Wiederholung Mechanik
|
|
|
- Adolph Schulze
- vor 7 Jahren
- Abrufe
Transkript
1 Wiederholung Mechanik
2 Aufgabe zur Mechanik Welche Geschwindigkeit hat ein Pendel mit Masse 1kg an einem 1m langen Faden, wenn es zu Beginn um 90 ausgelenkt wird.
3 Atomaufbau / Ladung Definition Ladung: Es gibt negative und positive Ladungen. Gleichnamige Ladungen stoßen sich ab. Träger der negativen Ladung sind die Elektronen (Atomhülle). Träger der Positiven Ladung sind die Protonen (Atomkern). In Metallen sind die Elektronen frei beweglich. In Isolatoren dagegen sind alle Elektronen fest an die Atome gebunden
4 Elektroskop Ladungen können mit dem Elektroskop sichtbar gemacht werden. Zeichne eine Ladungsverteilung für den dargestellten Influenzfall.
5 Strom und Stromstärke Elementarladung: Die Ladung eines Elektrons (oder Protons) ist.die Einheit ist Coulomb Stromstärke hohe Stromstärke viele Ladungen pro Zeit geringe Stromstärke wenige Ladungen pro Zeit 1 C = 1 A 1s = 1As 1 Coulomb = 1 Amperesekunde Übung: Lies S 9, kläre Unklarheiten und bearbeite die Aufgaben
6 Berechnung zur Stromstärke Beispiel: Eine 60 Watt Lampe bei 240 Volt. Zeige, dass eine Stromstärke von 0,25 A fließt Wie viel Ladung fließt in 1h durch die Lampe? Wie viele Elektronen sind das?
7 Elektrisches Pendel Versuch: Erkläre den Versuch des elektrischen Pendels mit Hilfe des ABs
8 Felder Wirkungen im Raum über Entfernungen hinweg werden häufig durch Felder beschrieben Welche Felder sind bekannt? Bedeutung der Pfeile? Wie kann man sie messen? Kann man die Idee auch auf die Wirkung von elektrischen Ladungen übertragen?
9 Felder zeichnen Aufgabe: Zeichne ein Gravitationsfeld mit Vektorpfeilen, achte auf die Länge. Zeichen a) das Feld z.b. im Klassenraum b) das Feld im Weltraum um die Erde herum
10 Das elektrische Feld Felder werden mit Vektoren gezeichnet Können auch durch Feldlinien beschrieben werden als Weg einer positiven Ladung im elektr. Feld Beschreibung durch eine Gleichung Coulombsches Kraftgesetz AB Versuchsauswertung LINEARISIERUNG! Feldlinien verlaufen von positiven zu negativen Ladungen Feldlinien auf Metalloberflächen stehen S lesen Fragen notieren!! Aufgaben auf S. 12 Idee der Spiegelladung
11 Versuchsauswertung Coulomb Kraft wird größer, je größer die Ladung. Genauer: Je größer der Radius, desto geringer die Kraft. Genauer: Im Buch:
12 Das elektrische Feld - Aufgaben Aufgaben wegen Abwesenheit: Erkläre warum die Feldlinien auf Metalloberflächen immer senkrecht stehen (das war schon Hausaufgabe, aber so kann ich es einsammeln) 2. Lies S. 12 (Das ist reine Wiederholung - hoffe ich) 3. Bearbeite A1, A2 und A3 auf S. 12
13 Feld im Kondensator homogenes Feld überall gleich stark und gleich gerichtet
14 Aufgaben HowTo 1 Bei Einheiten gibt es folgende Abkürzungen: (siehe Tabelle) Bitte mit Zehnerpotenzen rechnen Beispiel: Gegeben, Gesucht notieren das k kilo erleichtert oft den Start M mega Bei Texten platz lassen (Rand und zwischen den Zeilen) für Kommentare G giga und Ergänzungen - Pfeile bei Umformungen Pronomen (sie, die, es) vermeiden außer wenn der Bezug eindeutig ist. (schlechtes Beispiel: Sie zieht es an) m μ n p f milli mikro nano pico femto
15 Spannung und Energie AB wichtige Erkenntnisse: Spannung und Elektrisches Feld: Energie eines Teilchens, dass das komplette Kondensatorfeld durchläuft: Neue Energieeinheit: 1eV (Elektronenvolt)
16 Elektronenstrahl-Ablenkröhre Bahnkurve Beschleunigung - Messwerte
17 Aufgaben zu Spannung / Energie Aufgaben auf S. 15 A1-A3 (bei A3b beachten, was es bedeutet, die Spannungsquelle abzuklemmen) Aufgaben auf S. 17
18 Flächenladungsdichte Die Ursache des elektrischen Feldes eines Kondensators sind die Ladungen auf den Platten. Welcher Zusammenhang besteht zwischen den Ladungen und der Feldstärke? Messgrößen: A, Q, U, Abstand d
19 Flächenladungsdichte 2 Wir messen die Ladungen auf einer Platte immer mehrfach Messung: Feste Spannung, fester Abstand, verschiedene Flächen 2. Messung: verschiedene Spannungen, fester Abstand, gleiche Flächen 3. Messung: feste Spannung, verschiedener Abstand, gleiche Flächen
20 Flächenladungsdichte Welche Zusammenhänge kann man erkennen/vermuten? Sind diese sinnvoll erklärbar? Wie kann man diese auf die Feldstärke beziehen? Gibt es weitere Zusammenhänge, die man untersuchen kann?
21 Flächenladungsdichte Die Feldstärke ist proportional zur Flächenladungsdichte. Es gilt: Bestimme die Konstante k aus folgenden Werten: d=6cm, U=6kV, Platte mit 48 cm 2 enthält eine Ladung von 4, C k heißt elektrische Feldkonstante und wird i.a. durch beschrieben. Mit der Feldkonstanten wird aus der Gleichung für die Coulomb-Kraft: Man kann die Feldstärke durch ein Dielektrikum beeinflussen! Vertiefung: S 21 Nr. A1
22 radiales Coulombfeld Experimentell kann man bestätigen, dass das Feld um eine geladene Kugel nur von der Ladungsmenge abhängt und nicht vom Radius der Kugel. Die Kugel kann man also in Gedanken soweit aufblasen, dass sie eine Probeladung berührt. Dann gilt für das elektrische Feld der Kugel im Bereich der Probeladung: Somit ist die Konstante in der Formel der Coulombkraft theoretisch hergeleitet.
23 radiales Coulombfeld Aufgabe: Arbeite S. 19 durch und bereite einen Vortrag vor, in dem du ausgehend aus den beiden Gleichungen und die Gleichung für die Coulombkraft herleitest. Dabei sollen insbesondere die beiden Tricks benannt werden, die verwendet werden. Den ersten Trick mit dem aufblasen der Kugel haben wir in der letzten Stunde schon erörtert. Fertige eine Art Karteikarte für den Vortrag, mit den wichtigsten Stichpunkten an.
24 Entladekurve eines Kondensators Werte die Entladekurve des Kondensators mit Hilfe des ABs aus. Achtung: Linearisierung einer Exponentialfunktion! Wenn man also ln(u) gegen t abträgt sollte sich eine Gerade ergeben, deren Steigung dem Wert b entspricht.
25 Ladekurve eines Kondensators Bei der Ladekurve eines Kondensators handelt es sich um eine beschränkte Exponentialfunktion mit der Schranke S. Diese muss vor der Linearisierung herausgerechnet werden
26 Kapazität C eines Kondensators Je mehr Spannung man an einen Kondensator anlegt, desto mehr Ladung wird auf die beiden Platten gepresst. Die beiden Größen sind Proportional. Die Proportionalitätskonstante ist die Kapazität C des Kondensators (gemessen in Farad = 1F) Die Kapazität hängt von den Eigenschaften des Kondensators ab (Fläche, Abstand der Flächen, Dielektrikum, )
27 Kapazität C eines Kondensators II Die Kapazität eines Kondensators ist von den Materialeigenschaften und dem geometrischen Aufbau abhängig. Es gilt: Man kann die Kapazität also verändern, in dem man die Fläche vergrößert, den Abstand verringert, oder ein Dielektrikum einbringt. Eine andere Möglichkeit ist die Parallel- oder Reihenschaltung von Kondensatoren.
28 Parallel- und Reihenschaltung Lies jeweils S. 23 5a bzw. 5b und stelle die Berechnung der Ersatzkapazität vor
29 Parallelschaltung als Flächenvergröß. Bei einer Parallelschaltung zweier gleicher Kondensatoren gilt: Man kann sich also die Parallelschaltung als Flächenverdopplung vorstellen und damit auch die Erhöhung der Kapazität plausibel machen. Das leuchtet zeichnerisch auch direkt ein: Aufgabe: Interpretiere entsprechend die Reihenschaltung als Abstandsvergrößerung.
30 Aufgaben Arbeite das Beispiel unten auf der Seite durch und bereite einen erläuternden Vortrag vor. Bestimme die Kapazität des Elektrometers, wenn die Spannung nur auf die Hälfte 1,5kV gefallen wäre. Erkläre aus der Rechnung, was pico bedeutet! Aufgaben A1-A4 (insbesondere 4) auf S. 25
31 Energie im Kondensator Ein Kondensator speichert Energie. Wie viel Energie steckt in einem voll aufgeladenen Kondensator? Wir berechnen die Energie, in dem wir uns vorstellen, wir würden jedes Elektron einzeln von einer Platte zur anderen transportieren. Für die verrichtete Arbeit gilt: Berechne die Energie für 1[,2,3,10,100,1000] Elektronen, die bei einem Kondensator von 1 F, von einer Seite zur anderen transportiert werden.
32 Energie im Kondensator Mit und der Anzahl n von Elektronen gilt. Zeichne ein Q-U-Diagramm (Elektronenanzahl Spannung Diagramm) für einen Bereich für n von 0 bis
33 Elementarladung Wir verwenden in vielen Rechnungen die Elementarladung, aber wie kann diese bestimmt werden? Dazu betrachten wir den Millikan-Versuch (siehe Arbeitsblatt). Statt des realen Versuchsaufbaus verwenden wir ein Applet zur Ermittlung der Messwerte. Man kann sich vorstellen, dass bei der realen Apparatur weitere Komplikationen Auftreten (z.b. Scharfstellen der Linse, Maßstab, ) Wir nehmen mindestens 5 Messwerte auf und bestimmen die Elementarladung.
34 Zusatzaufgaben Zwischen die horizontal liegenden Platten eines MILLIKAN- Kondensators, dessen Plattenabstand d=6,4 mm beträgt, werden Öltröpfchen mit dem Radius r= 1, mm gebracht. Welche Ladung tragen die Tröpfchen, wenn sie bei der Spannung U = 1250 V zwischen den Platten in dem vertikal gerichteten Feld gerade schweben? Die Dichte des verwendeten Öls ist ρ =0,9 g cm -3 Im homogenen elektrischen Feld eines MILLIKAN-Kondensators mit dem Plattenabstand d=8 mm wird ein Öltröpfchen mit der Masse m = 2, kg bei der Kondensatorspannung U = 5640 V zum Schweben gebracht. Wie viele Elementarladungen (e= 1, C) befinden sich auf dem Tröpfchen?
35 Ein Öltröpfchen mit dem Durchmesser 2r= mm trägt 5 Elementarladungen (e= 1, C) und befindet sich in dem vertikalen, homogenen Feld eines Plattenkondensators mit dem Plattenabstand d=1 cm. a) Wie groß muss die Spannung zwischen den Platten einreguliert werden, damit das Tröpfchen im homogenen Feld schwebt? b) Wie muß man die Spannung verändern, wenn das Tröpfchen eine weitere Elementarladung aufnimmt und erneut zum Schweben gebracht werden soll? Der Auftrieb in Luft ist für das Tröpfchen zu vernachlässigen. Die Dichte des verwendeten Öls ist ρ =0,9 g cm -3
Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz
KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,
Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung
Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen
S. 11 Aufg. A1. S. 11 Aufg. A2
S. 11 Aufg. A1 Bestimmen Sie die Stromstärke, die ein Drehspulinstrument anzeigt. Ein Drehspulinstrument ist bei der Anzeige der Stromstärke recht träge. D.h. es zeigt nicht sofort die genaue Stromstärke
Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert.
Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. 11.1 Grundlagen Versuch 1: "Der geladene Schüler" Beobachtungen:
5.5 Elektrisches Zentralfeld, Coulombsches Gesetz
5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)
K l a u s u r N r. 2 Gk Ph 12
0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität
Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung
Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze
2. Klausur in K1 am
Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60
Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r
Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche
Physik LK 12, Klausur 02 Elektrisches Feld und Kondensator Lösung
Konstanten: Elementarladung e=,602 0 9 2 As 2 C. Elektrische Feldkonstante: 8,8542 0 N m 2 Dielektrizitätszahl: r Luft = Aufgabe : Eine studentische Hilfskraft wurde eingestellt, um acht Stunden lang Ladungen
Physik Klausur
Physik Klausur 1.1 1 6. November 00 Aufgaben Aufgabe 1 a) Eine Kugel mit der Ladung q 3 nc und der Masse m 1 g hängt an einem Faden der Länge l 1 m. Der Kondersator hat den Plattenabstand d 0 10 cm und
2 Das elektrostatische Feld
Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche
Übungsaufgaben z. Th. Plattenkondensator
Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,
Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m
2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe
PHYSIK. 2. Klausur - Lösung
EI PH3 2010-11 PHYSIK 2. Klausur - Lösung 1. Aufgabe (2 Punkte) Unten befindet sich ein Proton im elektrischen Feld zwischen einer ortsfesten positiven sowie einer ortsfesten negativen Ladung. a) Beschreibe,
Der Millikan-Versuch. Einstiegsfragen. Theorie. betreffenden Feldstärken?
Der Millikan-Versuch Einstiegsfragen 1. Welche Körper untersuchte Millikan in seinem Versuch? 2. Welche Felder ließ er darauf wirken? Wie "erzeugte" er sie? Welche Richtungen hatten die betreffenden Feldstärken?
Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.
16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der
1. Klausur in K1 am
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60
Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.
Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu
Tutorium Physik 2. Elektrizität
1 Tutorium Physik 2. Elektrizität SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 10. ELEKTRIZITÄT 4 10.1 Coulombkraft:
Elektrotechnik Formelsammlung v1.2
Inhaltsverzeichnis 3. Das Coulombsches Gesetz...2 3.. Elementarladung...2 32. Elektrische Arbeit...2 33. Elektrische Feldstärke...2 34. Elektrische Spannung...3 34.. Ladung Q...3 34... Kondensatoren-Gesetz...3
Klausur 2 Kurs 12Ph3g Physik
2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet
Systematisierung Felder und Bewegung von Ladungsträgern in Feldern
Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des
Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12
Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011
Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:
3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov [email protected] Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus
Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt!
Aufgabe 1 An eine Reihenschaltung bestehend aus sechs Widerständen wird eine Spannung von U = 155V angelegt. Die Widerstandwerte betragen: R 1 = 390Ω R 2 = 270Ω R 3 = 560Ω R 4 = 220Ω R 5 = 680Ω R 6 = 180Ω
Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke.
Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. 2) Zwischen zwei Aluminum-Folien eines Wickelkondensators,der an einer Gleichspannung vo 60 V liegt,
Übungsblatt 4 ( )
Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt 4 (08.06.0) ) Geladene Kugeln Zwei homogen geladene Eisenkugeln mit den Ladungen Q = q = q = 0, 0µC haben einen
Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)
Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien
1. Klausur in K1 am
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 1. Klausur in K1 am 19. 10. 010 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben:
Pfui Teufel, ein widerlicher Österreicherwitz! So etwas könnte sich tatsächlich zugetragen haben. Begründung: Antwort richtig nur mit Begründung!
Musterprüfung: 1. Was ist ein Faradayscher Käfig? 2. Millikan fand auf einem Öltröpfchen eine Ladung Q von 8 10-19 C. Wie gross war die Ladung des Öltröpfchens wahrscheinlich auf vier signifikante Ziffern
Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst.
I. Elektrostatik ==================================================================. Das elektrische Feld eines Plattenkondensators Ein Plattenkondensator besteht aus zwei sich parallel gegenüberliegenden
Elektrostatik. 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab
Elektrostatik 4 Demonstrationsexperimente verwendete Materialien: Polyestertuch, Kunststoffstäbe (einer frei drehbar gelagert), Glasstab Beschreibe und erkläre die Exp. stichpunkartig. Ergebnis: - Es gibt
Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12
Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in
12. Jahrgangsstufe Abiturvorberitung Musterprüfungsaufgaben. Elektrische und magnetische Felder
Elektrische und magnetische Felder 1. Die urspründlicheste Form des Milikanversuchs war die Idee, dass zwischen zwei Platten eines Kondensators mit dem Abstand d ein Öltröpfchen der Masse m und der Ladung
Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005
Abschlussprüfung an Fachoberschulen im Schuljahr 200/200 Haupttermin: Nach- bzw Wiederholtermin: 0909200 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk
Elektrizitätslehre 2.
Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig
Das statische elektrische Feld
M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis (6 Std.) (10 Std.) In diesem Abschnitt (6 Std.) (10 Std.) Elektrischer Strom E Elektrischer Strom In Metallen befinden sich frei bewegliche
Einführung Einleitung Grundlagen Bewegung und Energie. 1.1 Grundbegriffe... 16
3 Inhaltsverzeichnis Einführung..................................................... 12 Einleitung..................................................... 12 Grundlagen.....................................................
Maßeinheiten der Elektrizität und des Magnetismus
Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange
Elektrisches Feld. Faszinierende bunte Leuchterscheinungen gehen von einer kleinen Kugel zu einer Glas hülle, vergleichbar mit ungefährlichen Blitzen.
Elektrisches Feld Faszinierende bunte Leuchterscheinungen gehen von einer kleinen Kugel zu einer Glas hülle, vergleichbar mit ungefährlichen Blitzen. Berührt man die Glaswand mit der Hand, so verändern
PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken
PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Messung von Kapazitäten Auf- und Entladung von Kondensatoren Sebastian Finkel Sebastian Wilken Versuchsdurchführung: 23. November 2005 0. Inhalt 1. Einleitung 2.
1. Statisches elektrisches Feld
. Statisches elektrisches Feld. Grundlagen der Elektrizitätslehre.. Elektrizität in Natur, Technik und Alltag Altertum: Bernstein reiben Staubteilchen und Wollfasern werden angezogen 794 Coulomb: Gesetz
Aufgaben zum Kondensator - ausgegeben am
Aufgaben zum Kondensator - ausgegeben am 17.09.2012 konden2_17_09_2012.doc 1.Aufgabe: Ein Kondensator hat die Plattenfläche A 1,2 10-2 m 2, den Plattenabstand d 0,5 mm und die Ladung Q 2,6 10-7 C. Berechnen
Übungen: Kraftwirkung in magnetischen Feldern
Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis
4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters
4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder
1 Grundlagen der Elektrizitätslehre
1 GRUNDLAGEN DER ELEKTRIZITÄTSLEHRE 1 1 ( 1 ) S t r o m q u e l l e ( ) S c h a l t e r ( 3 ) G l ü h b i r n e O 3 Abbildung 1: Ein einfacher Stromkreis I = 0 : I > 0 : ( 1 ) S t r o m l e i t e r ( )
Abschlussprüfung an Fachoberschulen im Schuljahr 2000/2001
Abschlussprüfung an Fachoberschulen im Schuljahr 2000/2001 Haupttermin: Nach- bzw. Wiederholtermin: 2.0.2001 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: Formelsammlung/Tafelwerk
Elektrostatik. Ruhende Ladungen und ihre Felder
Elektrostatik Ruhende Ladungen und ihre Felder 1.1 DIE ELEKTRISCHE LADUNG... 1.1.1 ELEKTRISCHE LADUNG... 1.1.2 DIE ELEMENTARLADUNG... 1.2 REIBUNGSELEKTRIZITÄT... 1.3 DAS GESETZ VON COULOMB... 1.4 VERGLEICH
Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur
Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:
v q,m Aufgabensammlung Experimentalphysik für ET
Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz
d = 1, 5cm ) liegt eine Spannung von
Aufgabe E-Feld Blau 1: Elektronen werden in einem Plattenkondensator von der Geschwindigkeit m v 0 s 0 auf die Geschwindigkeit beschleunigt. An den Platten (Abstand U 120V an. Wie groß ist v? = 1 d = 1,
Elektrizität und Magnetismus - Einführung
Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz
Grundwissen. Physik. Jahrgangsstufe 7
Grundwissen Physik Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Seite 1 1. Aufbau der Materie 1.1 Atome Ein Atom besteht aus dem positiv geladenen Atomkern und der negativ geladenen Atomhülle aus
Grundwissen. Physik. Jahrgangsstufe 9
Grundwissen Physik Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Seite 1 1. Elektrische Felder und Magnetfelder 1.1 Elektrisches Feld Elektrisches Kraftgesetz: Gleichnamige Ladungen stoßen sich
Aufgabe 1 - Schiefe Ebene - (10 Punkte)
- schriftlich Klasse: 4AW (Profil A) - (HuR) Prüfungsdauer: Erlaubte Hilfsmittel: Bemerkungen: 4h Taschenrechner TI-nspire CAS Der Rechner muss im Press-to-Test-Modus sein. Formelsammlung Beginnen Sie
5 Elektrizität und Magnetismus
5.1 Elektrische Ladung q Ursprung: Existenz von subatomaren Teilchen Proton: positive Ladung Elektron: negative Ladung besitzen jeweils eine Elementarladung e = 1.602 10 19 C (Coulomb) Ladung ist gequantelt
Abitur 2006: Physik - Aufgabe I
Abitur 2006: Physik - Aufgabe I Ministerium für Kultus, Jugend und Sport Baden-Württemberg Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach : Physik Haupttermin : 2006 Aufgabe : I a) Im
ELEKTRIZITÄT & MAGNETISMUS
ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung
Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B
Aufgabe 73 (Elektrizitätslehre, Lorentzkraft) Elektronen treten mit der Geschwindigkeit 2,0 10 5 m in ein homogenes elektrisches Feld ein s und durchlaufen es auf einer Strecke von s = 20 cm. Die Polung
3.1. Aufgaben zur Elektrostatik
3.1. Aufgaben zur Elektrostatik Aufgabe 1 a) Wie lassen sich elektrische Ladungen nachweisen? b) Wie kann man positive und negative elektrische Ladungen unterscheiden? c) In welcher Einheit gibt man elektrische
Vorlesung 2: Elektrostatik II
Einheit der elektrischen Ladung: Das Millikan-Experiment (1910, Nobelpreis 1923) Vorlesung 2: Elektrostatik II Sehr feine Öltröpfchen (
Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG
3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt
Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.
Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz
IIE2. Modul Elektrizitätslehre II. Dielektrika
IIE2 Modul Elektrizitätslehre II Dielektrika Ziel dieses Versuches ist, die Funktionsweise eines Kondensators mit Dielektrikum zu verstehen. Des weiteren soll die Kapazität des Kondensators und die relative
2. Elektrisches Feld 2.2 Elektrostatisches Feld
Definition Verschiebungsfluß und Verschiebungsflußdichte Arbeit im elektrostatischen Feld Feld einer geladenen Kugel, Zylinder Potential im elektrischen Feld Feld einer Linienladung 1 Feldbegriff Elektrisches
Physik auf erhöhtem Niveau. Kurs PH
Physik auf erhöhtem Niveau Kurs PH1 20162018 Themen der Semester Elektrizität (11.1) Schwingungen und Wellen (11.2) Quantenobjekte (12.1) Atomhülle (12.1) Atomkern (12.2) The important thing in science
PS III - Rechentest
Grundlagen der Elektrotechnik PS III - Rechentest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 Summe Punkte 3 15 10 12 11 9 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und
Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld
Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 011 Teilchenbahnen im elektrischen Querfeld 1) Elektronen starten an der negativen Platte eines Kondensators (d = 5 mm, U = 300 V) und
Kräfte zwischen Ladungen: quantitative Bestimmung
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #3 am 25.04.2007 Vladimir Dyakonov Kräfte zwischen Ladungen: quantitative Bestimmung Messmethode:
Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses.
Schriftliche Abiturprüfung 2005 Seite 1 Hinweise: Zugelassene Hilfsmittel: Taschenrechner Die Aufgaben umfassen 5 Seiten. Die Zahlenwerte benötigter Konstanten sind nach der Aufgabe III zusammengefasst.
Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für
+ Kapitel 4 KAPAZITÄT und ENERGIE 4. Kondensator Ein Kondensator besteht typischerweise aus zwei Leiterplatten, die sich in einem kleinen Abstand voneinander befinden. Meist liegt zwischen den Elektroden
Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1
Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1 Geräte: Netzgerät mit Strom- und Spannungsanzeige, 2 Vielfachmessgeräte, 4 Kabel 20cm, 3 Kabel 10cm, 2Kabel 30cm, 1 Glühlampe 6V/100mA,
Elektrische Ladungen und Felder
DornBader Physik 12/13 S. 7 ff Elektrische Ladungen und Felder 1. Ladungen und ihre Eigenschaften ABB. 1 Es gibt 2 Ladungsarten: Plus und Minusladungen. Versuch: Nachweis der Polarität mit der Glimmlampe!
Übungsblatt 3 - Lösungen
Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.
Alte Physik III. 10. Februar 2011
D-MATH/D-PHYS Prof. R. Monnier Studienjahr HS11 ETH Zürich Alte Physik III 10. Februar 2011 Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus, und kreuzen Sie Ihre Studienrichtung
Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen
Grundlagen der Elektrotechnik I 17 11.01.01 Einführung eines Einheitensystems.1 Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Physikalische Größen: Meßbare,
Elektrotechnik & Elektronik allgegenwärtig: Beleuchtung, Heizung, E-Motore, Haushaltsgeräte, Computer...
4. Elektrizitätslehre tslehre Elektrotechnik & Elektronik allgegenwärtig: Beleuchtung, Heizung, E-Motore, Haushaltsgeräte, Computer... Vielfältige Anwendungsmöglichkeiten sind (prinzipiell) schon durch
Nikolaus-von-Kues-Gymnasium BKS Sehr gute Leiter. Physik Der elektrische Strom. Cu 108. 1 Valenzelektron
Sehr gute Leiter Cu Z=29 Ag Z=47 Au Z=79 64 29 Cu 108 47 Ag 197 79 Au 1 Valenzelektron Die elektrische Ladung e - p + Die Grundbausteine der Atome (und damit aller Materie) sind Elektronen und Protonen
Aufgabensammlung zu Kapitel 2
Aufgabensammlung zu Kapitel 2 Aufgabe 2.1: Ein Plattenkondensator (quadratische Platten der Kantenlänge a=15cm, Plattenabstand d=5mm) wird an eine Gleichspannungsquelle mit U=375V angeschlossen. Berechnen
Elektrische Ladung und elektrischer Strom
Elektrische Ladung und elektrischer Strom Es gibt positive und negative elektrische Ladungen. Elektron Atomhülle Atomkern Der Aufbau eines Atoms Alle Körper sind aus Atomen aufgebaut. Ein Atom besteht
Probeklausur 1 - Einführung in die Physik - WS 2014/ C. Strassert
Probeklausur - Einführung in die Physik - WS 04/05 - C. Strassert Erdbeschleunigung g= 9.8 m/s ; sin0 = cos 60 = 0.5; sin 60 = cos 0 = 0.866;. 4 ) Ein Turmspringer lässt sich von einem 5 m hohen Sprungturm
PS II - Verständnistest
Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:
Basiskenntnistest - Physik
Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit
1.1 Wiederholung des Grundwissens der Mittelstufe. In der Atomhülle befinden sich die negativ geladenen Elektronen.
Kapitel 1 Statisches elektrisches Feld 1.1 Wiederholung des Grundwissens der Mittelstufe 1.1.1 Elektrisch geladene Teilchen und Körper Alle Körper sind aus Atomen bzw. Molekülen aufgebaut, wobei Moleküle
Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen:
Elektrotechnische Grundlagen, WS 00/0 Prof. aitinger / Lammert esprechung: 06..000 ufgabe Widerstandsnetzwerk estimmen Sie die Werte der Spannungen,, 3 und 4 sowie der Ströme, I, I, I 3 und I 4 in der
Spezifische Ladung des Elektrons
Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch
1 Elektrostatik 1.1 Ladung 1.1.1 Eigenschaften
1 Elektrostatik 1.1 Ladung 1.1.1 Eigenschaften 1 Das heutige Bild vom Aufbau eines Atoms Größe < 10-18 m Größe 10-14 m Größe < 10-18 m Größe 10-15 m Größe 10-10 m 2 Ausblick: Ladung der Quarks & Hadronen
4. Beispiele für Kräfte
4. Beispiele für Kräfte 4.1 Federkraft 4.2 Gravitation 4.3 Elektrische Kraft 4.4 Reibungskraft 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft, Dipolkraft, Schubskraft, Coulombkraft,
Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen.
Spannung und Strom E: Klasse: Spannung Die elektrische Spannung gibt den nterschied der Ladungen zwischen zwei Polen an. Spannungsquellen besitzen immer zwei Pole, mit unterschiedlichen Ladungen. uf der
Elektrostatik. Elektrische Ladung. Reiben von verschiedenen Materialien: Kräfte treten auf, die auf Umgebung wirken
Elektrostatik 1. Ladungen Phänomenologie 2. Eigenschaften von Ladungen i. Arten ii. Quantisierung iii. Ladungserhaltung iv.ladungstrennung v. Ladungstransport 3. Kräfte zwischen Ladungen, quantitativ 4.
Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)
Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie
Tutorium Physik 2. Elektrizität
1 Tutorium Physik. Elektrizität SS 16.Semester BSc. Oec. und BSc. CH 4.016 Tutorium Physik Elektrizität Großmann Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 1. Radioaktivität
Induktion, Polarisierung und Magnetisierung
Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser
Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995
Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft
Prof. Dr. Caren Hagner
Prof. Dr. Caren Hagner Borexino Experiment (Gran Sasso, Italien) Universität Hamburg Institut für Experimentalphysik Luruper Chaussee 149 22761 Hamburg Email: [email protected] Büro: DESY Gelände Bahrenfeld,
GW 7 Physikalische Grundlagen
eite 1 von 6 GW 7 Physikalische Grundlagen RMG Ein physikalisches Experiment ist eine Frage an die atur. Es wird unter festgelegten Voraussetzungen durchgeführt und muss reproduzierbar sein. Die Ergebnisse
Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron
Elektrostatik 1. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Kräfte zwischen Ladungen, quantitativ 4. Elektrisches Feld 5. Der Satz von Gauß 6. Das elektrische Potenzial und Potenzialdifferenz
Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG
Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil
