Schema eines Massenspektrometer-Systems
|
|
|
- Jens Klaus Egger
- vor 8 Jahren
- Abrufe
Transkript
1 Vakuumsystem Probe Druck hpa Einlaßsystem Ionenquelle Massenanalysator Detektor Signalverarbeitung Ausgabe Schema eines Massenspektrometer-Systems Einlasssystem für direkte Probenaufgabe Es wird ein Molekularstrahl erzeugt, der in die Ionenquelle eintritt. Die Probe kann auch über eine beheizte Sonde direkt in der Ionenquelle verdampft werden. Prof. Dr. D. Winklmair Massenspektrometrie: Grundlagen und Trennsysteme 1/11
2 Häufigkeit CH 3 -CH -CH -CH Massenspektrum von n-butan (Elektronenstoß-Ionisation mit 70 ev) Gemessen werden einfach positiv geladene Ionen. Massenzahl des Molekülions M + : 58 Massenzahl Die übrigen Ionenmassen entstehen folgendermaßen: Fragmentierungen: CH 3 -CH -CH -CH Umlagerungen: CH 3 -CH -CH -CH 3 CH CH + H + CH CH 8 8 CH 3 -CH -CH -CH 3 (CH 3 -CH -CH) + CH 4 4 (CH 3 -CH -CH ) (CH CH-CH ) + H (CH CCH) + H (CH 3 -CH ) (CH 3 C) + H 7 CH CH CH CH + H 6 Die schwache Linie bei der Massenzahl 44 entsteht durch ein 13 C-Atom im Radikal-Ion (CH 3 -CH -CH ) +. Prof. Dr. D. Winklmair Massenspektrometrie: Grundlagen und Trennsysteme /11
3 Magnetische Ablenkung Schema eines einfachen 60 -Sektorfeld-Massenspektrometers mit Elektronenstoßionisation A: Anode; K: Kathode; D: Düse; E: Beschleunigungselektroden; P: Vakuumpumpe; Es: Eintrittsspalt; As: Austrittsspalt Prof. Dr. D. Winklmair Massenspektrometrie: Grundlagen und Trennsysteme 3/11
4 Doppelt-fokussierendes Massenspektrometer in Nier-Johnson-Geometrie Doppelt-fokussierendes Massenspektrometer in Mattauch-Herzog-Geometrie Prof. Dr. D. Winklmair Massenspektrometrie: Grundlagen und Trennsysteme 4/11
5 Elektrische Trennstufe zur Energiefokussierung In der Realität ist d << R, d.h. E Ue d Die durchgezogene Linie ist eine zu den Kondensatorplatten konzentrische Bahn positiver Ionen mit der Energie W kin. Aus den Bewegungsgleichungen geladener Teilchen im Zylinderfeld folgt, daß auch Ionen, die unter einem Winkel α von etwas mehr als 90 gegen den Vektor E in das Feld eintreten (gepunktete Bahn), dann auf den Asutrittsspalt treffen, wenn sie auch die Energie W kin aufweisen. Für Eintrittswinkel α < 90 gilt dies nicht. Für die dargestellte Geometrie, bei der die Brennpunkte der Ionenbahnen im Ein- bzw. Aus-trittsspalt liegen, ergibt sich γ 10 37'. Die gestrichelten Bahnen gelten für Energien W' W kin. Prof. Dr. D. Winklmair Massenspektrometrie: Grundlagen und Trennsysteme 5/11
6 Schema eines Quadrupol-Massenspektrometers Plausibilitätsbetrachtung zur Stabilität von Ionenbahnen im Quadrupolfeld Prof. Dr. D. Winklmair Massenspektrometrie: Grundlagen und Trennsysteme 6/11
7 Prof. Dr. D. Winklmair Massenspektrometrie: Grundlagen und Trennsysteme 7/11
8 Geometrie des Quadrupolfeldes Es ist: ψ U + V cos ωt Für das elektrische Potential zwischen den Stäben gilt dann: ϕ (x, y) ψ (x r y ) Die Bewegungsgleichungen F ma ee e grad ϕ lauten: d x dt e d y e d z + (U + V cos ωt)x 0 ; (U + V cos ωt) y 0; 0 mr dt mr dt Mit der Transformation ωt Φ und den Abkürzungen a 4eU ω ev ω m r ; q m r ergeben sich die Mathieuschen Differentialgleichungen: d x dφ + (a + q cos Φ)x 0 und d y dφ (a + q cos Φ)y 0 Prof. Dr. D. Winklmair Massenspektrometrie: Grundlagen und Trennsysteme 8/11
9 Gebiete stabiler Lösungen der Mathieuschen Differentialgleichungen Der Massenbereich wird durch gleichzeitige Variation von ΔU und ΔV mit ΔU/ΔV const. durchlaufen. Der Stabilitätsbereich zwischen q 1 und q bleibt dabei konstant. Prof. Dr. D. Winklmair Massenspektrometrie: Grundlagen und Trennsysteme 9/11
10 Schema einer Ionenfalle (Ion Trap) Die Elektroden haben die Form von Rotationshyperboloiden. Die Ionisation kann als Elektronenstoß- oder als chemische Ionisation erfolgen. Schema eines Flugzeit-Massenspektrometers mit Ionenreflektor Prof. Dr. D. Winklmair Massenspektrometrie: Grundlagen und Trennsysteme 10/11
11 Auflösungsvermögen von Magneten und Quadrupolen Quadrupol: Bei einer bestimmten Hochfrequenzspannung V wird bei q 1 das Ion mit der ev ev Masse m1 stabil, während das Ion mit der Masse m q1ω r qω r gerade noch stabil ist. Für die Auflösung gilt also Δ m m m ev ω r 1 q 1 q 1 1 const. Magnet: Für die Ionenbahn im Magnetfeld gilt: v v m evb und m r eu b Elimination von v und Ausflösen nach m liefert: m r B e U b Daraus folgt: dm dr ; m r dabei ist dr der Bereich der Radien derjeniger Bahnen, die noch in den Detektor führen; somit ist dr const. m 1 r Also ist: R const. Δm dr Prof. Dr. D. Winklmair Massenspektrometrie: Grundlagen und Trennsysteme 11/11
Schema einer Ionenquelle mit Elektronenstoßionisation Die dampfförmige Probe strömt senkrecht zur Bildebene in die Ionenquelle.
Schema einer Ionenquelle mit Elektronenstoßionisation Die dampfförmige Probe strömt senkrecht zur Bildebene in die Ionenquelle. Ionenausbeute als Funktion der Primärenergie der Elektronen Reaktionen in
Übersicht Massenanalysatoren
Übersicht Massenanalysatoren Gerätetyp Trennprinzip Massenbereich Auflösung Sektorfeld-MS magnetisches u. elektrostatisches Feld max. 10000 Präzisionsmasse (max. 200000) ToF-MS Flugzeitmessung (theor.)
Teil 4 Massenspektrometrie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17
Teil 4 Massenspektrometrie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality 1 Funktionseinheiten eines Massenspektrometers Grundprinzip der MS: Trennung von Ionen nach
Quadrupol-Massenspektrometer. 1.1 Registrieren Sie das Restgasspektrum des Aufbaus Massenspektrometer/Hochvakuumpumpstand.
V31 Quadrupol-Massenspektrometer 1 Aufgabenstellung 1.1 Registrieren Sie das Restgasspektrum des Aufbaus Massenspektrometer/Hochvakuumpumpstand. Werten Sie die Lage und Intensität der Massenpeaks aus und
2 Massenspektrometrie
2 Massenspektrometrie 2.1 Grundlagen relative Atommasse Massenzahl Summe relative Molekülmasse M Isotope ein Element gleiche Protonenzahl, aber verschiedene Neutronenzahl Isobare Teilchen gleicher Masse,
2.7 Bestimmung der Atommassen; Massenspektrometer
46. Entwicklung der Atomvorstellung Erweitert man jetzt das Sektorfeld der Abb..60 nach links um den Winkel ϕ, so erhält man die Sektorzylinderlinse der Abb..59. Ionen, die aus S 1 starten, treten als
Massenspektrometrie Eine Einführung
Herbert Budzikiewicz, Mathias Schäfer Massenspektrometrie Eine Einführung Fünfte, vollständig überarbeitete und aktualisierte Auflage WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort
Teil 4 Massenspektrometrie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18
Teil 4 Massenspektrometrie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 www.ruhr-uni-bochum.de/chirality 1 Rückblick auf die letzte Vorlesung Grundprinzip der MS: Trennung nach Ladung und Masse
Bewegung im elektromagnetischen Feld
Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld
Massenspektrometrie (MS)
Massenspektrometrie (MS) Die Massenspektrometrie ist unter den heute routinemäßig verwendeten Methoden die jüngste, denn ihre Anwendung begann erst um 1960. Seit den Arbeiten von BIEMANN über Fragmentierungsmuster
O. Sternal, V. Hankele. 4. Magnetismus
4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt
4 Massenspektrometrie (MS)
4 Massenspektrometrie (MS) N151_MS_GrundlagenTrennsysteme_c_BAneu.doc - 1/4 4.1 Einführung Prinzip: Überführung von neutralen Spezies in Ionen (Einlasssystem und Ionenquelle) Die Ionisation kann thermisch,
Bioanalytik Zusatzinformation: Massenspektrometrie 012_001. BioAnalytik
Bioanalytik 11.01.16 Zusatzinformation: Massenspektrometrie 012_001 Rev. 1.5 091206 - Standort Recklinghausen- Wintersemester 2015-16 2015-2016 : 1 Folienbasis: Prof. Beyer Massenspektrometrie Einführung
Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel
Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,
Globale Eigenschaften der Kerne
Kerne und Teilchen Moderne Experimentalphysik III Vorlesung MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Globale Eigenschaften der Kerne KIT Universität des Landes Baden-Württemberg und nationales
Massenspektrometrie (MS)
Massenspektrometrie (MS) Die Massenspektrometrie ist unter den heute routinemäßig verwendeten Methoden die jüngste, denn ihre Anwendung begann erst um 1960. Seit den Arbeiten von BIEMANN über Fragmentierungsmuster
Das mathematische Pendel
1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2
15.Magnetostatik, 16. Induktionsgesetz
Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v
~WILEY. Massenspektrometrie YCH. Herbert Budzikiewicz und Mathias Schäfer. Eine Einführung. 6., vollständig überarbeitete und aktualisierte Auflage
Herbert Budzikiewicz und Mathias Schäfer Massenspektrometrie Eine Einführung 6., vollständig überarbeitete und aktualisierte Auflage ~WILEY YCH WILEY-VCH Verlag GmbH & Co. KGaA Vorwort zur 6. Auflage XI
Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel
Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,
Teilchenbeschleuniger & Massenspektrometer. E3 Vorlesung
Teilchenbeschleuniger & Massenspektrometer E3 Vorlesung 20.01.2015 21.01.2015 Kernphysik: Bindungsenergien Kernreaktionen Radioaktivität kev MeV/Nukleon Motivation Teilchenphysik: Erzeugung schwerer Teilchen
7. Kaltkathoden-Ionisationsvakuummeter
Folie 1 7. Kaltkathoden-Ionisationsvakuummeter Prinzip: Kaltkathodenentladung wie in einer Ionengetterpumpe wird zur Vakuummessung benutzt. Auch bei der Ionengetterpumpe: Pumpenstrom war Maß für Vakuum
Physik und Technik von Ionenquellen
Physik und Technik von Ionenquellen 1) Einführung Zur Physik der Ionenquellen gehören: Produktion geladener Teilchen (Elektronen, Ionen) Erzeugung von Plasmen Ionisation von Atomen (Elektronenstoßionisation,
Übungen: Kraftwirkung in magnetischen Feldern
Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis
Massenspektrometrie. Georg Pohnert
Massenspektrometrie http://masspec.scripps.edu/ Georg Pohnert 1 Massenspektren OH Elektrospray-Ionisation + O HOOC O100 209 [M+H] + 100 rel. Int. (%) 0 41 55 70 83 Elektronenstoss-Ionisation 106 148 112
10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft
Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten
Magnetfeld in Leitern
08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife
Massenspektrometrie. Target-Screening und Non-Target-Screening
Massenspektrometrie Target-Screening und Non-Target-Screening Angelina Taichrib, Hochschule Aalen Die Verfügbarkeit von Massenanalysatoren in Kopplung mit unterschiedlichen chromatographischen Trenntechniken
Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.
Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a
2. Klausur zur Theoretischen Physik I (Mechanik)
2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie
1 Terminologie. 1) Die Bezeichnung Massenspektroskop wird praktisch nicht mehr verwendet; für Massenspektrograph siehe Abschnitt
O:/Wiley/Budzikiewicz/3d/c01.3d from 13.06.2012 13:11:03 Teil I Grundlagen O:/Wiley/Budzikiewicz/3d/c01.3d from 13.06.2012 13:11:03 O:/Wiley/Budzikiewicz/3d/c01.3d from 13.06.2012 13:11:03 3 1 Terminologie
Massenspektrometrie. Talián Csaba Gábor Universität Pécs Institut für Biophysik
Massenspektrometrie Talián Csaba Gábor Universität Pécs Institut für Biophysik Grundprinzipien Bildung von Ionen aus irgendwelchem geeigneten Stoffe Trennung von Ionen anhand m/z Qualitative und Quantitative
Radiologie Modul I. Teil 1 Grundlagen Röntgen
Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE
2x x 2 sin z x 2 y cos z. 3 (2x + x 2 sin z + x 2 y cos z)
Elektromagnetische Felder Lösung zur Klausur om 9. März 22. a) δ(r) = für r und f(r) δ(r) dr = f() b) Normalkomponenten on D für σ = sowie on B Tangentialkomponenten on H für K = sowie on E c) Richtungsableitung:
Das magnetische Feld
Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol
Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften
MÜNSTER Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften Christoph Fricke, Natascha von Aspern, Carla Tameling 12.06.2012
Teilchenbeschleuniger
Beschleuniger Teilchenbeschleuniger Linearbeschleuniger Zyklotron Mikrotron Synchroton Speicherringe Stanford Linear Accelerator Center SLAC Röntgenphysik 58 Beschleuniger Linear Beschleuniger Linear Beschleuniger
Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,
Übungsblatt 07 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, ([email protected]) 7.. 005 oder 14.. 005 1 Aufgaben 1. Wir berechnen Elektromotoren. Nehmen
Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron
Elektrostatik 1. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Kräfte zwischen Ladungen, quantitativ 4. Elektrisches Feld 5. Der Satz von Gauß 6. Das elektrische Potenzial und Potenzialdifferenz
Massenspektrometrie in der organischen Spurenanalytik
Massenspektrometrie in der organischen Spurenanalytik Dr. Wolfgang Schulz, Dr. Wolfram Seitz und Thomas Lucke Einleitung Die Verfügbarkeit von Massenanalysatoren in Kopplung mit unterschiedlichen chromatographischen
(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010
Theoretische Physik I: Lösungen Blatt Michael Czopnik
Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin
7 Die Hamilton-Jacobi-Theorie
7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir
Aufgabe 1: Elektro-mechanischer Oszillator
37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand
Klassische Theoretische Physik III (Elektrodynamik)
WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18
1. Isotopie und Präzisionsmasse 2. Erkennung/Eigenschaften des Molekülions 3. Fragmentierung (ungeradelektronischer Ionen)
Interpretation von Massenspektren 1. Isotopie und Präzisionsmasse 2. Erkennung/Eigenschaften des Molekülions 3. Fragmentierung (ungeradelektronischer Ionen) 1 EI-Massenspektrum (Acetophenon, M = 120):
Elektromagnetische Felder und Wellen: Klausur
Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe
Strömungssimulation in Li-Dualinsertationszellen
Strömungssimulation in Li-Dualinsertationszellen Julius Sewing, Nikolaus Krause, Dennis Dieterle [email protected] [email protected] [email protected] 22. Juni 2010 Sewing, Krause, Dieterle
Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13
Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten
Reihen- und Parallelschaltung von Kondensatoren
Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen
Wo ist der magnetische Nordpol der Erde?
Wo ist der magnetische Nordpol der Erde? A B C D am geographischen Nordpol am geographischen Südpol Nahe am geographischen Südpol Nahe am geographischen Nordpol 3. Magnetische Phänomene 3.1. Navigation,
Massenspektrometrie und Spurenanalytik
Physikalisches Praktikum für Fortgeschrittene Teil II, Versuch 2.11 Massenspektrometrie und Spurenanalytik W.R. Plaß, T. Dickel, E. Haettner, C. Scheidenberger II. Physikalisches Institut der Justus-Liebig-Universität
v q,m Aufgabensammlung Experimentalphysik für ET
Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz
Vorlesung 5: Magnetische Induktion
Vorlesung 5: Magnetische Induktion, [email protected] Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed [email protected] 1 WS 2016/17 Magnetische Induktion Bisher:
Inhalt der Vorlesung B2
Inhalt der Vorlesung B 4. Elektrizitätslehre, Elektrodynamik Einleitung Ladungen & Elektrostatische Felder Elektrischer Strom Magnetostatik Zeitlich veränderliche Felder - Elektrodynamik Wechselstromnetzwerke
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 3. Übungsblatt - 8.November 2010 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (2 Punkte) Berechnen
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.
2. Vorlesung Partielle Differentialgleichungen
2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz
Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1
Hochfrequenz-Resonatoren Prof. Dr. H. Podlech 1 Maxwellgleichungen Bedeutung?? Prof. Dr. H. Podlech 2 Maxwellgleichungen im Vakuum Prof. Dr. H. Podlech 3 Wellengleichungen 2. Maxwell-Gl. Wellengleichung
Übungen zu Experimentalphysik 2
Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld
Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)
Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht
Versuch P4: Ladungen in elektrischen und magnetischen Feldern
Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Name Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden die
Kreisbeschleuniger IX (Synchrotron)
Kreisbeschleuniger IX (Synchrotron) Höhere Energien wenn B-Feld und ω HF zeitlich variieren 2 qb q c B q cb Energiegewinn/Umlauf: inn/umla ωteilchen = = E = mc Ec ω Extraktion bei B = B max bei höchsten
Systematisierung Felder und Bewegung von Ladungsträgern in Feldern
Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des
Teilchenbeschleuniger
Beschleuniger Teilchenbeschleuniger Linearbeschleuniger Zyklotron Mikrotron Synchroton Speicherringe Stanford Linear Accelerator Center SLAC Röntgenphysik 58 Beschleuniger Linear Beschleuniger Linear Beschleuniger
Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung
Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen
3. Weitere Eigenschaften von Atomen: Masse, Isotopie
1. Einführung 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse, Isotopie 4. Atomkern und Hülle: das Rutherfordexperiment 5. Das Photon: Welle und Teilchen 6. Teilchen
Was bedeutet CH 3 OH?
Was bedeutet CH 3 OH? 1 C 1 H H 17 O MS Einleitung 1 Worin unterscheiden sich diese Moleküle? MS Einleitung Richtig, sie unterscheiden sich in der Masse! MS Einleitung 3 Aber woher kommt unser Wissen über
Bewegung auf Paraboloid 2
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter
Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor
Thema: Vektoranalysis PT/LOT WS 13/14 Analysis III Serie 3 www.fh-jena.de/~puhl Aufgabe 1 Ein Massepunkt bewegt sich mit der Winkelgeschwindigkeit ω 1 auf einer Kreisbahn mit dem Radius R 1 und dem Mittelpunkt
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06
Übungen zu: Theoretische Physik I klassische Mechanik W 223 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 25. Janua6 Übungsblatt Lösungsvorschlag 3 Aufgaben,
1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor
Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor
Passive Bauelemente. AnodenFolie. Anoden. Papier. Funktionsbereich. Kathode KathodenFolie
Passive Bauelemente Anoden { AnodenFolie Papier Funktionsbereich Kathode KathodenFolie Chemische Bindungstypen metallisch kovalent ionisch Veranschaulichung der chemischen Bindungstypen. Elektronen sind
Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011.
Skript ur 19. Vorlesung Quantenmechanik, Freitag den 4. Juni, 011. 13.5 Weitere Eigenschaften des Spin 1/ 1. Die Zustände und sind war Eigenustände der -Komponente ŝ des Spin- Operators s, sie stellen
was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?
Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig
DISSERTATION. Diplom-Ingenieur Robert Koob. Darmstadt 2000 D 17
Massenspektrometrische Methode zur Bestimmung der 13 C-Einbaurate und -position in Äpfelsäure bei der CO 2 -Aufnahme von CAM-Pflanzen Vom Fachbereich Chemie der Technischen Universität Darmstadt zur Erlangung
Dennis S. Weiß & Christian Niederhöfer. Versuchsprotokoll. (Fortgeschrittenen-Praktikum) zu Versuch 18. Magnetische Quadrupole
Montag, 26.4.1999 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Fortgeschrittenen-Praktikum) zu Versuch 18 Magnetische Quadrupole 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische Grundlagen
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch)
Magnetismus Elektrizität 9. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Elektromagnetisches Feld Realität: elektrische Ladung elektrisches Feld magnetisches
Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60
D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht
Massenspektrometrie I
Forschungszentrum Karlsruhe In der Helmholtz-Gemeinschaft Universität Karlsruhe Institut für Organische Chemie Massenspektrometrie I Grundlagen Geräteaufbau ESI TOF MS LCMS Anwendungsbeispiele O. Zwernemann
Schonende Ionisierungsmethoden
Schonende Ionisierungsmethoden Warum? Zersetzung des Moleküls beim Erhitzen Instabiles Molekülion nicht verdampfbare Probensubstanz Zielsetzung/Möglichkeiten: Geringerer Energieeintrag in das entstehende
ANALYTISCHE CHEMIE I Trennmethoden 5. Prozess-Analytik GC-MS, LC-MS WS 2007/2008
ANALYTISCHE CHEMIE I Trennmethoden 5. Prozess-Analytik GC-MS, LC-MS WS 2007/2008 Prozeßanalytik Analyse von Prozessen durch Messungen des zeitlichen Verlaufes physikalischer Probenveränderungen und von
VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme
V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot
Lehrstuhl für Technische Elektrophysik Technische Universität München
Lehrstuhl für Technische Elektrophysik Technische Universität München Tutorübungen zu "Elektromagnetische Feldtheorie II" (Prof. Wachutka) SS9 Blatt 1 Aufgabe: Ebene Wellen Im Vakuum, daß heißt die Leitfähigkeit
1.6 Bestimmung von Atommassen
1.6 Bestimmung von Atommassen Demtröder Exp. Phys. 3, Kap. 2.7 Das im Abschnitt 1.1.2 eingeführte Konzept des Mols erlaubt bei Kenntnis der Avogadro- Konstante N A sowie der Masse M eines Mols der zu untersuchenden
Blatt 05.2: Green sche Funktionen
Fakultät für Physik T: Klassische Mechanik, SoSe 05 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/
Lagrange Formalismus
Lagrange Formalismus Frank Essenberger FU Berlin 1.Oktober 26 Inhaltsverzeichnis 1 Oszillatoren 1 1.1 Fadenpendel.............................. 1 1.2 Stabpendel.............................. 3 1.3 U-Rohr................................
Kapitel 3: Kernstruktur des Atoms. Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie
03. Kernstruktur Page 1 Kapitel 3: Kernstruktur des Atoms Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie Elektronen erzeugt im Kathodenstrahlrohr wechselwirken mit Gasatomen im Rohr. Elektronen
Klausur zu Theoretische Physik 2 Klassische Mechanik
Klausur zu Theoretische Physik Klassische Mechanik 30. September 016 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 5 Punkten. Die Klausur
Ferienkurs Theoretische Mechanik Lösungen Hamilton
Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig
Teil 4 Massenspektrometrie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2015/16
Teil 4 Massenspektrometrie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2015/16 www.ruhr-uni-bochum.de/chirality 1 Rückblick auf die letzte Vorlesung Grundprinzip der MS: Trennung nach Ladung und Masse
1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer
TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,
