( ) ( 39 ) = ( 11 ) = ( 6 11 ) = ( 11 ) ( 3 11 ) = ( 11 3 ) = ( 3 ) = 1. Ziel: Falls x d mod p mit ( d p ) = 1, berechne beide Lösungen. Satz Wurzeln für p 3 mod 4 Sei p P mit p 3 mod 4 und d Z mit ( d p ) = 1. Dann sind die Lösungen von x d mod p von der Form ±d p+1 4. Beweis: Es gilt (±d p+1 4 ) = d p+1 = d p 1 d ( d p ) d = d mod p. Es gilt d p+1 4 d p+1 4 mod p, da d p+1 4 U p und p >. Da F p ein Körper ist, sind dies die einzigen beiden Lösungen. Zahlentheorie - V Jacobi-Symbol, Quadratwurzeln, Tonelli-Shanks Algorithmus 135 / 143

6 Berechnen allgemeiner Quadratwurzel Idee des Algorithmus von Tonelli und Shanks: Sei p 1 = s q mit q ungerade. Erster Ansatz: Berechne a d q+1 mod p. Dann gilt a (d q+1 ) = d q d mod p. Falls d q 1 mod p, dann ist a bereits die gesuchte Quadratwurzel. Es gilt U p = Z/ϕ(p)Z = Z/ s Z Z/qZ. Wir schreiben x = (x 1, x ). Für die Abbildung f : U p U p, x x q gilt f(x) = x q = q(x 1, x ) = (qx 1, qx ) = (qx 1, 0) Z/ s Z 0. D.h. q-ten Potenzen sind in einer Untergruppe H der Ordnung s. Wir wollen nun einen Erzeuger g von H konstruieren. Sei z U p mit ( z p ) = ( 1). Dann gilt g : zq mod p H und g s 1 z qs 1 = z p 1 ( 1) mod p und g s z p 1 1 mod p. D.h. g ist Generator von H und d q g l mod q für ein 0 l < s. l ist gerade, da g l d q a d mod p quadratischer Rest ist. Es folgt (a g l ) d mod p. Damit ist a g l unsere gesuchte Quadratwurzel. Zahlentheorie - V Jacobi-Symbol, Quadratwurzeln, Tonelli-Shanks Algorithmus 136 / 143

7 Berechnen des Diskreten Logarithmus modulo s Lemma Berechnen des Diskreten Logarithmus modulo s Sei p prim mit p 1 = s q, q ungerade. Sei H = g U p mit ord(g) = s. Für x = g l H kann l in O(log 4 p) berechnet werden. Beweis: Wir schreiben l = s 1 i=0 l i i und berechnen l 0,...,l s 1. Berechnung von l 0 : Wir berechnen x s 1 mod q. Es gilt x s 1 g l s 1 = g s 1 i=0 l i s 1+i g l 0 s 1 mod p. Da x s 1 mod p, muss x s 1 ±1 mod p gelten. Falls x s 1 ( 1) mod p, dann ist l 0 = 1, sonst ist l 0 = 0. Sei nun l 0,...,l j 1 bekannt. Wir wollen l j berechnen. s 1 Berechnung von l j : Es g i=j l i i xg j 1 i=0 l i i := x. Damit ist (x s 1 ) s 1 j l g i=j i s 1 j+i g l j s 1 mod p. Damit gilt analog wie zuvor l j = 1 gdw (x ) s 1 j ( 1) mod p. Jedes l j kann in Zeit O(log 3 p) berechnet werden. Zahlentheorie - V Jacobi-Symbol, Quadratwurzeln, Tonelli-Shanks Algorithmus 137 / 143

Sicherheit von ElGamal Intuitiv: Eve soll c 2 = m g ab nicht von c 2 R G unterscheiden können.

Sicherheit von ElGamal Intuitiv: Eve soll c 2 = m g ab nicht von c 2 R G unterscheiden können. Sicherheit von ElGamal Intuitiv: Eve soll c 2 m g ab nicht von c 2 R G unterscheiden können. Protokoll Unterscheider EINGABE: q, g, g x 1 Eve wählt m G und schickt m an Alice. 2 Alice wählt b R {0, 1},

Mehr

Legendre-Symbol von 2

Legendre-Symbol von 2 Legendre-Symbol von Lemma Legendre-Symbol von Sei P\{}. Dann gilt ( ) = { +1 falls ±1 mod 8 1 falls ±3 mod 8. Beweis: Nach Euler-Identität wissen wir, dass ( ) 1 mod. In Z[i] gilt = ( i) i = ( i)(1+i).

Mehr

Liften von Lösungen modulo 2

Liften von Lösungen modulo 2 Liften von Lösungen modulo 2 Übung: An welcher Stelle im vorigen Beweis benötigen wir p 2? Geben Sie ein Gegenbeispiel für voriges Lemma für p = 2, r = 3. Modifizieren Sie den Beweis, um das folgende Lemma

Mehr

Liften von Lösungen modulo 2

Liften von Lösungen modulo 2 Liften von Lösungen modulo 2 Übung: An welcher Stelle im vorigen Beweis benötigen wir p 2? Geben Sie ein Gegenbeispiel für voriges Lemma für p = 2, r = 3. Modifizieren Sie den Beweis, um das folgende Lemma

Mehr

Primzahltest für Mersenne-Primzahlen

Primzahltest für Mersenne-Primzahlen Primzahltest für Mersenne-Primzahlen Satz Lucas-Lehmer Test Sei n = 2 p 1 N für p P\{2}. Wir definieren die Folge S k durch S 1 = 4 und S k = S 2 k 1 2. Falls n S p 1, dann ist n prim. Beweis: Seien ω

Mehr

8. Woche Quadratische Reste und Anwendungen. 8. Woche: Quadratische Reste und Anwendungen 163/ 238

8. Woche Quadratische Reste und Anwendungen. 8. Woche: Quadratische Reste und Anwendungen 163/ 238 8 Woche Quadratische Reste und Anwendungen 8 Woche: Quadratische Reste und Anwendungen 163/ 238 Quadratische Reste Ḋefinition Quadratischer Rest Sei n N Ein Element a Z n heißt quadratischer Rest in Z

Mehr

Euklidische Division. Zahlentheorie - V Zusammenfassung 225 / 231

Euklidische Division. Zahlentheorie - V Zusammenfassung 225 / 231 Euklidische Division 1. Euklidische Division: Landau Notation: f(n) = O(g(n)). Definitionen: Gruppe, Ring, Ideal Teilbarkeit und Teilbarkeit mit Rest (euklidisch) Beispiel für euklidische Ringe Z euklidisch

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel

Mehr

Der Körper F 2 p. Lemma. Sei D R, aber D kein Quadrat in R. Dann gilt R[ D] = R R.

Der Körper F 2 p. Lemma. Sei D R, aber D kein Quadrat in R. Dann gilt R[ D] = R R. Der Körper F 2 p Lemma Sei D R, aber D kein Quadrat in R. Dann gilt R[ D] = R R. Wir definieren den Isomorphismus φ : R[ D] R R mit x + y D (x + yd, x yd). Die Bijektivität von φ folgt mit der Umkehrabbildung

Mehr

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994).

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994). Primzahltest Wir wollen testen, ob eine gegebene Zahl n eine Primzahl ist Effizienter Algorithmus zum Faktorisieren ist unbekannt Kontraposition des Kleinen Satzes von Fermat liefert: Falls a n 1 1 mod

Mehr

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt Isomorphismus Definition Gruppen-Isomorphismus Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt 1 f ist bijektiv f (u + v) = f (u) f (v) für alle u, v G, die

Mehr

Erweiterter Euklidischer Algorithmus

Erweiterter Euklidischer Algorithmus Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 10 Endliche Untergruppen der Einheitengruppe eines Körpers Wir wollen zeigen, dass die Einheitengruppe Z/(p), p Primzahl, zyklisch

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n)

RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n) RSA Parameter { öffentlich: N = pq mit p, q prim und e Z RSA Parameter φ(n) geheim: d Z φ(n) mit ed = 1 mod φ(n). Satz RSA Parameter Generierung RSA-Parameter (N, e, d) können in Zeit O(log 4 N) generiert

Mehr

Bsp. Euklidischer Algorithmus

Bsp. Euklidischer Algorithmus Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Quadratische Erweiterung

Quadratische Erweiterung Quadratische Erweiterung Ziel: F 2 p besitzt Ordnung F 2 p = p 2 1 = (p+1)(p 1). Wir konstruieren eine Untergruppe von F 2 p mit Ordnung p+1. Unsere Hoffnung ist, dass p + 1 in kleine Primfaktoren zerfällt.

Mehr

Übungen zu Zahlentheorie, SS 2017

Übungen zu Zahlentheorie, SS 2017 Übungen zu Zahlentheorie, SS 017 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. ) Zeige (a b) (a n b n ) für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n ) (mit

Mehr

Rabin Verschlüsselung 1979

Rabin Verschlüsselung 1979 Rabin Verschlüsselung 1979 Idee: Rabin Verschlüsselung Beobachtung: Berechnen von Wurzeln in Z p ist effizient möglich. Ziehen von Quadratwurzeln in Z N ist äquivalent zum Faktorisieren. Vorteil: CPA-Sicherheit

Mehr

Elementare Zahlentheorie Sommersemester 2009

Elementare Zahlentheorie Sommersemester 2009 Albert Ludwigs Universität Freiburg Institut für Mathematik Abteilung für Reine Mathematik PD Dr. K. Halupczok Dipl. Math. S. Feiler Nachklausur zur Vorlesung Elementare Zahlentheorie Sommersemester 009

Mehr

Quadrate und Wurzelziehen modulo p

Quadrate und Wurzelziehen modulo p Quadrate und Wurzelziehen modulo p Sei im Folgenden p eine Primzahl größer als. Wir möchten im Körper Z p Quadratwurzeln ziehen. Die Quadrierabbildung Q :Z p Z p ist aber nicht surjektiv, daher gibt es

Mehr

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Anzahl der Generatoren

Anzahl der Generatoren Anzahl der Generatoren Satz Anzahl Generatoren eines Körpers Sei K ein Körper mit q Elementen. Dann besitzt K genau φ(q 1) viele Generatoren. Beweis: K ist zyklisch, d.h. K besitzt einen Generator a mit

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Die inverse Diskrete Fourier Transformation

Die inverse Diskrete Fourier Transformation Die inverse Diskrete Fourier Transformation Konvertierung von der Point-value Form in Koeffizientenform. Dazu stellen wir die DFT als Matrix-Vektor Produkt dar 1 1 1... 1 1 ω n ωn 2... ωn n 1 a 0 y 0 1

Mehr

13. Der diskrete Logarithmus

13. Der diskrete Logarithmus 13. Der diskrete Logarithmus 13.1. Definition. Sei p eine Primzahl. Wie wir in 9 bewiesen haben, ist die multiplikative Gruppe F p des Körpers F p = Z/p zyklisch. Sei g ein erzeugendes Element von F p

Mehr

Diskrete Mathematik 1

Diskrete Mathematik 1 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 008/09 Blatt

Mehr

Das Quadratische Reste Problem

Das Quadratische Reste Problem Das Quadratische Reste Problem Definition Pseudoquadrate Sei N = q mit, q rim. Eine Zahl a heißt Pseudoquadrat bezüglich N, falls ( a ) = 1 und a / QR N. N Wir definieren die Srache QUADRAT:= {a Z N (

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei

Mehr

Ältere Aufgaben (bis 1998)

Ältere Aufgaben (bis 1998) Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein

Mehr

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein

Mehr

Algebra. 1 = a u + b,

Algebra. 1 = a u + b, Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 11. November 2008 Algebra 5. Übung mit Lösungshinweisen Aufgabe 23 Es sei R ein euklidischer Integritätsbereich.

Mehr

Beispiel Gröbnerbasen-Berechnung

Beispiel Gröbnerbasen-Berechnung Beispiel Gröbnerbasen-Berechnung Bsp: Seien f 1 = x 2 y + xy, f 2 = xy 2 + 1 R[x, y] in grlex-ordnung. S(f 1, f 2 ) = yf 1 xf 2 = xy 2 x. Division liefert S(f 1, f 2 ) = 1 f 2 x 1. Wir fügen f 3 = x 1

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

5 Harte zahlentheoretische Probleme

5 Harte zahlentheoretische Probleme 5 Harte zahlentheoretische Probleme Die folgende Tabelle gibt einen Überblick über kryptologisch relevante zahlentheoretische Berechnungsprobleme. Effizient bedeutet dabei mit polynomialem Aufwand lösbar.

Mehr

Zahlentheorie. Alexander May. Fakultät für Mathematik Ruhr-Universität Bochum. Sommersemester 2015

Zahlentheorie. Alexander May. Fakultät für Mathematik Ruhr-Universität Bochum. Sommersemester 2015 Zahlentheorie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2015 Zahlentheorie - V01 Primzahlen, Landau-Notation, Fermat Primzahl, Mersenne Primzahl 1 / 230 Organisatorisches

Mehr

Diskrete Strukturen. Vorlesung 15: Arithmetik. 5. Februar 2019

Diskrete Strukturen. Vorlesung 15: Arithmetik. 5. Februar 2019 1 Diskrete Strukturen Vorlesung 15: Arithmetik 5. Februar 2019 Nächste Termine Modul Diskrete Strukturen Hörsaalübung (Mo. 9:15) Vorlesung (Di. 17:15) 4.2. Tutorium (Klausurvorbereitung) 11.2. 12.2. 5.2.

Mehr

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger Der Primzahltest von Agrawal, Kayal und Saxena Dr. Gerold Jäger Habilitationsvortrag Christian-Albrechts-Universität zu Kiel Institut für Informatik 19. Januar 2011 Dr. Gerold Jäger Habilitationsvortrag

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

Division mit Schulmethode

Division mit Schulmethode Division mit Schulmethode Satz Division mit Rest von Polynomen Seien a(x), b(x) Q[x] mit b(x) 0. Dann gibt es eindeutige q(x), r(x) Q[x] mit a(x) = q(x) b(x) + r(x) und grad(r) < grad(b). Beweis: Sei grad(a)

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

Charakterisierung von Gröbnerbasen

Charakterisierung von Gröbnerbasen Charakterisierung von Gröbnerbasen Satz Charakterisierung von Gröbnerbasen Eine Menge G = {g 1,..., g m } I ist eine Gröbnerbasis gdw für jedes f I der Term LT (f ) von einem der LT (g i ), i = 1,...,

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016 Fakultät für Mathematik Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. oec. Anja Randecker Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 016

Mehr

7 Die Sätze von Fermat, Euler und Wilson

7 Die Sätze von Fermat, Euler und Wilson 53 7 Die Sätze von Fermat, Euler und Wilson Es gibt einige Sätze aus der elementaren Zahlentheorie, die Spezialfälle von Aussagen über endliche Gruppen sind. Z.B. gilt für ein beliebiges Element x einer

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Euklidischer Algorithmus

Euklidischer Algorithmus Euklidischer Algorithmus Ermitteln des größten gemeinsamen Teilers mit Euklid: function ggt (m, n) Hierbei ist m begin 0undn 0vorausgesetzt. if m = 0 then return n else return ggt (n mod m, m) fi end Man

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Übungen zu Zahlentheorie, SS 2008

Übungen zu Zahlentheorie, SS 2008 Übungen zu Zahlentheorie, SS 2008 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. 2) Zeige (a b) (a n b n )für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n )

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch:

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch: 7. Kongruenzrechnung 7. 1. Definition: Für n N sei die Relation: n a n b ( a kongruent b modulo n ) auf Z, definiert durch: a n b : n ( a b) a b ( mod n) Dies ist eine Äquivalenzrelation auf Z. Die Menge

Mehr

Mathematisches Kaleidoskop 2014 Materialien Teil 2. Dr. Hermann Dürkop

Mathematisches Kaleidoskop 2014 Materialien Teil 2. Dr. Hermann Dürkop Mathematisches Kaleidoskop 2014 Materialien Teil 2 Dr. Hermann Dürkop 1 1.6 Quadratische Reste und das Legendre-Symbol Im folgenden seien die Moduln p immer Primzahlen. Wir haben bisher gesehen, ob und

Mehr

Form der Äquivalenzklassen

Form der Äquivalenzklassen Form der Äquivalenzklassen Anmerkung: Es gilt a = a ± m = a ± 2m =... = a + km mod m für alle k Z. Wir schreiben auch {x Z x = a + mk, k Z} = a + mz. Es gibt m verschiedene Äquivalenzklassen modulo m:

Mehr

6: Public-Key Kryptographie (Grundidee)

6: Public-Key Kryptographie (Grundidee) 6: Public-Key Kryptographie (Grundidee) Ein Teil des Schlüssels ist nur dem Empfänger bekannt. Der auch dem Sender bekannte Teil kann sogar veröffentlicht werden. Man spricht dann von einem Schlüsselpaar.

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

Klausurtermin. Klausur Diskrete Mathematik I Do stündig

Klausurtermin. Klausur Diskrete Mathematik I Do stündig Klausurtermin Klausur Diskrete Mathematik I Do. 28.02.2008 3-stündig 07.12.2007 1 Wiederholung Komplexität modularer Arithmetik Addition: O(n) Multiplikation: O(n 2 ) bzw. O(n log 2 3 ) Exponentiation:

Mehr

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 5 kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 6 kgv-berechnung

Mehr

6 Zahlentheoretische Grundlagen

6 Zahlentheoretische Grundlagen 6 Zahlentheoretische Grundlagen 89 6 Zahlentheoretische Grundlagen In diesem Abschnitt stellen wir die Hilfsmittel aus der Zahlentheorie bereit, die wir zum Verständnis der Public-Key Verfahren, die im

Mehr

Übungsaufgaben zur Zahlentheorie (Holtkamp)

Übungsaufgaben zur Zahlentheorie (Holtkamp) Ruhr-Universität Bochum Fakultät für Mathematik Sommersemester 2005 Übungsaufgaben zur Zahlentheorie (Holtkamp) Sonderregelung: Zur vollständigen Lösung jeder Aufgabe gehört die Kennzeichnung der (maximal

Mehr

Das Generalized Birthday Problem

Das Generalized Birthday Problem Das Generalized Birthday Problem Problem Birthday Gegeben: L 1, L 2 Listen mit Elementen aus {0, 1} n Gesucht: x 1 L 1 und x 2 L 2 mit x 1 x 2 = 0. Anwendungen: Meet-in-the-Middle Angriffe (z.b. für RSA,

Mehr

Affine Varietät. Definition Affine Varietät. Seien f 1,..., f m F[x 1,..., x n ] für einen Körper F. Wir bezeichnen

Affine Varietät. Definition Affine Varietät. Seien f 1,..., f m F[x 1,..., x n ] für einen Körper F. Wir bezeichnen Affine Varietät Definition Affine Varietät Seien f 1,..., f m F[x 1,..., x n ] für einen Körper F. Wir bezeichnen V(f 1,..., f m ) = {(a 1,..., a n ) F n f i (a 1,..., a n ) = 0 für i = 1,..., m} als die

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

WIEDERHOLUNG (BIS ZU BLATT 7)

WIEDERHOLUNG (BIS ZU BLATT 7) Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

Wiederholung. Gruppen. Untergruppen. Gruppenisomorphismen. Ordnung: Gruppe, Element Satz von Euler: a ord(g) = 1 Elementordung teilt Gruppenordnung

Wiederholung. Gruppen. Untergruppen. Gruppenisomorphismen. Ordnung: Gruppe, Element Satz von Euler: a ord(g) = 1 Elementordung teilt Gruppenordnung Wiederholung Gruppen Ordnung: Gruppe, Element Satz von Euler: a ord(g) = 1 Elementordung teilt Gruppenordnung Untergruppen Satz von Lagrange Untergruppenordnung teilt Gruppenordnung Nebenklassen von Untergruppen

Mehr

Das Rucksackproblem. Definition Sprache Rucksack. Satz

Das Rucksackproblem. Definition Sprache Rucksack. Satz Das Rucksackproblem Definition Sprache Rucksack Gegeben sind n Gegenstände mit Gewichten W = {w 1,...,w n } N und Profiten P = {p 1,...,p n } N. Seien ferner b, k N. RUCKSACK:= {(W, P, b, k) I [n] : i

Mehr

2: Restklassen 2.1: Modulare Arithmetik

2: Restklassen 2.1: Modulare Arithmetik 2: Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32, 64} Prüfziffern mod 10 oder mod 11... 71 S. Lucks Diskr Strukt.

Mehr

Darstellung von Gruppen

Darstellung von Gruppen Darstellung von Gruppen Definition Darstellung von Gruppen Sei G eine endlich erzeugte abelsche Gruppe mit Erzeugern S = (g 1,..., g k ) G k. Elemente des Kerns von ϕ S : Z k G, (m 1,..., m k ) k i=1 m

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

5 Harte zahlentheoretische Probleme

5 Harte zahlentheoretische Probleme 5 Harte zahlentheoretische Probleme Die folgende Tabelle gibt einen Überblick über kryptologisch relevante zahlentheoretische Berechnungsprobleme. Effizient bedeutet dabei mit polynomialem Aufwand lösbar.

Mehr

Fibonacci-Zahlen und goldener Schnitt

Fibonacci-Zahlen und goldener Schnitt Fibonacci-Zahlen und goldener Schnitt Suche eine Darstellung der Form F n = x n für reelle Zahl x > 0. Aus der definierenden Gleichung folgt sofort x 2 = x + 1. Dann liefert die p-q-formel: x 1,2 = 1 2

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. 29.11.2018 32. Vorlesung Homomorphiesatz für Ringe Chinesischer Restsatz, speziell für Ringe Z n Lösen von t simultanen linearen Kongruenzen Sonderfall t = 2 Anwendungen, z.b. schnelle Addition

Mehr

Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7

Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7 Quadratische Reste Michael Partheil 19. Mai 008 Inhaltsverzeichnis 1 Hintergrund Quadratische Reste 4 3 Gauß sche Summen 7 4 Quadratisches Rezirozitätsgesetz 10 5 Literaturverzeichnis 1 1 1 Hintergrund

Mehr

Pseudo-Zufallsgeneratoren basierend auf dem DLP

Pseudo-Zufallsgeneratoren basierend auf dem DLP Seminar Codes und Kryptografie SS 2004 Struktur des Vortrags Struktur des Vortrags Ziel Motivation 1 Einleitung Ziel Motivation 2 Grundlegende Definitionen Zufallsgeneratoren 3 Generator Sicherheit 4 Generator

Mehr

Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen

Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 14 Fermatsche Primzahlen Definition 14.1. Eine Primzahl der Form 2 s + 1, wobei s eine positive natürliche Zahl ist, heißt Fermatsche Primzahl.

Mehr

Übungen p-adische Zahlen

Übungen p-adische Zahlen Blatt 1 Aufgabe 1. Berechnen Sie die ersten fünf Ziffern a 0,..., a 4 der ganzen p- adischen Zahl 1 + p + p 2 = a i p i Z p, p 1 i 0 für die Primzahlen p = 2, 3, 5. Aufgabe 2. Sei a = i 0 a ip i Z p eine

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Abschlussklausur am 16.02.2017 (Teil 2, Lösungen 15. Februar 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 15. Februar

Mehr

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen

Miller-Rabin Test. Primzahl- und Zerlegbarkeitstests. Zeugen für die Zerlegbarkeit ganzer Zahlen Miller-Rabin Test Primzahl- und Zerlegbarkeitstests Sei N eine positive ganze Zahl. Wie kann man möglichst effizient feststellen, ob N eine Primzahl oder zerlegbar ist? Dies ist die Aufgabe von Primzahlund

Mehr

Sei G eine (multiplikative) endliche Gruppe mit neutralem Element 1. Das Element a heißt Generator oder auch primitives Element.

Sei G eine (multiplikative) endliche Gruppe mit neutralem Element 1. Das Element a heißt Generator oder auch primitives Element. Ordnung einer Gruppe Definition Ordnung einer Gruppe Sei G eine (multiplikative) endliche Gruppe mit neutralem Element 1. 1 Die Ordnung von G ist ord(g) := G. 2 Die Ordnung eines Elements a G ist ord G

Mehr

Perfekte Codes. Definition Perfekter Code. Sei C {0, 1} n ein (n, M, d)-code. C heißt perfekt, falls

Perfekte Codes. Definition Perfekter Code. Sei C {0, 1} n ein (n, M, d)-code. C heißt perfekt, falls Perfekte Codes Definition Perfekter Code Sei C {0, 1} n ein (n, M, d)-code. C heißt perfekt, falls ( ) d 1 M V n = 2 n. 2 D.h. die maximalen disjunkten Hammingkugeln um die Codeworte partitionieren {0,

Mehr

Diskrete Mathematik. Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom

Diskrete Mathematik. Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom Institut für Informatik @ UIBK Sommersemester 2017 Zusammenfassung Zusammenfassung der letzten

Mehr

Diskreter Logarithmus und Primkörper

Diskreter Logarithmus und Primkörper Diskreter Logarithmus und Primkörper Neben dem RSA-Verfahren ist die ElGamal-Verschlüsselung 8 ein weiteres klassische Public-Key-Verfahren, welches von Taher ElGamal auf der Konferenz CRYPTO 84 vorgestellt

Mehr