Probeklausur: Thermodynamik
|
|
|
- Bertold Stein
- vor 7 Jahren
- Abrufe
Transkript
1 E2-E2p: Experimentalphysik 2 Prof. J. Lipfert SS 2018 Probeklausur: Thermodynamik Probeklausur: Thermodynamik Vorname: Nachname: Matrikelnummer: Studiengang: Fachsemester: Studierende der E2p (6 ECTS) müssen die mit * markierten (Teil-)Aufgaben nicht bearbeiten. Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis bereit. Nur dokumentenechte Schreiber verwenden. Blätter mit Eintragungen von Bleistift, Tippex oder Tintenkiller können nicht bewertet werden! Hilfsmittel: Taschenrechner, ein beidseitig beschriebenes DIN A4 Blatt, Wörterbuch Bearbeitungszeit: 90 min Ergebnisse bitte nur auf die Aufgabenblätter (ggf. auch die Rückseiten beschreiben). Viel Erfolg! Aufgabe Erreichte Punkte Mögliche Punkte Korrektor Einige nützliche Konstanten Dichte von Luft bei Normaldruck und T = 20 C: 1,2 kg/m 3 Dichte von Wasser bei Normaldruck und T = 20 C: 1000 kg/m 3 Viskosität von Wasser bei Normaldruck und T = 20 C: 0,001 Pa s = 0,001 kg/(m s) Normaldruck: 1 atm = 1013 mbar = 1, Pa Avogadro-Konstante: N A = 6, mol 1 Boltzmann-Konstante: k B = 1, J/K Gas-Konstante: R = 8,314 J/(K mol) 1cal(Kalorie) 4,2 J Plancksches Wirkungsquantum (Planck-Konstante): h Js Masse eines Elektrons: m e = kg Atomare Masseneinheit: u = kg Elektronenvolt: 1 ev J 1
2 Aufgabe 1 Verständnisfragen (30 Punkte). Geben Sie kurze Antworten (1-2 Sätze, bzw. kurze Rechnung, bzw. einfache Skizze) auf die folgenden Fragen. a) Maxwell-Boltzmann Verteilung. Der Plot unten zeigt die Geschwindigkeitsverteilung der Moleküle eines Gases bei drei verschiedenen Temperaturen. Ordnen Sie die drei Kurven (A, B, C) von großen zu kleinen Temperaturen. b) Wärmekapazität. Einem monoatomaren, idealem Gas wird bei konstantem Volumen eine Wärmemenge Q = 100 J zugeführt, wodurch sich die Temperatur des Gases um T =5 C erhöht. Welche Wärmemenge muss man dem Gas zuführen, um die gleiche Erwärmung um T unter konstantem Druck zu erreichen? c) Zustandssumme. Was ist die Zustandssumme eines Teilchens mit zwei Energieniveaus E 1 und E 2, die jeweils eine Multiplizität von 2 haben? d) Wirkungsgrad. Eine Wärmekraftmaschine nimmt in jedem Zyklus 150 J aus einem Reservoir mit 100 C auf und gibt 125 J an ein Reservoir mit 20 Cab.i)Wiehochistder Wirkungsgrad dieser Maschine? ii) Wie hoch ist der Wirkunsgrad im Verhältnis zum Carnot- Wirkungsgrad bei denselben Reservoiren? 2
3 e) Dampfdruckkurven. Zeichnen Sie schematisch die Sättigungsdampfdruckkurven von i) Wasser und ii) Ethanol in ein p Sätt als Funktion von T Koordinatensystem. f) Längenänderung I. Die erste Eisenbahnlinie in Deutschland war die (fast) gerade 6,0 km lange Eisenbahnstrecke von Nürnberg nach Fürth. Unter der Annahme, dass es sich um durchgehende Stahlschienen handelte, wie groß ist die Längenänderung der Schienen zwischen kaltem Winterwetter (T = 10 C) und warmen Sommerwetter (T = 30 C)? Der thermische Längenausdehnungskoe zient von Stahl beträgt = / C. g) Längenänderung II. Wenn wir davon ausgehen, dass die Schienen in der letzten Teilaufgaben bei warmen Sommerwetter spannungsfrei verlegt wurden und eine Querschnittsfläche von 20 cm 2 haben, wie groß sind die in der Schiene wirkende Kräfte bei kaltem Winterwetter? Hinweis: Der Elastizitätsmodul von Stahl ist E = 200 GPa. h) Nebelkammer. Warum können in einem Nebelkammer-Teilchendetektor nach Wilson Neutronen nicht (oder nur indirekt) nachgewiesen werden? 3
4 i) Planck-Spektrum*. Der Plot unten zeigt die spektrale Energiedichte bei drei verschiedenen Temperaturen. Ordnen Sie die drei Kurven (A, B, C) von großen zu kleinen Temperaturen. j) Hitzeindex*. Im Wetterbericht wird zunehmend eine gefühlte Temperatur (T f ) angegeben. Bei hohen Temperaturen steigt die gefühlte Temperatur T f für gegebenes T mit der relativen Luftfeuchtigkeit (z.b.: Bei T = 30 CistT f = 29 Cbei = 40% und T f = 40 C bei = 100%). Warum steigt T f mit der relativen Luftfeuchte an? k) Ofen*. Ein Kollege von Ihnen möchte eine kleine Probe ( sample ) auf 900 K erwärmen. Leider hat er nur einen Ofen ( oven ) zur Verfügung, der eine maximale Temperatur von 600 K erreicht. Daher plant er, eine große Linse ( lens ) zu benutzen, um die Wärmestrahlung auf die Probe zu bündeln. Was halten Sie von diesem Plan? 4
5 Aufgabe 2 Einsteinmodell des Festkörpers. Einstein verö entlichte 1907 ein Modell, dass die Wärmekapazität von Festkörpern über einen großen Temperaturbereich gut beschreibt. a) Was sind die Annahmen/Modellvorstellungen des Einsteinmodell für die Wärmekapazität eines Festkörpers, der aus N Atomen besteht? b) Die innere Energie des Festkörpers im Einsteinmodell ist U 3Nk B E e E /T 1 wobei E die Einsteintemperatur ist. Für Diamant ist E 1300 K. Berechnen Sie die innere Energie für 1 mol Diamant bei T = 100 K und T = 2000 K. c) Zeigen Sie, dass die innere Energie in der oben angegebenen Formel für T! 0 exponentiell gegen Null geht. 5
6 Aufgabe 3 Van der Waals Gas. Wir betrachten 1 mol eines van der Waals Gases, das durch folgende Zustandsgleichung beschrieben wird p + a V 2 (V b) =RT a) Was ist die physikalische Bedeutung der Parameter a und b? b) Jetzt betrachten wir eine isotherme Expansion des Gases von einem Volumen V 1 zu einem Volumen V 2 (> V 1 ) bei einer Temperatur T 0. Zeigen Sie, dass die vom Gas dabei verrichtete Arbeit [dies entspricht 1 (am System verichtete Arbeit)] durch folgenden Ausdruck gegeben ist: V2 b 1 1 RT 0 ln + a V 1 b V 2 V 1 c) Für ein Gas bei dem b 0 und a > 0, ist die vom Gas verichtete Arbeit größer, kleiner oder gleich der Arbeit, die ein ideales Gas bei der gleichen Expansion verrichten würde? 6
7 Aufgabe 4 Arbeit im pv-diagramm. 1,0 mol eines idealen Gases durchläuft den reversiblen Zyklus ABCA im unten gezeigten pv-diagramm. Die Kurve AB ist eine Isotherme bei T h ( hot ). Der Punkt C befindet sich bei einer Temperature T c ( cold ). a) Handelt es sich bei diesem Zyklus um eine Wärmekraftmaschine (die Arbeit leistet) oder um eine Kraftwärmemaschine (Wärmepumpe/Kältemaschine)? Warum (ohne Rechnung!)? b) Berechnen Sie die Wärmeaufnahme des Gases während der isothermen Expansion AB (als Funktion der im Diagramm gegebenen Größen und etwaiger Naturkonstanten). c) Berechnen Sie die netto Wärmeaufnahme des Gases für den gesamten Zyklus ABCD. Hinweise: i) Verwenden Sie das Ergebnis aus der letzten Teilaufgabe. ii) Es kann sinnvoll sein, die Schritte BC und CA zusammen zu betrachten. 7
8 Aufgabe 5* Eisschicht*. Auf der Wasseroberfläche eines Wassertanks hat sich bei kaltem Wetter (Lufttemperatur T L = 10 C) eine h = 5 cm dicke Eisschicht gebildet, siehe Abbildung. Die Wärmeleitfähigkeit von Eis beträgt = 2 W/(m K) und seine Dichte sei 0,92 g/cm 3.Die Wände und der Boden des Tanks seien so gut isoliert, dass die Wärmeleitung durch sie zu vernachlässigen ist. Berechnen Sie die Zuwachsrate der Eisschicht in cm/h. 8
Übungsblatt 2 ( )
Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung
Musterlösung Übungsklausur zur Vorlesung PC I Chemische Thermodynamik B.Sc.
Musterlösung Übungsklausur zur Vorlesung PC I Chemische Thermodynamik B.Sc. Angaben zur Person: (bitte leserlich und in Druckbuchstaben) Name, Vorname: Geburtsdatum und ort: Matrikelnummer: Studienfach,
Thermodynamische Hauptsätze, Kreisprozesse Übung
Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermodynamische Hauptsätze 3 1.1 Aufgabe 1:.................................... 3 1.2 Aufgabe
Grundlagen der statistischen Physik und Thermodynamik
Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die
Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik
13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.
1. Klausur zur Vorlesung Physikalische Chemie I
1. Klausur zur Vorlesung Physikalische Chemie I Sommersemester 2006 8. Juni 2006 Angaben zur Person (BITTE LESERLICH UND IN DRUCKBUCHSTABEN) Name, Vorname... Geburtsdatum und -ort... Matrikelnummer...
Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.
Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische
Probeklausur STATISTISCHE PHYSIK PLUS
DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben
Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik
Name: Klausur Wärmelehre E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen, Mehrfachnennungen möglich) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten [E2p-Kandidaten
Physik 2 (B.Sc. EIT) 2. Übungsblatt
Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,
Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler
TU München Reinhard Scholz Physik Department, T33 Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler http://www.wsi.tum.de/t33/teaching/teaching.htm Übung in Theoretischer Physik B (Thermodynamik)
Grundlagen der Physik II
Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur
Die 4 Phasen des Carnot-Prozesses
Die 4 Phasen des Carnot-Prozesses isotherme Expansion: A B V V T k N Q ln 1 1 isotherme Kompression: adiabatische Kompression: adiabatische Expansion: 0 Q Q 0 C D V V T k N Q ln 2 2 S Q 1 1 /T1 T 1 T 2
Wiederholungsklausur
PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2016/17 Wiederholungsklausur Wiederholungsklausur Vorname: Nachname: Matrikelnummer: Studiengang: Chemie Biologie Lehramt Sonstiges: Bitte schreiben
Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme
Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere
Experimentalphysik EP, WS 2011/12
FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/ Probeklausur (ohne Optik)-Nummer:. Februar 0 Hinweise zur Bearbeitung Alle benutzten
1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen!
1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ****** Druck und Volumen Gesetz von Boyle-Mariotte:
Aufgabe 4 3. Hauptsatz* Beschreiben Sie in einem Satz die Aussage des dritten Hauptsatzes der Thermodynamik.
E-Ep: Experimentalphysik Prof. J. Lipfert SS 018 Übungsblatt 5 Thermodynamik 5 Das 5. Übungsblatt wird in der Zentralübung am Dienstag den 15. Mai von 1-14 Uhr im großen Physikhörsaal besprochen. Aufgaben,
Klausur Wärmelehre E2/E2p SoSe 2013 Braun. Formelsammlung Thermodynamik
Klausur Wärmelehre E2/E2p SoSe 2013 Braun Name: Matrikelnummer: O E2 O E2p (bitte ankreuzen) Die mit Stern (*) gekennzeichneten Aufgaben sind für E2-Kandidaten vorgesehen. E2p-Kandidaten dürfen diese Aufgabe
10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess
Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit
Klausur. Physik für Pharmazeuten und Biologen (PPh) WiSe 07/ Februar 2008
Klausur Physik für Pharmazeuten und Biologen (PPh) WiSe 07/08 11. Februar 2008 Name: Matrikel-Nr.: Fachrichtung: Semester: Bearbeitungszeit: 90 min Bitte NICHT mit Bleistift schreiben! Nur Ergebnisse auf
T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag
T4p: Thermodynamik und Statistische Physik Pro Dr H Ruhl Übungsblatt 8 Lösungsvorschlag 1 Adiabatengleichung Als adiabatische Zustandssänderung bezeichnet man einen thermodynamischen organg, bei dem ein
Aufgaben zur Wärmelehre
Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer
Experimentalphysik für Naturwissenschaftler II Universität Erlangen Nürnberg SS Klausur ( )
Nur vom Korrektor auszufüllen! 1 2 3 4 5 6 7 8 9 10 Note Name (in Druckbuchstaben): Experimentalphysik für Naturwissenschaftler II Universität Erlangen Nürnberg SS 2011 Klausur (29.7.2011) Studiengang:
Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.
Fakultät für Physik der LMU München Prof. Ilka Brunner Vorlesung T4p, WS08/09 Klausur am 11. Februar 2009 Name: Matrikelnummer: Erreichte Punktzahlen: 1.1 1.2 1.3 2.1 2.2 2.3 2.4 Hinweise Die Bearbeitungszeit
E2: Wärmelehre und Elektromagnetismus 6. Vorlesung
E2: Wärmelehre und Elektromagnetismus 6. Vorlesung 26.04.2018 Heute: - Kondensationskerne - Van der Waals-Gas - 2. Hauptsatz https://xkcd.com/1166/ Prof. Dr. Jan Lipfert [email protected] 26.04.2018 Prof.
Physikalisch-chemische Grundlagen der Verfahrenstechnik
Physikalisch-chemische Grundlagen der Verfahrenstechnik Günter Tovar, Thomas Hirth, Institut für Grenzflächenverfahrenstechnik [email protected] Physikalisch-chemische Grundlagen der
a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)
Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche
O. Sternal, V. Hankele. 5. Thermodynamik
5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe
1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen!
1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen! Aggregatzustände Fest, flüssig, gasförmig Schmelz -wärme Kondensations -wärme Die Umwandlung von Aggregatzuständen
Skript zur Vorlesung
Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für
Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013
Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Klausur Prof. Dr. U. Schollwöck Sommersemester 2013 Matrikelnummer: Aufgabe 1 2 3 4 5 6 Summe Punkte Note: WICHTIG! Schreiben
1. Wärmelehre 1.1. Temperatur Wiederholung
1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber
Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.
Fakultät für Physik der LMU München Prof. Ilka Brunner Michael Kay Vorlesung T4, WS11/12 Klausur am 18. Februar 2012 Name: Matrikelnummer: Erreichte Punktzahlen: 1 2 3 4 5 6 Hinweise Die Bearbeitungszeit
Beispiel für ein thermodynamisches System: ideales Gas (Edelgas)
10. Hauptsätze tze der Wärmelehre Thermodynamik: zunächst: Klassische Mechanik punktförmiger Teilchen, starrer und deformierbarer Körper aber: Bewegungsgleichungen für N=10 23 Teilchen mit 6N ariablen
Experimentalphysik EP, WS 2012/13
FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/3 Probeklausur (ohne Optik)-Nummer: 7. Januar 03 Hinweise zur Bearbeitung Alle benutzten
TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf
TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T
Allgemeines Gasgesetz. PV = K o T
Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,
T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse
Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man
Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.
(c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 14. 05. 2007 Othmar Marti [email protected] Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.
4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:
Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar
Klausur PC 2 Kinetik und Struktur
Klausur PC 2 Kinetik und Struktur Wintersemester 2016, 19. ebruar 2016 Beachten Sie bitte: Ich bin mit Veröffentlichung der Ergebnisse im Internet unter Angabe der Matr-Nr. (NICHT des Namens) einverstanden
Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt
1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei
Thermodynamik I Klausur 1
Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare
Physik 1 für Chemiker und Biologen 13. Vorlesung
Physik 1 für Chemiker und Biologen 13. Vorlesung 30.01.2017 Diese Woche (30.1.-3.2.): Vorlesung heute: o Thermodynamik & statistische Physik o Kurzer Ausblick: Spezielle Relativitätstheorie Übungen: Besprechung
Abschlussklausur. Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis bereit.
PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2015/16 Abschlussklausur Abschlussklausur Name: Matrikelnummer: Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis
Physikalische Chemie 0 Klausur, 22. Oktober 2011
Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden
1 Thermodynamik allgemein
Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der
Thermodynamik 1 Klausur 08. September 2016
Thermodynamik 1 Klausur 08. September 2016 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten Alle Unterlagen zur Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind
ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14,
ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, 12.02.2016 Aufgabe 1 Kreisprozesse Mit einem Mol eines idealen, monoatomaren Gases (cv = 3/2 R) wird, ausgehend
2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme
2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen
PC-Übung Nr.3 vom
PC-Übung Nr.3 vom 31.10.08 Sebastian Meiss 25. November 2008 1. Die Säulen der Thermodynamik Beantworten Sie folgende Fragen a) Welche Größen legen den Zustand eines Gases eindeutig fest? b) Welche physikalischen
CMB Echo des Urknalls. Max Camenzind Februar 2015
CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen
Wärmelehre Zustandsänderungen ideales Gases
Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener
Wärmelehre/Thermodynamik. Wintersemester 2007
Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 ladimir Dyakonov #0 am 4.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,
Probeklausur. Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis bereit.
PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Probeklausur Probeklausur Name: Matrikelnummer: Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis
Thermodynamik 1 Klausur 02. August 2010
Thermodynamik 1 Klausur 02. August 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als
ST Der Stirling-Motor als Wärmekraftmaschine
ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische
Kapitel 8: Thermodynamik
Kapitel 8: Thermodynamik 8.1 Der erste Hauptsatz der Thermodynamik 8.2 Mechanische Arbeit eines expandierenden Gases 8.3 Thermische Prozesse des idealen Gases 8.4 Wärmemaschine 8.5 Der zweite Hauptsatz
Physik für Bauingenieure
Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl
E2: Wärmelehre und Elektromagnetismus 5. Vorlesung
E2: Wärmelehre und Elektromagnetismus 5. Vorlesung 23.04.2018 Heute: - Phasenübergänge - van der Waals-Gas https://xkcd.com/1561/ Prof. Dr. Jan Lipfert [email protected] 23.04.2018 Prof. Dr. Jan Lipfert
Grundlagen der Quantentheorie
Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische
Allgemeine Gasgleichung und technische Anwendungen
Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:
Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.
Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,
4.6.5 Dritter Hauptsatz der Thermodynamik
4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden
Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15
Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................
Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden.
Wärmemenge: hermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Sie kann aber unter gewissen oraussetzungen von einem Körer auf einen nderen übertragen werden. Dabei
Experimentalphysik EP, WS 2013/14
FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. J. Schreiber, PD. W. Assmann Experimentalphysik EP, WS 2013/14 Probeklausur (ohne Optik)-Nummer: 7. Januar 2014 Hinweise zur Bearbeitung
Thermodynamik 2 Klausur 19. September 2013
Thermodynamik 2 Klausur 19. September 2013 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind
Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V.
Gesetz von Boyle Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V Isothermen Gesetz von Gay-Lussac Jacques Charles und Joseph-Louis Gay-Lussac fanden
Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie
Bachelorstudiengang / Diplomstudiengang CBI - Teil Physikalische Chemie - WS0809 - Blatt 1 / 16 Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik Teil 1: Physikalische Chemie
Hochschule Düsseldorf University of Applied Sciences. 26. April 2017 HSD. Energiespeicher Wärme
Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere
Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik
Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/
Auswahl von Prüfungsfragen für die Prüfungen im September 2011
Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen
Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz
Zur Erinnerung Stichworte aus der 9. orlesung: Wärmetransort durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung Planck sches Strahlungsgesetz Stefan-Boltzman-Gesetz Wiensches erschiebungsgesetz Hautsätze
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen
Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester
Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester 1. Temperaturmessung Definition der Temperaturskala durch ein reproduzierbares thermodynam. Phänomen, dem Thermometer Tripelpunkt: Eis Wasser - Dampf
13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre
13.Wärmekapazität EP Vorlesung 14 II) Wärmelehre 10. Temperatur und Stoffmenge 11. Ideale Gasgleichung 12. Gaskinetik 13. Wärmekapazität 14. Hauptsätze der Wärmelehre Versuche: Mechanisches Wärmeäquivalent
Probeklausur zu Physikalische Chemie II für Lehramt
Department Chemie Dr. Don C. Lamb http://www.cup.uni-muenchen.de/pc/lamb Probeklausur zu Physikalische Chemie II für Lehramt Zur Bearbeitung der Klausur ist nur der freie Platz dieser vor Ihnen liegenden
4 Hauptsätze der Thermodynamik
I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #12 10/11/2010 Vladimir Dyakonov [email protected] Konvektion Verbunden mit Materietransport Ursache: Temperaturabhängigkeit der Dichte In Festkörpern
Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3
Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm
Vorlesung Physik für Pharmazeuten PPh Wärmelehre
Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild
Statistik und Thermodynamik
Klaus Goeke Statistik und Thermodynamik Eine Einführung für Bachelor und Master STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis I Grundlagen der Statistik und Thermodynamik 1 1 Einleitung 3 2 Grundlagen der
Thermodynamik I Klausur WS 2010/2011
Thermodynamik I Klausur WS 010/011 Aufgabenteil / Blatt 1-50 Minuten Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden.
Hauptsatz der Thermodynamik
0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren
d) Das ideale Gas makroskopisch
d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind
Thermodynamik 1 Klausur 12. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.
Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 12. März 2014 Bearbeitungszeit: 150 Minuten Umfang der Aufgabenstellung:
2. Klausur zur Vorlesung Physikalische Chemie II - Wintersemester 02/ Februar 2003, Uhr
2. Klausur zur Vorlesung Physikalische Chemie II - Wintersemester 02/03 07. Februar 2003, 10 15 -- 13 00 Uhr Name, Vorname:... Geburtsdatum, -ort:... Matrikelnummer:... Studienfach, Fachsemester:... Hinweise
Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert
Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht
Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:
Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände
Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt
Physikalisches Anfaengerpraktikum Zustandsgleichung idealer Gase und kritischer Punkt Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Freitag, 18. März 005 email: [email protected]
f) Ideales Gas - mikroskopisch
f) Ideales Gas - mikroskopisch i) Annahmen Schon gehabt: Massenpunkte ohne Eigenvolumen Nur elastische Stöße, keine Wechselwirkungen Jetzt dazu: Wände vollkommen elastisch, perfekte Reflektoren Zeitliches
