Datenstrukturen, Algorithmen und Programmierung 2
|
|
|
- Maria Irmela Meyer
- vor 8 Jahren
- Abrufe
Transkript
1 Datenstrukturen, Algorithmen und Programmierung 2 Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1. VO SS April 2008 Petra Mutzel
2 Kurzvorstellung und Forschungsinteressen Algorithmen und Datenstrukturen Graphenalgorithmen Kombinatorische Optimierung Algorithm Engineering Design, theoretische Analyse, anwendungs- Implementierung, und orientiert experimentelle Evaluation von Algorithmen und Datenstrukturen Petra Mutzel 2
3 Algorithmik Algorithmentheorie Abstrakte Modelle Entwurf Analyse Leistungsgarantien Implementierung Anwendungen 3
4 Motivation Warum soll ich in DAP2 gehen? MERKE: DAP2 IST WICHTIG!!! Ich kann doch schon programmieren. ABER NICHT IMMER EFFIZIENT! Und noch ein Grund: DAP2 IST TEIL DER ENDNOTE! Petra Mutzel 4
5 Überblick Einführung Organisatorisches zur Vorlesung Übung Praktikum Petra Mutzel 5
6 Kapitel 1: Einführung 1.1 Grundbegriffe 1.2 Beispiel: Sortierproblem 1.3 Analyse von Algorithmen Petra Mutzel 6
7 Konkrete Formulierung abstrakter Algorithmen, die sich auf bestimmte Darstellungen wie Datenstrukturen stützen = Summe aus Algorithmen und Datenstrukturen Algorithmus Datenstruktur Algorithmen, Datenstrukturen und Programm Programmierung Rechenvorschrift Eingabe Berechnung Ausgabe Schema zur Repräsentation der durch einen Algorithmus behandelten Daten Petra Mutzel 7
8 Konkrete Formulierung abstrakter Algorithmen, die sich auf bestimmte Darstellungen wie Datenstrukturen stützen = Summe aus Algorithmen und Datenstrukturen Algorithmus Datenstruktur Algorithmen, Datenstrukturen und Programm Programmierung Darstellung als Text (Deutsch, Englisch, ) als Computerprogramm (Java, C++, ) als Hardwaredesign als Pseudocode DAP2 Petra Mutzel 8
9 Pseudocode Vereinfachung real existierender Programmiersprachen C / Java int tmp = i; i = j; j = tmp; Pseudocode vertausche i mit j for (int i=0;i<9;i++) { } float f =A[i] for i:=0,,8 { } f = A[i] 9
10 Beispiel: Sortierproblem Eingabe: Folge von n Zahlen <a 1,a 2,,a n > Ausgabe: Permutation <a 1,a 2,,a n> der Eingabefolge, so dass a 1 a 2 a n Jede konkrete Zahlenfolge ist eine Instanz des Sortierproblems, z.b.: <5,3,11,2,17> <2,3,5,11,17> Gesucht: Korrekter Algorithmus für Problem Petra Mutzel 10
11 Sortieren durch Einfügen Eingabe: zu sortierende Zahlenfolge (key) Ausgabe: sortierte Zahlenfolge Setze Index k auf 2.-tes Element Setze Index i auf (k 1).-tes Element Solange i 0 und ( key(k) < key(i) ) Setze Index i auf (i 1).-tes Element Platziere k-tes Element zwischen i-tes und (i+1).-tes Element Analyse: Datenstruktur: ARRAY oder LISTE? 11
12 InsertionSort(ref A) Eingabe/Ausgabe: Zahlenfolge in Feld A[1..n] (1) for k:=2,,n { (2) key:=a[k] (3) i:=k (4) while i>1 and A[i 1]>key { (5) A[i]:=A[i 1] (6) i:=i 1 (7) } (8) A[i]:=key (9) } Petra Mutzel 12
13 Ablauf von InsertionSort(ref A) Zahlenfolge: k= i= u.s.w. 13
14 Analyse von Algorithmen JETZT AUFPASSEN: sehr sehr WICHTIG! Maße für die Effizienz eines Algorithmus: Laufzeit benötigter Speicherplatz Anzahl der Vergleichsoperationen Anzahl der Datenbewegungen Petra Mutzel 14
15 RAM-Maschinenmodell Eigenschaften der Random Access Machine : Es gibt genau einen Prozessor, der das Programm sequentiell abarbeitet Jede Zahl, die wir in unserem Programm benutzen paßt in eine Speichereinheit Alle Daten liegen in einem direkt zugreifbaren Speicher Alle Speicherzugriffe dauern gleich lang Alle primitiven Operationen benötigen konstante Zeit Petra Mutzel 15
16 Primitive Operationen Zuweisungen (a:=b) arithmetische Operationen (Addition, Multiplikation, Modulo-Op., Wurzel-Op.) logische Operationen (and, or, not) Vergleichsoperationen (,, ) Befehle zur Ablaufsteuerung (if-then) Die Laufzeit eines Algorithms ist die Anzahl der bei einer Berechnung durchgeführten primitiven Operationen. 16
17 Laufzeit eines Algorithmus Laufzeit als Funktion der Eingabegröße z.b. für Sortierprobleme: n Laufzeit abhängig von spezieller Instanz, z.b. für Sortierprobleme: sortierte Eingabefolge eventuell schneller als für unsortierte Folge Deswegen: Best-Case, Worst-Case und Average-Case Analyse Petra Mutzel 17
18 Analyse von InsertionSort(ref A) s k :Anzahl der Durchführungen von (4) (1) for k:=2,,n { (2) key:=a[k] (3) i:=k (4) while i>1 and A[i 1]>key { (5) A[i]:=A[i 1] (6) i:=i 1 (7) } (8) A[i]:=key (9) } Zeit Wie oft? t 1 n t 2 t 3 t 4 s k t 5 t 6 t 7 t 8 t 9 (s k 1) (s k 1) (s k 1) Petra Mutzel 18
19 Analyse von InsertionSort(ref A) s k :Anzahl der Durchführungen von (4) Zeit t 1 Wie oft? n t 2 t 3 t 4 s k t 5 t 6 t 7 (s k 1) (s k 1) (s k 1) t 8 abhängig von s k t 9 Petra Mutzel 19
20 Best-Case Analyse Kürzeste mögliche Laufzeit über alle möglichen Eingabe-Instanzen bei vorgegebener Eingabegröße. Sortierte Folge: s k =1 Zeit Wie oft? t 1 n t 2 t 3 t 4 s k t 5 t 6 (s k 1) (s k 1) T(n)=Lineare Funktion in n mit Konstanten a und b t 7 t 8 t 9 (s k 1) Petra Mutzel 20
21 Worst-Case Analyse Längste mögliche Laufzeit über alle möglichen Eingabe-Instanzen bei vorgegebener Eingabegröße. Umgekehrt sortierte Folge: s k =k Zeit Wie oft? t 1 n t 2 t 3 t 4 s k t 5 t 6 t 7 (s k 1) (s k 1) (s k 1) T(n)=Quadratische Funktion in n mit Konstanten a, b und c t 8 t 9 Petra Mutzel 21
22 Average-Case Analyse Durchschnittliche Laufzeit über alle möglichen Eingabe-Instanzen bei vorgegebener Eingabegröße. Problem: Was ist eine durchschnittliche Eingabe Hier: s k =k/2 T(n)=Quadratische Funktion in n mit Konstanten a, b und c Petra Mutzel 22
23 Laufzeit-Analyse Genaue Laufzeitberechnung ist sehr aufwändig, deswegen Vereinfachung Wir betrachten nur die Ordnung der Laufzeit, wobei n als beliebig groß angenommen wird Wir sagen: f(n)=an+b ist in Θ(n) und g(n)=an 2 +bn+c ist in Θ(n 2 ) Wir sagen: f(n) wächst linear für große n und g(n) wächst quadratisch für große n Formale Definition von Θ: Donnerstag Petra Mutzel 23
24 Organisatorisches zur Vorlesung Inhalte der Vorlesung Literatur zur Vorlesung Organisatorisches zur Vorlesung, Klausur, Übung und Praktikum Petra Mutzel 24
25 Inhalte der Vorlesung 1. Einführung / Algorithmen-Analyse (O-Notation) 2. Abstrakte Datentypen und Datenstrukturen 3. Sortieralgorithmen 4. Suchalgorithmen (Binärsuche, B- und AVL- Bäume, Skiplisten) 5. Hashing 6. Graphenalgorithmen (BFS, DFS, Zshgskomp, MST, kürzeste Wege) 7. Optimierung (Heuristiken, B&B, Dyn. Prog.) 8. Geometrische Algorithmen Petra Mutzel 25
26 Literatur zur Vorlesung VO-Folien auf Web: ls11- Skript auf Web (ab April) Bücher: R. Sedgewick: Algorithmen, Pearson Studium 2002, 2. Auflage (oder: Algorithmen in C++) T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Algorithmen eine Einführung, Ausgabe März 2007, Oldenbourg-Verlag T. Ottmann und P. Widmayr: Algorithmen und Datenstrukturen, Spektrum Akademischer Verlag 2002, 4. Auflage A. Levition: Introduction to the Design and Analysis of Algorithms, 2. Auflage, Addison Wesley
27 Organisatorisches zu Modul DAP2: Vorlesung DAP2, 4 SWS Di 12:15-14:00 im Audimax und Do 14:15-16:00 im HS 1, HG II Übung zu DAP2, 2 SWS 16 kleine Übungsgruppen eine Globalübung Praktikum zu DAP2, 2 SWS kleine Übungsgruppen, C++ Übungstests viel Zeit einplanen Petra Mutzel 27
28 Klausur: Modulprüfung und Studienleistungen Klausurtermin: Freitag, 25. Juli 2008 Nebentermin: Montag, 6. Oktober Min., Inhalte der Vorlesung, Übung hilfreich! Voraussetzungen für Klausurteilnahme: Erfolgreiche Teilnahme an der Übung zu DAP2 Weitere Studienleistungen: Erfolgreiche Teilnahme am Praktikum zu DAP2 Petra Mutzel 28
29 Übung zu DAP2 Ablauf: Übungsblätter: Abgabe donnerstags 13 Uhr (Briefkästen Campus Süd), Ausgabe ab Do Übungsgruppen, ab Globalübung freitags 12:15-14 Uhr in OH14 E23 2 Übungstests (am und in der VO) Erfolgreiche Teilnahme: Regelmäßige Teilnahme an Übungsgruppen 1 bestandener Übungstest Lernräume: GB IV R Anmeldung: heute in VO Mindestens 60% aller Übungspunkte (inkl. Übungstests) 29
30 Praktikum zu DAP2 Ablauf: Praktikumsblätter alle 2 Wochen: Abgabe in den Praktikumsgruppen, ab 9.4., Ausgabe 0.-tes Blatt: heute Einführung in C++ am statt Globalübung freitags 12:15-14 Uhr in OH14 E23 Challenge ab ca. Juni (freiwillig) Erfolgreiche Teilnahme: Anmeldung: heute in VO Mindestens 60% aller Praktikumspunkte Petra Mutzel 30
31 Weitere Informationen Verantwortlicher für Übung und Praktikum: Carsten Gutwenger, LS11 Carsten. Gutwenger <at> cs. tu-dortmund. de Sprechstunde von Petra Mutzel: Di 14:15 Uhr in OH14, R. 231 Aktuelle Informationen: ls11- Petra Mutzel 31
Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,
Informatikgrundlagen (WS 2015/2016)
Informatikgrundlagen (WS 2015/2016) Klaus Berberich ([email protected]) Wolfgang Braun ([email protected]) 0. Organisatorisches Dozenten Klaus Berberich ([email protected]) Sprechstunde
Datenstrukturen. Sommersemester Kapitel 1: Motivation / Grundlagen. Steffen Lange
Datenstrukturen Sommersemester 2010 Steffen Lange 1/1, Folie 1 2010 Prof. Steffen Lange - HDa/FbI - Datenstrukturen Organisatorisches Vorlesung wöchentlich; zwei Blöcke Folien im Netz (/* bitte zur Vorlesung
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung
Algorithmen und Datenstrukturen CS1017
Algorithmen und Datenstrukturen CS1017 Th. Letschert TH Mittelhessen Gießen University of Applied Sciences Organisatorisches und Einführung Lehrpersonal Dozent Dr. Letschert Tutoren Alissia Sauer Jonas
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest
Algorithmen und Berechnungskomplexität I
Institut für Informatik I Wintersemester 2010/11 Organisatorisches Vorlesung Montags 11:15-12:45 Uhr (AVZ III / HS 1) Mittwochs 11:15-12:45 Uhr (AVZ III / HS 1) Dozent Professor für theoretische Informatik
Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen
lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany [email protected] Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer
Kap. 4.2: Binäre Suchbäume
Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:
Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Uebersicht Administratives Einleitung Ein einführendes Beispiel Matthias Zwicker Universität Bern Frühling 2010 2 Administratives Dozent Prof. Zwicker, [email protected]
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Wintersemester 2012/13 Organisatorisches Vorlesung: Übungsbetreuung: Übungen: Programmierübungen: Alexander Wolff (E29) Jan Haunert (E27) Markus Ankenbrand Titus Dose Alexej
Algorithmen und Datenstrukturen Laufzeitabschätzung
Algorithmen und Datenstrukturen Laufzeitabschätzung Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren, Suchen,
Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:
Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls
Algorithmik - Kompaktkurs
Algorithmik - Kompaktkurs Sommersemester 2012 Steffen Lange 0/1, Folie 1 2012 Prof. Steffen Lange - HDa/FbI - Algorithmik Organisatorisches Vorlesung Folien im Netz (/* bitte zur Vorlesung mitbringen */)
Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.
Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet
Grundlagen der Programmierung
Grundlagen der Programmierung Dr. Tom Kamphans 1. Vorlesung 12.10.2016 1 Organisatorisches Vorlesung: Mittwochs 14:00 15:30, Raum F 201 Übung: Mittwochs 15:45 19:00, Raum F 225 Übung: alle zwei Wochen
Datenstrukturen und Algorithmen
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/32 Datenstrukturen und Algorithmen Vorlesung 7: Sortieren (K2) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group
Algorithmen und Datenstrukturen Einführung
Algorithmen und Datenstrukturen Einführung Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Einführung in die Begriffe Algorithmus Datenstruktur
Grundlagen der Programmierung
Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung
Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler
Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches
Berechenbarkeit und Komplexität: Motivation, Übersicht und Organisatorisches Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Berechenbarkeit die absoluten Grenzen
Einführung in die Informatik I Kapitel II.3: Sortieren
1 Einführung in die Informatik I Kapitel II.3: Sortieren Prof. Dr.-Ing. Marcin Grzegorzek Juniorprofessur für Mustererkennung im Institut für Bildinformatik Department Elektrotechnik und Informatik Fakultät
Informatik II, SS 2014
Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:
Institut für Telematik Universität zu Lübeck. Programmieren. Kapitel 0: Organisatorisches. Wintersemester 2008/2009. Prof. Dr.
Institut für Telematik Universität zu Lübeck Programmieren Kapitel 0: Organisatorisches Wintersemester 2008/2009 Prof. Dr. Christian Werner 1-2 Überblick Ziele Inhaltsüberblick Ablauf der Veranstaltung
Sortieralgorithmen. Vorlesung Algorithmen und Datenstrukturen 2. Prof. Dr. W. P. Kowalk Universität Oldenburg
Sortieralgorithmen Vorlesung Algorithmen und Datenstrukturen 2 im SS 2004 Prof. Dr. W. P. Kowalk Universität Oldenburg Literatur Die folgenden Bücher wurden für die Vorlesung verwendet. Darüber hinaus
Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik
Grundlagen der Programmierung 1 Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2 Softwaretechnik Prof. Dr. O. Drobnik Professur Architektur und Betrieb verteilter Systeme Institut für
Grundlegende Sortieralgorithmen
Grundlegende Sortieralgorithmen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch Sortieren in Java Man kann Sortierverfahren in einem imperativem oder einem objektorientierten Stil programmieren.
Informatik I Komplexität von Algorithmen
Leistungsverhalten von Algorithmen Informatik I Komplexität von Algorithmen G. Zachmann Clausthal University, Germany [email protected] Speicherplatzkomplexität: Wird primärer & sekundärer Speicherplatz
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Mathematische Grundlagen
Kapitel 8. Rekursionsgleichungen. Landau-Symbole. Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen
Rekursionsgleichungen Landau-Symbole Kapitel 8 Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen Kapitel 8 Rekursionsgleichungen p./42 Landau-Symbole () Modellierung
Modul Entscheidungsunterstützung in der Logistik. Einführung in die Programmierung mit C++ Übung 2
Fakultät Verkehrswissenschaften Friedrich List, Professur für Verkehrsbetriebslehre und Logistik Modul Entscheidungsunterstützung in der Logistik Einführung in die Programmierung mit C++ Übung 2 SS 2016
Komplexität von Algorithmen
Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen VO 708.031 Bäume [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden
Datenstrukturen, Algorithmen und Programmierung II
Datenstrukturen, Algorithmen und Programmierung II Petra Mutzel Markus Chimani Carsten Gutwenger Karsten Klein Skript zur gleichnamigen Vorlesung von Petra Mutzel im Sommersemester 009 VERSION 1.1 LEHRSTUHL
Algorithmen & Datenstrukturen 1. Klausur
Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse
Einführung in die Programmierung
Gliederung Einführung in die Programmierung Wintersemester 2011/12 Organisatorisches Technisches Vorlesung Übungen Praktikum Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät
Abschnitt: Algorithmendesign und Laufzeitanalyse
Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher
Sortierverfahren für Felder (Listen)
Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es
Grundlagen der Informatik I (Studiengang Medieninformatik)
Grundlagen der Informatik I (Studiengang Medieninformatik) Thema: 3. Datentypen, Datenstrukturen und imperative Programme Prof. Dr. S. Kühn Fachbereich Informatik/Mathematik Email: [email protected]
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Wintersemester 202/3 24. Vorlesung Amortisierte Analyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Hash-Tabellen Frage: Ziel: Problem: Lösung: Wie groß macht man
Algorithmen und Datenstrukturen
1 Lehrstuhl für Informatik I Algorithmen und Datenstrukturen Wintersemester 2014/15 Organisatorisches Vorlesung: Übungsbetreuung: Übungen: Alexander Wolff (E29) Krzysztof Fleszar (E13) Alexej Grigorjew
Algorithmen mit Python
Algorithmen mit Python Vorbesprechung zum Proseminar im Sommersemester 2009 http://www.python.org 1 Sie lernen in DAP Java und C/C++: 80% Syntax, 20% Algorithmen-Design Idee Schon ein einfaches Hello World
Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)
Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch
2. Algorithmen und Algorithmisierung Algorithmen und Algorithmisierung von Aufgaben
Algorithmen und Algorithmisierung von Aufgaben 2-1 Algorithmisierung: Formulierung (Entwicklung, Wahl) der Algorithmen + symbolische Darstellung von Algorithmen Formalismen für die symbolische Darstellung
Folge 13 - Quicksort
Für Abiturienten Folge 13 - Quicksort 13.1 Grundprinzip des Quicksort Schritt 1 Gegeben ist ein unsortierter Array von ganzen Zahlen. Ein Element des Arrays wird nun besonders behandelt, es wird nämlich
3. Ziel der Vorlesung
3. Ziel der Vorlesung Der Zweck der Vorlesung ist das Studium fundamentaler Konzepte in der Algorithmentheorie. Es werden relevante Maschinenmodelle, grundlegende und höhere Datenstrukturen sowie der Entwurf
Tutoraufgabe 1 (2 3 4 Bäume):
Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Übungsblatt (Abgabe.0.0) F. Corzilius, S. Schupp, T. Ströder Allgemeine Hinweise: Die Hausaufgaben sollen in Gruppen von je bis Studierenden aus
Programmiertechnik II
2007 Martin v. Löwis Priority Queues and Heapsort 2007 Martin v. Löwis 2 Priority Queue Abstrakter Datentyp Inhalt: Elemente mit Priorität Operationen: Einfügen: Angabe des Elements und seiner Priorität
Webbasierte Programmierung
Webbasierte Programmierung Eine Einführung mit anschaulichen Beispielen aus der HTML5-Welt apl. Prof. Dr. Achim Ebert Inhalt Kapitel 0: Organisation Allgemeine Informationen Wer sind wir? Anforderungen
1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit
Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der
Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.
Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.
Grundlagen: Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010
Suchen und Sortieren Sortieren. Heaps
Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die
Die Programmiersprache C Eine Einführung
Die Programmiersprache C Eine Einführung Christian Gentsch Fakutltät IV Technische Universität Berlin Projektlabor 2. Mai 2014 Inhaltsverzeichnis 1 Einführung Entstehungsgeschichte Verwendung 2 Objektorientiert
186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26. November 2010
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26.
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.
14. Rot-Schwarz-Bäume
Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).
4.Grundsätzliche Programmentwicklungsmethoden
4.Grundsätzliche Programmentwicklungsmethoden 1.1 Grundlage strukturierter und objektorientierter Programmierung Begriff Software Engineering - umfaßt den gezielten Einsatz von Beschreibungsmitteln, Methoden
Logik und diskrete Strukturen
Prof. Dr. Institut für Informatik Abteilung I Wintersemester 2012/13 Organisatorisches Vorlesung Dienstag und Donnerstag 10:15 11:45 Uhr (HS 1) und 12:30 14:00 Uhr (HS 2) Vorlesung am Vormittag = Vorlesung
1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen...
Suchen und Sortieren In diesem Kapitel behandeln wir Algorithmen zum Suchen und Sortieren Inhalt 1. Grundlagen... 2 2. Sortieren... 6 1.1. Vertauschen... 13 1.2. Selektion... 16 1.3. Einfügen... 19 1.4.
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen Sommersemester 2013 1 1 O. Einführung 0.1 Organisatorisches 0.2 Überblick 2 0.1 Organisatorisches DSAL Team Veranstaltungen & Termine Kommunikation Materialien Übungsbetrieb
Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik
Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK
JAVA - Suchen - Sortieren
Übungen Informatik I JAVA - Suchen - Sortieren http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 Inhalt Suchen/Sortieren binary search mergesort bubblesort Übungen Informatik
Vorkurs Informatik WiSe 15/16
Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner
Kapitel 0: Organisatorisches
Einführung in die Praktische Informatik Wintersemester 2009 / 2010 Kapitel 0: Organisatorisches Prof. Dr. Manfred Reichert Andreas Lanz, Rüdiger Pryss Universität Ulm Institut für Datenbanken und Informationssysteme
Laufzeit und Komplexität
Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen
Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)
Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
VBA-Programmierung: Zusammenfassung
VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung
Theoretische Informatik 1
Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: [email protected].
Algorithmik II SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: [email protected] Homepage der Vorlesung Vorbemerkungen I http://www8.informatik.uni-erlangen.de/immd8
Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra
Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)
Einführung in die Informatik 1
Einführung in die Informatik 1 Datenorganisation und Datenstrukturen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 [email protected] Sprechstunde: Freitag, 12:30-14:00
Programmiertechnik II
Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen
Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS Übungsblatt 4
Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS 2015 http://www.fmi.informatik.uni-stuttgart.de/alg Institut für Formale Methoden der Informatik Universität Stuttgart Übungsblatt 4 Punkte: 50 Problem
Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April
Kapitel 5: Dynamisches Programmieren Gliederung
Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen
Prof. Dr. Margarita Esponda
Die O-Notation Analyse von Algorithmen Die O-Notation Prof. Dr. Margarita Esponda Freie Universität Berlin ALP II: Margarita Esponda, 5. Vorlesung, 26.4.2012 1 Die O-Notation Analyse von Algorithmen Korrektheit
Übung zur Vorlesung Multimedia im Netz
Übung zur Vorlesung Multimedia im Netz Doris Hausen Ludwig-Maximilians-Universität München Wintersemester 2009/2010 Ludwig-Maximilians-Universität München Multimedia im Netz Übung 1-1 Organisatorisches
Programmieren I + II
Programmieren I + II Werner Struckmann Institut für Programmierung und Reaktive Systeme Wintersemester 2012/2013 Sommersemester 2013 Was ist Informatik? Die Informatik ist die Wissenschaft von Aufbau,
Programmieren I + II
Programmieren I + II Werner Struckmann Institut für Programmierung und Reaktive Systeme Wintersemester 2015/2016 Sommersemester 2016 Was ist Informatik? Die Informatik ist die Wissenschaft von Aufbau,
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
Programmiertechnik II
Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...
2. Übungstest. Motivation Überblick. Motivation für B-Bäume. B-Bäume. Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis
Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 2. Übungstest Termin: Di 16. Juni 2009 im AudiMax, Beginn:
T (n) = max. g(x)=n t(n) S(n) = max. g(x)=n s(n)
Beim Logarithmischen Kostenmaß wird, im Gegensatz zum EKM, die Stelligkeit der Werte berücksichtigt und mit in die Laufzeit eingerechnet. Beispiel: R1 := R2 (R3), wobei R2 den Wert 5, R3 den Wert 10 und
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung
Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung
Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling
Modulbeschreibung Fakultät Gebäudetechnik und Informatik gültig ab WS 2010/11. Niveaustufe: Bachelor
Modul-Nr.: BA-VI-1030 Modulname: Programmierung Grundlagen (PRG) Niveaustufe: Bachelor Empfohlenes Semester: 1./2. Studiensemester : Grundkonzepte der Programmierung (GKP) Objektorientierte Programmmierung
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
(Stand: 13.10.201508.10.2015)
Universität Hildesheim Fachbereich 4 Seite 1 von 8 Studienordnung und Modulhandbuch für das Wahlpflichtfach Informationstechnologie im Bachelor-Studiengang Internationales Informationsmanagement (IIM)
(27 - Selbstanordnende lineare Listen)
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (27 - Selbstanordnende lineare Listen) Prof. Dr. Susanne Albers Problemstellung Gegeben sei eine Menge von Objekten (Schlüsseln), auf die mit zeitlich
Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung
Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs
Einführung und Motivation
Einführung und Motivation Programmiermethodik Eva Zangerle Universität Innsbruck Ziele der Vorlesung Grundlagen der Programmierung vertiefen Anknüpfen an Wissen aus Einführung in die Programmierung Grundkonzepte
Wintersemester 2010/2011 Rüdiger Westermann Institut für Informatik Technische Universität München
Informatik 1 Wintersemester 2010/2011 Rüdiger Westermann Institut für Informatik Technische Universität München 1 0 Allgemeines Zielgruppen Siehe Modulbeschreibung Studierende anderer (nicht Informatik)
