Versuch: Enzyme (LDH)
|
|
|
- Benedict Dresdner
- vor 8 Jahren
- Abrufe
Transkript
1 Versuch: Enzyme (LDH) Seiten im Campell, Tierphysbuch (Penzlin) und Eckert Zusammenfassung Campbell S Zusammenfassung Eckert S Zusammenfassung Penzlin S. 50 ff. Allgemein: Temperatur und Reaktionsgeschwindigkeit hängen eng zusammen. Für eine chemische Reaktion sind aber neben der Temperatur auch noch andere Faktoren, wie Druck, ph-wert und Konzentration der Edukte und Produkte ausschlaggebend. Eine Reaktion läuft nur freiwillig ab, wenn G negativ ist. Außerdem hat jede Reaktion eine Aktivierungsenergie. Da solche Reaktionen auch im Körper ablaufen müssen, man dort aber nicht einfach den Druck oder die Temperatur ändern kann, um die Reaktion freiwillig ablaufen zu lassen, muss sich der Körper mit der Verwendung von Enzymen weiterhelfen. Diese können viel gezielter eingesetzt werden, als eine Temperaturerhöhung, die einer anderen Reaktion oder der Struktur von Proteinen schaden würde. Somit laufen sämtliche Reaktionen im Körper über Enzyme ab, die um 37 C ihr Optimum aufweisen. Die Enzyme ändern jedoch nichts am Gleichgewicht einer Reaktion und können auch nur Reaktionen katalysieren, die auch von alleine ablaufen würden. Zusätzlich ändern Enzyme auch nichts an dem Wert von G. Aktivierungsenergie: Ist die Energie, die benötigt wird, um bei einem Zusammenstoß zweier Teilchen eine Reaktion hervorzubringen. Enzyme: Enzyme sind Proteine mit katalytischen Eigenschaften. Sie bewirken eine Erniedrigung der Aktivierungsenergie, durch die Bildung eines Enzym- Substrat-Komplexes und erhöhen somit die Geschwindigkeit einer Reaktion. Enzyme gehen aus einer Reaktion immer unverändert hervor, ändern nichts am Reaktionsgleichgewicht und auch nicht an der freien Energie. Die Geschwindigkeit von Reaktionen erhöht sich um das 10 8 bis fache. Somit kann die Geschwindigkeit von Reaktionen von Enzymen geregelt werden. Substratspezifisch: Enzyme können immer nur ein Substrat umsetzen. Dieses Substrat passt in das aktive Zentrum (das reaktive Zentrum von Enzymen) wie der Schlüssel in ein Schloß. Das Schlüssel-Schloß-Prinzip ist
2 ein sehr steifes Gedankenmodell. Heute spricht man eher von dem induced fit- Modell. Es besagt, dass das sich nähernde Substrat die Struktur des aktiven Zentrums soweit ändert, dass es noch besser und effektiver gebunden werden kann. Reaktionsspezifisch: ein Enzym katalysiert nur eine Reaktion, auch dann, wenn das Substrat in mehrere verschiedene Produkte reagieren könnte. Stereospezifisch: ein Enzym kann nur eine Isomerieform eines Produkts herstellen. Dies liegt an der Form der Aminosäuren, die auch L- bzw. D sind!?! (Erklärung nicht sicher, nachlesen!) Temperatur: Steigt die Temperatur, so nimmt die Teilchengeschwindigkeit zu. Somit steigt auch die Wahrscheinlichkeit, dass ein Substratmolekül vom aktiven Zentrum gebunden wird (höhere Wechselzahl). Ist die Temperatur dagegen zu hoch, denaturisiert das Enzym (Protein). Dabei werden die schwachen Wechselwirkungen der Quartär-, Tertiär- und Sekundärstruktur aufgebrochen und es kommt zum Verlust der speziellen Struktur (siehe auch aktive Zentrum ). So kann man nun feststellen, dass ein Enzym ein Temperaturoptimum aufweist. ph-wert: Ein Enzym besitzt auch einen optimalen ph-wert, bei dem es die beste Umsatzrate aufweist. Ist der ph-wert zu basisch oder zu sauer so werden dadurch wieder die dreidimensionalen Strukturen zerstört. Jedoch können Enzyme den fallenden ph-wert so nutzen, dass sie Protonen anlagern und die Aminosäurenketten in positiver Form vorliegen. Dies erleichtert die Bindung von Substraten die negative Gruppen besitzen. Das Aktive Zentrum: Ein Enzym besteht, wie oben schon erwähnt, aus Peptidketten. Das aktive Zentrum wird nur von Seitenketten einiger Aminosäuren gebildet. In dieser Kluft (Tasche) werden die Substratmoleküle durch verschiedene Wechselwirkungen (elektrische Bindungen, van-der-waals-kräfte, Wasserstoffbrückenbindungen) gebunden. Mechanismen v. Enzymen: a) die Substrate werden im aktiven Zentrum so gelegt, dass sie perfekt miteinander reagieren können. b) die Seitenketten des aktiven Zentrums dienen als Protonenakzeptoren und rezeptoren. c) Enzym-Substrat-Komplex bildet zusammen eine instabilere und reaktivere Verbindung. d) Erhöhung der inneren Ladung Erhöhung der Lsg.?!? Cofaktoren: Cofaktoren können anorganische Ionen sein oder auch kleine organische Moleküle. Ein Enzym ist mit dem Cofaktor eine Einheit, da es ohne ihn keine Reaktionen katalysieren könnte. Das Proteinanteil eines solchen Enzyms bezeichnet man als Apoenzym, den nicht proteinhaltigen Teil als Prosthetische Gruppe (Cofaktor). Das Gesamtenzym wird Holoenzym genannt. Beispiele: NAD+, Metallionen (Komplexbildung), Vitamine, Calciumionen.
3 Kinetik: Näheres in den Büchern!!! Auch hier gibt es Reaktionen 1., 2. und 0. Ordnung, wobei 1 Substrat, 2 Substrate oder kein Substrat der limitierende Faktor der Reaktion ist und in nicht optimaler Konzentration vorliegt. Dabei geht man davon aus, das die anderen Faktoren alle im Optimum liegen. Michaelis-Menten-Diagramm: Die Maximalgeschwindigkeit des Enzyms ist dann erreicht, wenn alle Enzyme als Enzym-Substrat-Komplex vorliegen. Die Halbmaximale Geschwindigkeit ist der Zustand, bei dem die Hälfte der Enzyme mit einem Substrat besetzt ist. Diese Halbmaximale Geschwindigkeit wird auch als Vergleichsvariable gewählt da v max nicht genau zu bestimmen ist, da sich die Kurve asymptotisch nähert. Zusätzlich sinkt die Kurve bei fastmaximaler Geschwindigkeit wieder ab (siehe Substrathemmung). K M ist die Michaelis-Menten-Konstante, die eine Aussage über die Affinität zwischen Enzym und Substrat macht und angibt, wie hoch die Konzentration des Substrats sein muss, um die halbmaximale Geschwindigkeit eines Enzyms zu erreichen. Je größer K M ist, desto niedriger die Affinität! Die Funktion für die Kurve lautet: Lineweaver-Burk-Diagramm: hier sind die Daten nur mathematisch verändert worden (rezibroke Werte).
4 Die Steigung der Geraden zeigt v an. Wechselzahl: Mol Substrat / Mol Protein * sec = 1/sec Spezifische Aktivität: Mol/ g*sec 1 kat = 1 Mol / sec v-berechnung: siehe Skript Näheres siehe Skript! Enzymhemmung + -aktivierung: Kompititive Hemmung: bei dieser Hemmung wird das aktive Zentrum von einem substratähnlichen Molekül besetzt und somit gehemmt. Das Substrat konkurriert mit dem Hemmstoff um die Anlagerung. Wenn man nun die Substratkonzentration erhöht, kann man die Hemmwirkung ausschalten, da die Wahrscheinlichkeit, dass ein Hemmstoff sich anlagert schwindend gering wird. v max ändert sich nicht, dafür aber K M, da eine höhere Konzentration des Substrats benötigt wird, um v max /2 zu erreichen. Nichtkompititive Hemmung: hier setzt sich der Hemmstoff in eins von dem aktive Zentrum weit entfernten Zentrum an, das sog. Allosterische Zentrum. Eine Substraterhöhung hat somit keinen Einfluß auf die Hemmung, da es nicht mit dem Hemmstoff konkurriert. K M bleibt gleich, v max /2 wird kleiner, da in einer bestimmten Zeit weniger Substrat umgesetzt wird. Unkompititive Hemmung: Mischung aus den beiden oben genannten Hemmungen. Vergiftete Hemmung : Anlagerung von Teilchen, die das Enzym zerstören. So z.b., Schwermetalle und Cyanide. Feedback Hemmung: Auch Endprodukthemmung genannt. Das Endprodukt einer Stoffwechselkette setzt sich als Hemmstoff (Inhibitor) in das allosterische Zentrum des Enzyms, das den ersten Stoff umwandelt. Somit regelt es selber seine Produktion. Substrathemmung: Wenn ein Überschuß Substrat vorhanden ist, dann behindern sich die Substratmoleküle gegenseitig beim Anlagern an das aktive Zentrum. (deswegen macht die Kurve beim M_M_Diagramm hinten einen Bogen nach unten) Enzymaktivierung: Cofaktoren, wie z.b. werden Enzyme Muskelkontraktion die durch Anlagern von Calciumionen, aktiviert (z.b.: ATPase). aus Campbell: Enzymhemmung
5
Katalyse. höhere Reaktionsgeschwindigkeit bei derselben Temperatur! Achtung: Gleichgewicht der chemischen Reaktion wird nicht verschoben
Katalyse Ein Katalysator setzt Aktivierungsenergie einer Reaktion herab, indem er einen anderen Reaktionsweg ermöglicht, so dass der geschwindigkeitsbestimmende Schritt der nicht-katalysierten Reaktion
Einführung in die Biochemie Wirkungsweise von Enzymen
Wirkungsweise von en Am Aktiven Zentrum kann ein nur in einer ganz bestimmten Orientierung anlegen, wie ein Schlüssel zum Schloss. Dieses Prinzip ist die Ursache der spezifität von en. Dies resultiert
Enzyme: Grundlegende Konzepte und Kinetik
Enzyme: Grundlegende Konzepte und Kinetik Enzyme sind Katalysatoren biologischer Systeme Wichtigste Eigenschaften: katalytische Stärke und Spezifität Nahezu alle bekannten Enzyme sind Proteine, es gibt
Enzyme als Biokatalysatoren
1 Enzymwirkung Enzyme als Biokatalysatoren Versuch: Wasserstoffperoxid wird bei RT mit a) Mn(IV)-oxid und b) Katalase versetzt. Beobachtung: a) Gasentwicklung Glimmspanprobe positiv b) Gasentwicklung Glimmspanprobe
Enzyme (Teil 1) Aminosäuren, Aufbau, Eigenschaften & Funktion. Mag. Gerald Trutschl
Enzyme (Teil 1) Aminosäuren, Aufbau, Eigenschaften & Funktion Mag. Gerald Trutschl 1 Inhalt 1. Einführung 2. Aufbau: - Aminosäuren - Peptidbindung - Primärstruktur - Sekundärstruktur - Tertiär- und Quatärstrukturen
Biochemische UE Alkaline Phosphatase.
Biochemische UE Alkaline Phosphatase [email protected] Alkaline Phosphatase: Katalysiert die Hydrolyse von Phosphorsäure-Estern: O - O - Ser-102 R O P==O O - H 2 O R OH + HO P==O O - ph-optimum im
Mechanismus der Enzymkatalyse
Mechanismus der Enzymkatalyse Allgemeine Prinzipien Annäherung des Substrats an das aktive Zentrum des Enzyms Enzym und Substrat treten in Wechselwirkung: Bildung des [ES]-Komplexes. Konformationsänderung
Bioorganische Chemie Enzymatische Katalyse 2011
Ringvorlesung Chemie B - Studiengang Molekulare Biotechnologie Bioorganische Chemie Enzymatische Katalyse 2011 Prof. Dr. A. Jäschke INF 364, Zi. 308, Tel. 54 48 51 [email protected] Lehrziele I Kenntnis
Enzyme (Teil 2) Enzymatische Reaktion, Thermodynamik & Enzyme im Detail. Mag. Gerald Trutschl
Enzyme (Teil 2) Enzymatische Reaktion, Thermodynamik & Enzyme im Detail Mag. Gerald Trutschl 1 Inhalt 1. Enzym Reaktion im Detail 2. Thermodynamische Reaktion 3. Katalysemechanismen 4. Michaelis-Menten-Konstante
Enzyme. Prof. Dr. Albert Duschl
Enzyme Prof. Dr. Albert Duschl Katalyse Reaktionen laufen normalerweise nicht spontan ab, auch wenn insgesamt dabei Energie gewonnen werden sollte. Es muß zunächst eine Aktivierungsenergie aufgebracht
Versuch 4. Enzymkinetik
Versuch 4 Enzymkinetik Protokollant: E-mail: Studiengang: Gruppen-Nr: Semester: Betreuer: Max Mustermann [email protected] X X X Dr. Postina Wird benotet?: Aufgabenstellung Ermittlung der maximalen Reaktionsgeschwindigkeit
Enzyme SPF BCH am
Enzyme Inhaltsverzeichnis Ihr kennt den Aufbau von Proteinen (mit vier Strukturelementen) und kennt die Kräfte, welche den Aufbau und die Funktion von Enzymen bestimmen... 3 Ihr versteht die Einteilung
Nutzung von Origin in der Enzym-Kinetik
Nutzung von Origin in der Enzym-Kinetik Ausgangssituation Die Geschwindigkeit einer enzymatischen Reaktionen bei vorgegebener Enzymkonzentration aber verschiedener Substratkonzentration berechnen und grafisch
ENZYME. Teil 1: Grundlagen und Substratbestimmungen
ENZYME Teil 1: Grundlagen und Substratbestimmungen Metastabiler Zustand Beispiel: Glucose-6-Phosphat + H 2 O [Glc6P] [H 2 0] K = = 1.135 x 10 [Glc] [Pi] -3 Gleichgewicht stark auf Seite von Glc + Pi Glucose
Enzympraktikum Theorie Entstanden: Nutzung: Entdeckung: Taufe: Aktivierungsenergie Geschichte der Enzyme
Enzympraktikum Theorie In diesem Praktikum werden Sie die Bekanntschaft mit einer der ungewöhnlichsten Stoffklasse der Natur machen. Ein kurzer Steckbrief dieser Stoffklasse lautet: Entstanden: vor ungefähr
Versuch 5: Enzyme (Alkalische Phosphatase) (V )
Versuch 5: Enzyme (Alkalische Phosphatase) (V10 6.03.2012) Lernziele: 1) Reaktionsgeschwindigkeit, Aktivierungsenergie, chemisches Gleichgewicht; 2) Was tun Katalysatoren und Enzyme, 3) Michaelis-Menten
Gegenstand der letzten Vorlesung
Gegenstand der letzten Vorlesung Reaktionsgeschwindigkeit Reaktionsordnung Molekularität Reaktion 0., 1.,. Ordnung Reaktion pseudo-erster Ordnung Aktivierungsenergie Temperaturabhängigkeit der Geschwindigkeitskonstanten
Wirkungsmechanismen regulatorischer Enzyme
Wirkungsmechanismen regulatorischer Enzyme Ein Multienzymsystem ist eine Aufeinanderfolge von Enzymen, bei der das Produkt eines vorstehenden Enzyms das Substrat des nächsten Enzyms wird. Ein regulatorisches
Fragen zum Versuch 11a Kinetik Rohrzuckerinversion:
Fragen zum Versuch 11a Kinetik Rohrzuckerinversion: 1. Die Inversion von Rohrzucker ist: a. Die Umwandlung von Rohrzucker in Saccharose b. Die katalytische Spaltung in Glucose und Fructose c. Das Auflösen
Fragen zum Versuch Kinetik:
Fragen zum Versuch Kinetik: 1. Die Inversion von Rohrzucker ist: a. Die Umwandlung von Rohrzucker in Saccharose b. Die katalytische Spaltung in Glucose und Fructose c. Das Auflösen von Rohrzucker im Wasser
Aufnahme- und Enzymkinetik
Aufnahme- und Enzymkinetik Kinetik = Verlauf einer Reaktion unter verschiedenen Bedingungen Alle enzym-katalysierten Reaktionen unterliegen Geschwindigkeitsgesetzen Carrier = Enzyme Enzyme sind Biokatalysatoren
6. Fragentyp A Wie berechnet man die ph-werte wässriger Lösungen starker Basen? A) ph = pks - log [HA] / 2 B) ph = 14 + log [OH-] C) ph = 7+ 1/2 pkb +
1. Fragentyp D Welche der folgenden Einheiten für den molaren Extinktionskoeffizienten ist/sind korrekt? 1) liter I mol x cm 2) liter I mol 3) cm2 / mmol 4) cm2 / mmol x m1 2. Wie lautet die Henderson-Hasselbalch-Gleichung?
4.1. Eigenschaften von Enzymen
4. Enzyme 106 107 4.1. Eigenschaften von Enzymen Enzyme sind Proteine, die chemische Reaktionen beschleunigen (Biokatalysatoren) Herausragende Merkmale verglichen mit anderen Katalysatoren: drastische
Enzyme. 1. Stonewashed Jeans, Waschmittel, Gallseife. 2. Enzyme in Waschmitteln
Enzyme 1. Stonewashed Jeans, Waschmittel, Gallseife Obwohl die«produkte den meisten Menschen bekannt sind, wissen die wenigsten. dass bei deren Herstellung Enzyme eine wichtige Rolle spielen. Enzyme sind
Praktikum. Enzymkinetik am Beispiel der Protease Trypsin
Praktikum Methoden der molekularen Biowissenschaften Teil 1: Biochemie Enzymkinetik am Beispiel der Protease Trypsin Prof. Walter Nickel Biochemie-Zentrum der Universität Heidelberg Thermodynamische Eigenschaften
Thermodynamik & Kinetik
Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters
Enzym-Kinetik (Abb. 1) Das Thema der heutigen Vorlesung ist die Kinetik isolierter und gereinigter Enzyme zum Verständnis ihrer Reaktionsmechanismen.
1 Enzym-Kinetik (Abb. 1) Das Thema der heutigen Vorlesung ist die Kinetik isolierter und gereinigter Enzyme zum Verständnis ihrer Reaktionsmechanismen. Wie ich schon erwähnte, ist die Geschwindigkeit (V)
K3: Bestimmung der Michaelis-Menten-Kinetik von Urease
K3: Bestimmung der Michaelis-Menten-Kinetik von Urease Einleitung: In diesem Versuch soll die Umsetzung von Harnstoff durch das Enzym Urease beobachtet werden. Fast alle Enzyme sind Proteine, manche bestehen
E Bio 2 KW Enzyme
E Bio 2 KW 15-21 Enzyme Wdh. Enzyme Funktion und Bedeutung für den Stoffwechsel Aufbau und Strukturen Effektoren Versuch 1 (Enzyme und Temperatur) RGT-Regel Enzyme: RGT-Regel Die Reaktions-Geschwindigkeits-Temperatur-Regel
Basiskenntnistest - Chemie
Basiskenntnistest - Chemie 1.) Welche Aussage trifft auf Alkohole zu? a. ) Die funktionelle Gruppe der Alkohole ist die Hydroxygruppe. b. ) Alle Alkohole sind ungiftig. c. ) Mehrwertige Alkohole werden
Inhaltsverzeichnis. 1. Einleitung. 2. Aufgabenstellung. 3. Material, Methoden und Versuchsdurchführung. 4. Ergebnisse. 5.
Inhaltsverzeichnis 1. Einleitung 1.1. Enzyme 1.2. Enzymaktivität 1.3. Cofaktoren 1.4. Reaktionsgeschwindigkeit 1.5. Enzym-Substrat-Affinität 1.6. Michaelis-Menten 1.7. Lineweaver-Burk 1.8. Enzymhemmung
Grundwissen Chemie 9. Jahrgangsstufe G8
Grundwissen Chemie 9. Jahrgangsstufe G8 Ionennachweise Man nutzt die Schwerlöslichkeit vieler Salze (z. B. AgCl) zum Nachweis und zur quantitativen Bestimmung der Ionen. Nachweis molekular gebauter Stoffe
Michaelis-Menten-Gleichung
Physikalisch-Chemische Praktika Michaelis-Menten-Gleichung Versuch K4 1 Aufgabe Experimentelle Bestimmung der Kinetik der Zersetzung von Harnsto durch Urease. 2 Grundlagen Im Bereich der Biochemie spielen
Hemmung der Enzym-Aktivität
Enzym - Inhibitoren Wie wirkt Penicillin? Wie wirkt Aspirin? Welche Rolle spielt Methotrexat in der Chemotherapie? Welche Wirkstoffe werden gegen HIV entwickelt? Hemmung der Enzym-Aktivität Substrat Kompetitiver
Gliederung. Puffersysteme. Wofür Puffersysteme? Wofür Puffersysteme? Wofür Puffersysteme? ph-verhältnisse im Körper. Puffersysteme
Gliederung Puffersysteme Referat von Christian Rubbert Wofür Puffersysteme? ph-verhältnisse im Körper Puffersysteme Wofür Puffersysteme? Verschiedene Vorgänge im Körper, z.b.: Wofür Puffersysteme? Enzym
Metabolismus Umwandlung von Stoffen und Energie nach den Gesetzen der Thermodynamik
Metabolismus Umwandlung von Stoffen und Energie nach den Gesetzen der Thermodynamik Der Metabolismus oder Stoffwechsel ist die Gesamtheit der in einem Organismus ablaufenden (bio)chemischen Prozesse Der
Präsentation STOFFWECHSEL STOFFWECHSEL. Fettstoffwechsel im Sport. Biologische Oxidation Zitratzyklus und Atmungskette
STOFFWESEL GRUNDLAGEN STÖRUNGEN:Diagnose, Therapie, Prävention 6 Bedeutung der körperlichen Aktivität Präsentation Fettstoffwechsel im Sport Glukose exokinase 1ATP -> 1ADP Glukose-6-Phosphat Phosphohexoisomerase
E nzym e - die B iokata lys atoren der Z elle
T hem a : E nzym e - die B iokata lys atoren der Z elle IN H A LTS V E R Z E IC H N IS Ankunft im Julab, dem Schülerlabor des Forschungszentrums Jülich Vorbereitung zur Experimentierphase Experimente Vorversuch
Unterrichtsvorhaben IV: Thema/Kontext: Enzyme im Alltag Welche Rolle spielen Enzyme in unserem Leben/beim Ablauf verschiedener Stoffwechselreaktionen?
Unterrichtsvorhaben IV: Thema/Kontext: Enzyme im Alltag Welche Rolle spielen Enzyme in unserem Leben/beim Ablauf verschiedener Stoffwechselreaktionen? Inhaltsfelder: IF 1 (Biologie der Zelle), IF 2 (Energiestoffwechsel)
K3: Bestimmung der Michaelis-Menten-Kinetik von Urease
K3: Bestimmung der Michaelis-Menten-Kinetik von Urease Einleitung: In diesem Versuch soll die Umsetzung von Harnstoff durch das Enzym Urease beobachtet werden. Fast alle Enzyme sind Proteine, manche bestehen
GRUNDLAGEN DER ENZYMKINETIK: MICHAELIS-MENTEN-GLEICHUNG, HEMMTYPEN
45 GRUNDLAGEN DER ENZYMKINETIK: MICHAELIS-MENTEN-GLEICHUNG, HEMMTYPEN A. BIOCHEMISCHE GRUNDLAGEN Die katalytischen Eigenschaften eines Enzyms können durch verschiedene Faktoren beeinflusst werden. Dazu
Aufgaben zur Enzymatik
Aufgaben zur Enzymatik Viele dieser Aufgaben wurden in den vergangenen Jahren im Rahmen von Klassenarbeiten und/oder Prüfungen gestellt. 1. Grundlagen 1.1. Die Temperatur wird in einem Enzymversuch mit
1.1. Grundlage aller enzymkinetischen Untersuchungen ist die Michaelis-Menten- Gleichung: V 0 = V max x [S] K m + [S]
1.1 ABSHNITT 1: ENZYME Einführung Enzyme sind informationelle Makromoleküle und als solche Instrumente gezielter Prozeßsteuerung. Sie haben eine katalytische und eine kognitive Funktion. Die katalytische
Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11
Praktikum Physikalische Chemie I 30. Januar 2016 Aktivierungsenergie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1 Aufgabenstellung Für die Reaktion von Saccharose mit Wasser zu Glucose und Fructose
spaltet. Der Sauerstoff entflammt den Glimmspan. Bei der katalytischen Substanz handelt es sich um das Enzym Katalase.
ENZYMATIK 1. Vorversuch Versuch Spaltung von Wasserstoffperoxid (H 2 O 2 ) Material: Bäckerhefe, Braunstein (MnO 2 ), Wasserstoffperoxid, Rundkolben, Stativ, Brenner, Glimmspan Durchführung 1: 5ml Wasserstoffperoxid
Hemmung der Enzym-Aktivität
Hemmung der Enzym-Aktivität Substrat Kompetitiver Inhibitor Enzym Enzym Substrat Nichtkompetitiver Inhibitor Irreversibler Inhibitor Enzym Enzym Enzym - Kinetik Michaelis Menten Gleichung Lineweaver -
Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted
Der SäureS ure-base Begriff Chem. Grundlagen Das Protonen-Donator-Akzeptor-Konzept Wasserstoff, Proton und Säure-Basen Basen-Definition nach Brønsted Wasserstoff (H 2 ) Proton H + Anion (-) H + = Säure
EinFaCh 2. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik. tu-freiberg.
Studienvorbereitung Chemie EinFaCh 2 Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik tu-freiberg.de tu-freiberg.de/fakultaet2/einfach Was bedeutet Chemische Reaktionskinetik?
Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo
Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: [email protected] innere Energie U Energieumsatz bei
Johann Wolfgang Goethe-Universität Frankfurt am Main
Johann Wolfgang Goethe-Universität Frankfurt am Main Fachbereich Biowissenschaften Teilklausur Biochemie Studiengang Biowissenschaften Modul BSc-Biowiss-7 Studiengang Bioinformatik Modul BSc-Bioinf-8.Studiengang
Vortrag Enzyme. Sebastian Kurfürst. sebastian(at)garbage-group.de.
Enzyme Vortrag Enzyme Sebastian Kurfürst /bio.html sebastian(at)garbage-group.de 1 Gliederung 1.Einführung 2.Reaktionsgeschwindigkeit chemischer Reaktionen 3.Enzyme ein Biokatalysator 4.Aufbau 5.Substrat-,
1 Michaelis-Menten-Kinetik
Physikalische Chemie II Lösung 2 9. Dezember 206 Michaelis-Menten-Kinetik. Das Geschwindigkeitsgesetz für die zeitliche Änderung der ES-Konzentration ist durch folgendes Geschwindigkeitsgesetz beschrieben:
6. Tag: Chemisches Gleichgewicht und Reaktionskinetik
6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn
Praktikum Stoffwechselphysiologie
Praktikum Stoffwechselphysiologie WS 2011/2012 Versuch Gruppe XY Betreuer: Praktikanten: Versuchstag: 1 Inhaltsverzeichnis 1. Einleitung... 3 2. Theorie... 3 2.1 Enzyme... 3 2.1.1 Definition... 3 2.1.2
(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve.
Institut für Physikalische Chemie Methodenkurs Anwendungen von Mathematica und Matlab in der Physikalischen Chemie im WS 205/206 Prof Dr Stefan Weber, Dr Till Biskup Aufgabenblatt zum Teil (Mathematica)
GRUNDLAGEN DER ENZYMKINETIK: MICHAELIS-MENTEN-GLEICHUNG, HEMMTYPEN
53 GRUNDLAGEN DER ENZYMKINETIK: MICHAELIS-MENTEN-GLEICHUNG, HEMMTYPEN BIOCHEMISCHE GRUNDLAGEN Die katalytischen Eigenschaften eines Enzyms können durch verschiedene Faktoren beeinflusst werden. Dazu gehören
Säuren und Basen. Dr. Torsten Beweries AC I - Allgemeine Chemie LAC-CH01 WS 2016/17.
Säuren und Basen Dr. Torsten Beweries AC I - Allgemeine Chemie LAC-CH01 WS 2016/17 [email protected] http://www.catalysis.de/forschung/koordinationschemische-katalyse/koordinationschemische-wasserspaltung/
Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease.
A 36 Michaelis-Menten-Kinetik: Hydrolyse von Harnstoff Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. Grundlagen: a) Michaelis-Menten-Kinetik Im Bereich der Biochemie spielen
Vorlesung Anorganische Chemie
Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 5 Verhalten von Lösungen Konzentrationen Solvatation und Solvatationsenthalpie Kolligative Eigenschaften Kryoskopie/Ebullioskopie
Grundlagen der Zellulären Biochemie
Grundlagen der Zellulären Biochemie Enzyme Vorlesung zum Modul BCB P07 im Bachelor-Studiengang Biochemie Hannover Prof. J. Alves, Institut für Biophysikalische Chemie, MHH Enzyme Der Name Enzym wurde 1878
Katalyse. Martin Babilon 14/07/2011. Katalyse. Martin Babilon Universität Paderborn. 14 Juli Montag, 18. Juli 2011
Katalyse Universität Paderborn 14 Juli 2011 1 Übersicht Motivation & Einleitung Katalyse-Zyklus homogene Katalyse heterogene Katalyse 2 Motivation 3 Geschichte der Katalyse 6000 v. Christus: Alkoholvergärung
Aminosäuren 1. Aufbau der Aminosäuren
Aminosäuren 1 Aufbau der Aminosäuren Aminosäuren bestehen aus einer Carbonsäuregruppe und einer Aminogruppe. Die einfachste Aminosäure ist das Glycin mit 2 Kohlenstoffatomen. Das Kohlenstoffatom nach der
Stoffwechselphysiologie
Stoffwechselphysiologie 9 m 3 m 3 m Nahrung- und Flüssigkeitsaufnahme in 40 Jahren: 36000 l Wasser 6000 kg Nahrungsmittel Aufgaben des Stoffwechsels Gewinnung von chemischer Energie aus anorganischen und
Chemie Zusammenfassung III
Chemie Zusammenfassung III Inhaltsverzeichnis Atombau & Kernphysik... 2 Aufbau der Atome... 2 Atomkern... 2 Atomhülle... 2 Atomgrösse und Kernladung... 3 Reaktivität und Gruppen des Periodensystems...
Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010
1 Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010 Themen: Metallische Bindungen (Skript S. 51 53, inkl. Arbeitsblatt) Reaktionsverlauf (Skript S. 54 59, inkl. Arbeitsblatt, Merke, Fig. 7.2.1
Grundwissen 9.Klasse NTG 1 Grundwissen 9.Klasse NTG 1. Bsp.: Grundwissen 9.Klasse NTG 2 Grundwissen 9.Klasse NTG 2
Grundwissen 9.Klasse NTG 1 Grundwissen 9.Klasse NTG 1 Die Stoffmenge n = 1mol ist die Stoffportion, die 6,022 10 23 Teilchen enthält. Die Stoffmenge n n(he) = 1 mol n(h 2 ) = 1 mol enthält 6,022 10 23
Stoffwechsel. Metabolismus (1)
Vorlesung Zell- und Molekularbiologie Stoffwechsel Metabolismus (1) Zum Nachlesen Bücher Campbell: Kap. 6 59.95 Kap. 3 Kap. 13-14 29.95 www.icbm.de/pmbio - - - > Teaching diese Folien, VL Physiologie der
Übung zum chemischen Praktikum für Studierende der Biologie und Medizin Übung Nr. 1, /
Übung zum chemischen Praktikum für Studierende der Biologie und Medizin Übung Nr. 1, 18.04.11 / 19.04.11 Lösung 1. Proteine sind Biopolymere, welche aus langen Ketten von Aminosäuren bestehen. a) Zeichnen
ENZYMREAKTIONEN. Die Geschwindigkeit einer enzymatischen Reaktion hängt von folgenden Reaktionsbedingungen ab.
34 3. Probe in den Lichtweg bringen und E ablesen. Wird die Wellenlänge verändert, so muss das Photometer wieder neu geeicht werden, weil die Intensität der Lichtquelle und die Empfindlichkeit der Photozelle
2. Theoretischer Hintergrund Enzyme allgemein. 2.2 Aufbau von Enzymen
Inhaltsverzeichnis 1. Abstract... 2 2. Theoretischer Hintergrund... 3 2.1. Enzyme allgemein... 3 2.2 Aufbau von Enzymen... 3 2.3 Reaktionsgeschwindigkeit... 4 2.4 Enzymkinetik... 4 2.5 Michaelis-Menten-Gleichung...
0.1 Geschwindigkeit bei Reaktionen
1 0.1 Geschwindigkeit bei Reaktionen Salzsäure reagiert mit Magnesium Erklärung 2HCl + Mg MgCl 2 + H 2 Das M g-pulver reagiert schneller mit der Salzsäure als die Mg-Späne. Definition: Reaktionsgeschwindigkeit
Name: Punktzahl: von 57 Note:
Testen Sie Ihr Wissen! Übungsprobe zu den Tertia-Themen und Säure-Base-Reaktionen Name: Punktzahl: von 57 Note: Für die folgenden Fragen haben Sie 60 Minuten Zeit. Viel Erfolg! Hilfsmittel: das ausgeteilte
Weitere Übungsfragen
1 Strategie bei multiple choice Fragen Wie unterscheidet sich Glucose von Fructose? (2 Punkte) Glucose hat 6 C Atome, Fructose hat nur 5 C Atome. In der Ringform gibt es bei Glucose α und β Anomere, bei
Vorkurs Allgemeine Chemie für Ingenieure und Biologen 22. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie
Vorkurs Allgemeine Chemie für Ingenieure und Biologen 22. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie DAS CHEMISCHE GLEICHGEWICHT Schwefel schmilzt bei 119 C. Bei dieser Temperatur
Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6
Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Thermodynamik und Gleichgewichte 1. a) Was sagt die Enthalpie aus? Die Enthalpie H beschreibt den Energiegehalt von Materie
Citratzyklus. Biochemie Maria Otto,Bo Mi Ok Kwon Park
Citratzyklus Biochemie 13.12.2004 Maria Otto,Bo Mi Ok Kwon Park O CH 3 C Acetyl-CoA + H 2 O HO C COO C NADH O C H Citrat Cis-Aconitat H C Malat Citratzyklus HO C H Isocitrat CH H 2 O Fumarat C = O FADH
Zusammenfassung vom
Zusammenfassung vom 20.10. 09 Löslichkeitsprodukt = quantitative Aussage über die Löslichkeit einer schwerlöslichen Verbindung bei gegebener Temperatur A m B n m A n+ + n B m- K L = (c A n+ ) m (c B m-
Einzelmolekül. Enzym-Dynamik. Fabian Wolfertstetter
Einzelmolekül Enzym-Dynamik Fabian Wolfertstetter Bisher: Untersuchung chemischer Reaktionen nur im Ensemble Messung nur der Edukte und Produkte (fast) ohne Details über Zwischenschritte Dazwischen: Black
Lehrstuhl für Physiologische Chemie, Tierärztliche Fakultät, LMU München
ENZYME II Beispiele für Stoffinhalte aus der Chemie als Grundlage für das Verständnis dieses Teiles: Säurestärke (pk s Wert), Begriff der Katalyse, Massenwirkungsgesetz und Gleichgewichtsverschiebung,
b) Zeichnen Sie die beiden möglichen Isomere der Aldol-Kondensation und bezeichnen Sie die Stereochemie der Produkte.
1. Aufgabe a) Formulieren Sie den Mechanismus der durch ydroxid-ionen katalysierten Aldol- Addition und Aldol-Kondensation zwischen den beiden unten gezeigten Molekülen. + 2 2 b) Zeichnen Sie die beiden
Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie
Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie H S G= H-T S Prozeß 1. (-) (+) (-) immer exergonisch, erfolgt spontan bei allen Temperaturen
a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)
Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche
Robert Koch-Gymnasium Deggendorf GRUNDWISSENKARTEN. Biologie. 10. Jahrgangsstufe
Robert Koch-Gymnasium Deggendorf GRUNDWISSENKARTEN Biologie 10. Jahrgangsstufe Es sind insgesamt 32 Karten für die 10. Jahrgangsstufe erarbeitet, die als ständiges Grundwissen für alle Jahrgangsstufen
Vorkurs Chemie (NF) Säuren und Basen, Puffer Ulrich Keßler
Vorkurs Chemie (NF) Säuren und Basen, Puffer Ulrich Keßler Alltagserfahrung: sauer Zitrone Essig junger Wein Welcher Stoff bewirkt saure Reaktion? http://www.simplyscience.ch/portal Data/1/Resources/Images_bis_10_
Harnstoffspaltung durch Urease
Martin Raiber Chemie Protokoll Nr.5 Harnstoffspaltung durch Urease Versuch 1: Materialien: Reagenzglasgestell, Reagenzgläser, Saugpipetten, 100 ml-becherglas mit Eiswasser, 100 ml-becherglas mit Wasser
Versuchsprotokoll: Chromatographie. Gelchromatographische Trennung eines Proteingemischs
Versuchsprotokoll: Chromatographie Gelchromatographische Trennung eines Proteingemischs 1.1. Einleitung Das Ziel der Gelchromatographie ist es ein vorhandenes Proteingemisch in die einzelnen Proteine zu
Fragen zum Thema chemische Reaktionen Klasse 4 1. Was gehört zu einer chemische Reaktionsgleichung? 2. Wie nennt man die Stoffe, die vor der Reaktion
1. Was gehört zu einer chemische Reaktionsgleichung? 2. Wie nennt man die Stoffe, die vor der Reaktion vorliegen? 3. Wie nennt man die Stoffe, die nach der Reaktion vorliegen? 4. Womit wird die Richtung
Praktikum Biochemie Einführung in die Molekularbiologie. Bettina Siebers
Praktikum Biochemie Einführung in die Molekularbiologie Bettina Siebers Protein Expression Genomische DNA PCR Vektormolekül (Plasmid) Escherichia coli Reinigung Protein Aktivitätstest Platte in 9 Teile
Entropie ist ein Maß für den Ordnungszustand eines thermodynamischen Systems (chem. Reaktion in einem geschlossenen System); kann auch als Maß für
Entropie ist ein Maß für den Ordnungszustand eines thermodynamischen Systems (chem. Reaktion in einem geschlossenen System); kann auch als Maß für die Nichtumkehrbarkeit (Irreversibilität) eines Vorganges
Arbeitskreis Koordinationschemie
Übung 5 - Musterlösung 1. In einem Becherglas befinden sich 100 ml einer 1M a 4 EDTA Lösung (a). Zu dieser Lösung gibt man festes Radiumsulfat bis zur Sättigung, so dass etwas festes Radiumsulfat als Bodenkörper
1 Der Elektronentransfer: Theorie nach Marcus und Hush
1 Der Elektronentransfer: Theorie nach Marcus und Hush Betrachtet wird der Elektronentransfer zwischen zwei solvatisierten Spezies in einer Lösung. Es gibt zwei Arten von Elektronentransfer, Reaktionen
Verrechnungspunkte: Gesamtpunkte: Note:
Säure-Base-Reaktionen: E. 5. 2 Die Base Ammoniak Bearbeitungszeit: zweimal 45 Minuten Hilfsmittel: Taschenrechner Verrechnungspunkte: Gesamtpunkte: Note: Aufgaben 1 Ammoniak wird heute großtechnisch nach
Biochemie II - Tutorium
Mathematik und Naturwissenschaften, Biologie, Biochemie Biochemie II - Tutorium Dresden, 16.11.2016 Ablauf des Tutoriums Einführung und Wiederholung Vorlesungszusammenfassung Übungsaufgaben Selbststudium
4.3 Reaktionsgeschwindigkeit und Katalysator
4.3 Reaktionsgeschwindigkeit und Katalysator - Neben der thermodynamischen Lage des chemischen Gleichgewichts ist der zeitliche Ablauf der Reaktion, also die Geschwindigkeit der Ein- Einstellung des Gleichgewichts,
ALDEHYDE & KETONE. Referat über die Carbonylverbindungen: Aldehyde und Ketone Patrick König und Robert Bozsak LK C2 Sigmund-Schuckert-Gymnasium
ALDEHYDE & KETONE Referat über die Carbonylverbindungen: und Patrick König und Robert Bozsak LK C2 Sigmund-Schuckert-Gymnasium 1 1 GLIEDERUNG 1. Allgemeiner Vergleich der & Struktur Nomenklatur / Beispiele
11/2 Alles im Gleichgewicht Zuordnung der Kompetenzen aus dem KC Sek II
Fachgruppe Chemie Kurshalbjahr 11/2 Alles im Gleichgewicht Stand SJ 2010/2011 11/2 Alles im Gleichgewicht Zuordnung der Kompetenzen aus dem KC Sek II Basiskonzept Stoff-Teilchen / unterscheiden anorganische
