NATURLEHRE OPTIK. 1. Optik
|
|
|
- Sebastian Burgstaller
- vor 7 Jahren
- Abrufe
Transkript
1 1. Optik Optik (griechisch optike Lehre vom Sichtbaren, optiko zum Sehen gehörig, zu opsis das Sehen ) ist ein Bereich der Physik, der sich mit der Ausbreitung von Licht und dessen Wechselwirkung mit Materie, insbesondere im Zusammenhang mit optischen Abbildungen, beschäftigt. Optik wird daher auch als die Lehre vom Licht bezeichnet. Was siehst du? 1
2 2. Aufbau und Funktion des menschlichen Auges 2.1. Anatomie und Sehfunktion Sehen bedeutet, dass Lichtstrahlen, die ins Auge fallen, lichtempfindliche Rezeptoren und dadurch Nerven anregen, Signale ans Gehirn zu senden. Ins Auge gelangen die Lichtstrahlen durch die Pupille und Linse, die durch die mit Augenwasser gefüllten Augenkammern geschützt werden. Die Linse bündelt die Lichtstahlen und führt zu einem klaren Abbild der Umgebung auf der Netzhaut, die sich an der Rückwand des Auges befindet. Die Netzhaut ist eine Schicht aus überaus feinen lichtempfindlichen Rezeptoren und dünnen Nervenzellen, die den Lichteindruck ins Gehirn weiterleiten. Die Photorezeptoren reagieren auf das Licht und schicken Signale über die dünnen Nervenfasern zum Sehnerv, der von der Rückwand des Auges in das Gehirn führt. Man empfindet oder ( sieht ) nun das Bild. Dort wo die Sehzellen am dichtesten sitzen und deshalb besonders scharfes Sehen ermöglicht wird, spricht man vom gelben Fleck. Dort wo die Sehnerven aus dem Auge austreten, sind keine Sehzellen vorhanden. Deshalb ist das Auge an dieser Stelle blind. Das nennt man blinder Fleck. Das ganze Auge hat etwa die Form einer kleinen Kugel mit einem Durchmesser von ca. 22 mm, deshalb spricht man auch vom Augapfel. Die Augenmuskeln dienen zur Drehung der Augen in den Augenhöhlen. Die Augen liegen geschützt in den Augenhöhlen, die von Schädelknochen gebildet werden. Zusätzlichen Schutz bietet die äussere Haut des Auges aus festem weissem Gewebe (Lederhaut). Sie geht vorne in die durchsichtige Hornhaut über, die die Aufgabe hat, die Linse zu schützen. Die zweite Gewebsschicht des Auges ist dunkel und von vielen Blutgefässen durchzogen (Aderhaut). Der vordere Teil dieser Schicht, die Regenbogenhaut oder Iris, liegt zwischen der Hornhaut und der Linse. In der Mitte hat die Iris ein Loch, die Pupille. Mit Hilfe von Muskeln kann die Regenbogenhaut die Pupille vergrössern und verkleinern und dadurch steuern, wie viel Licht durch die Pupille auf die Linse und damit ins Auge fällt. Die Farbe der Iris bezeichnet die Augenfarbe. Hinter der Pupille liegt die Linse. Von der Linse verlaufen feine Muskelfasern (Ringmuskeln) zu der festen, äusseren Haut des Augapfels, die die Dicke der Linse verändern können. Das ist notwendig, damit sowohl von nahe gelegenen als auch von weiter entfernten Gegenständen ein scharfes Bild auf der Netzhaut entsteht. Die dritte Schicht, die innerste Auskleidung des Augapfels, ist die Netzhaut. Sie besteht aus einer Schicht von lichtempfindlichen Nervenzellen. Die Nervenzellen der Netzhaut stellen einen kleinen Computer dar, der bereits in der Netzhaut das Bild verbessert. Mit den Netzhautnervenzellen wird der Bildkontrast verbessert, die Farben leuchtender gemacht und Bewegungen im Bild deutlicher dargestellt. Der Augapfel ist mit einer durchsichtigen, gallertartigen Masse (Glaskörper) gefüllt, die die Bündelung der Lichtstrahlen fördert und dazu beiträgt, dass der Augapfel seine Form behält. Die Augen werden durch Ober- und Unterlider geschützt. Im Oberlid ist eine kleine Tränendrüse, aus der die Tränen kommen. Tränen sind nicht nur da, damit man weinen kann, sie halten auch die Augen feucht und sauber. Die Augenlider blinzeln ungefähr 20x pro Minute. Dadurch werden Staubteilchen von den Augen abgehalten und die Tränenflüssigkeit ständig über die Augenoberfläche verteilt. 2
3 Ordne den einzelnen Teilen ihre Funktion zu und beschrifte sie. 1 Helligkeitsregulierung (Adaption) 2 Besteht aus Gallerte und dient der Formerhaltung des Auges 3 Benetzen die Hornhautoberfläche 4 Wirkt mit der Hornhaut zusammen als Sammellinse, regelt den Innendruck des Auges und schützt die Linse 5 Ernährt die Gewebe des Auges 6 Bricht die Lichtstrahlen so, dass auf der Netzhaut ein scharfes Bild entsteht 7 Sehr zäh, gibt dem Auge die Form und schützt es dient der Veränderung der Linsenform und damit der Anpassung der Brechkraft (Akkommodation) Wirkt durch ihre Wölbung als Sammellinse und schützt das Auge nach aussen Über 100 Millionen Stäbchenzellen dienen dem Hell- Dunkelsehen und 5 Millionen Zäpfchenzellen dem Farbensehen Vertiefung mit besonders vielen Zäpfchenzellen; ermöglicht die schärfste Abbildung Sammelstelle der Nervenfasern; ohne lichtempfindliche Sinneszellen, darum blinde Stelle 13 Dienen der Einstellung des Auges 14 Verbindet Augapfel mit Gesichtshaut 15 Die von den Sehzellen gelieferten elektrischen Impulse werden zum Gehirn weitergegeben und zu einem Bild zusammengebaut 3
4 2.2. Experiment - Blinder Fleck Sieh dir das Bild mit Zielscheibe und Kamel aus etwa 20-30cm Abstand an. Halte dein linkes Auge zu und fixiere mit dem rechten Auge die Zielscheibe (sieh nicht bewusst auf das Kamel). Verändere den Abstand von Bildschirm etwas und bewege auch den Kopf leicht hin und her. Es gibt eine Position bei der du das Kamel einfach nicht mehr siehst. Übe etwas! Eigentlich müsstest du einen schwarzen Fleck sehen. Dies verhindert dein Gehirn, indem es dir ein Bild vorgaukelt, das so ähnlich wie die sichtbare Umgebung ist. 4
5 2.3. Bau der Netzhaut Die Netzhaut, oder Retina, ist ein wichtiger Bereich im Auge. Um die einfallenden Lichtstrahlen als ein "Bild" zu erkennen, verfügt die Netzhaut über eine komplexe Struktur. Obwohl nur 0,1 bis 0,5 Millimeter dick, besteht die Netzhaut aus einer äusseren und einer inneren Schicht. Die äussere Schicht ist das retinale Pigmentepithel. Sie hat verschiedene wichtige Aufgaben; u.a. ist sie verantwortlich für: den Vitamin A Stoffwechsel, die Lichtabsorption, den Wärmeausgleich zur Aderhaut, die "Entsorgung" von abgestossenen Photorezeptorzellen, die sich laufend erneuern Die innere Netzhautschicht wird als neurosensorische Netzhaut bezeichnet. Sie ist sehr viel komplexer aufgebaut: aus einer Photorezeptorschicht, grossen Ganglienzellen und bipolaren Ganglienzellen. In der Photorezeptorschicht befinden sich die als Stäbchen und Zapfen bezeichneten Rezeptoren, die für die Umwandlung des einfallenden Lichtes in elektrische Impulse verantwortlich sind. Die Zapfen ermöglichen das Sehen von Farben, das Erkennen von kleinen Objekten und sind für das Sehen bei Helligkeit verantwortlich. Die Stäbchen treten vorwiegend nachts in Aktion, weil sie das Sehen bei schlechter Beleuchtung ermöglichen. Es gibt ungefähr 120 Millionen Stäbchen und 6 Millionen Zapfen im Auge des Menschen. Bevor das einfallende Licht die Photorezeptoren erreicht, muss es die anderen Schichten der neurosensorischen Netzhaut passieren. Nach der Umwandlung in elektrische Impulse werden diese über Ganglienzellenweitergeleitet. Hier wird die Menge der Informationen reduziert und der Kontrast des Bildes verbessert. Die grossen Axone der Ganglienzellen vereinen sich im Bereich des blinden Flecks zu den Sehnerven, weil es in diesem Bereich keine Photorezeptoren gibt, kann der Mensch in diesem Bereich nichts sehen. Die Stelle des schärfsten Sehens, der Gelbe Fleck, ist ein Netzhautbereich, der nur aus Zapfenrezeptoren aufgebaut ist. Der Gelbe Fleck ist ungefähr 3,5 Millimeter vom blinden Fleck entfernt. 5
6 Rot / Grün Blind? 6
7 2.4. Wir sezieren ein Auge Um den Bau des menschlichen Auges besser zu verstehen, untersuchen wir ein Tierauge. Obschon Unterschiede zum menschlichen Auge bestehen, dient dieser Vergleich gut. Material gefrorenes Tierauge Pinzette Skalpell spitze Schere Becken 1) Schau dir das Schweineauge in Ruhe an! a) Wie fühlt sich das Auge an? b) Welche Bestandteile könnt ihr erkennen? 2) Die Präparation beginnt: a) Halte das Auge mit einer Hand so gut fest, dass es beim Schneiden nicht wegrutschen kann. Durchschneide mit dem Skalpell die Wand des Augapfels an einer Stelle in der Mitte (siehe Abb.), sodass ein kurzer Schnitt entsteht. Führe danach die Schere nicht zu tief (!) in den Schnitt ein und schneide vorsichtig das Auge in zwei Hälften. Vorsicht: Der Glaskörper läuft aus fang ihn mit der Petrischale auf! b) Löse den Glaskörper durch leichten Druck aus den beiden Augen-Hälften heraus und lege ihn in die Petrischale. 3) Betrachte zunächst die hintere Augenhälfte: a) Versuche die hintere Augenhälfte am Sehnerv zu halten. Innen im Auge, wo der Sehnerv austritt, findest du ein dünnes Häutchen, die Netzhaut. Welche Farbe hat sie? b) Schneide von der Netzhaut und vom Sehnerv ein Stück ab und lege sie auf dein Sammelblatt. c) Rund um das Auge herum, siehst du eine weitere Haut, die Lederhaut. Trenne von ihr ein kleines Stück heraus und lege es ebenfalls auf das Sammelblatt. 7
8 4) Betrachte jetzt die vordere Augenhälfte: a) Entferne durch leichten Druck auf das Auge von außen die Linse. Betrachte die Form der Linse was fällt dir auf? b) Lege die Linse auf den Text in deinem Sammelblatt. Was fällt dir auf? c) Welche Teile erkennst du in der vorderen Augenhälfte noch? Präpariere von diesen Teilen Stücke heraus und lege sie auf das Sammelblatt. 5) Vergleich der Ergebnisse: Wenn du fertig bist, kannst du deine Ergebnisse auf dem Sammelblatt mit den anderen vergleichen. 8
9 Sammelblatt Muskelreste / Fettpolster Glaskörper (in der Petrischale) Stück des Sehnervs Teil der Netzhaut (innerste Haut) Teil der Lederhaut (äussere Haut) Linse Ziliarmuskel Teil der Hornhaut Regenbogenhaut (Iris) 9
10 3. Ausbreitung von Licht 3.1. Wie erzeugen unsere Augen Bilder? Lichtstrahlen, die von Gegenständen reflektiert werden, gelangen über die Linse in unsere Augen. Die Lichtmenge wird dabei von der Pupille reguliert. Ist es sehr hell, verkleinert sich die Pupille. Wird es dunkel, vergrössert sich die Pupille. Die einfallenden Lichtstrahlen kreuzen sich auf ihrem Weg durch das Augeninnere und erzeugen dann ein verkleinertes, seitenverkehrtes und auf dem Kopf stehendes Bild auf der Netzhaut. Trotzdem haben wir den Eindruck, alles normal gross, aufrecht und richtig herum zu sehen. Diese Umkehrung erfolgt im Gehirn und wird durch unsere Erfahrung unterstützt. 10
11 3.2. Wo Licht ist, ist auch Schatten Schatten Beleuchtet man einen Schirm S mit einer punktförmigen Lichtquelle L und stellt zwischen L und S ein undurchsichtiges Hindernis H, so entsteht hinter H ein lichtfreier Raum. Als Folge der geradlinigen Lichtausbreitung zeigen sich (vergrössert) die Umrisse des undurchsichtigen Hindernisses. Man bezeichnet den unbelichteten Bereich als Schatten des Körpers. Blickt ein Beobachter vom Schattenraum in die Richtung der Kerze, so kann er diese nicht sehen. Von allen anderen Punkten des Schirms aus ist die Kerze sichtbar. Zeichne in die Skizzen die Schattengebiete ein! Markiere sie! a) b) L L Halbschatten Beleuchtet man das Hindernis mit zwei nahezu punktförmigen Lichtquellen, so gelangt z.b. das Licht von der linken Kerze teilweise in den Schattenraum der rechten Kerze. Es entsteht ein so genannter "Teillichtbereich" oder Halbschatten. Blickt ein Beobachter vom Halbschattenraum in die Richtung der Kerzen, so kann er nur eine Kerze sehen. Kernschatten Stehen die Kerzen nahe genug beieinander, so gibt es einen Bereich in den weder Licht von der linken noch der rechten Kerze dringt. Man nennt diesen Bereich den Kernschatten. 11
12 Aufgaben Ein Körper wird nacheinander zuerst von einer, dann von zwei punktförmigen Lichtquellen beleuchtet. Zeichne die Schattengebiete ein! Markiere sie! L 1 L 2 Peter, Inge und Susi gehen abends nach Hause. Während sie gerade hinter einer Plakatsäule vorbeigehen, leuchten die Scheinwerfer eines Autos in ihre Richtung. a) Wer von den dreien wird am stärksten beleuchtet? b) Wer von den dreien wird am schwächsten beleuchtet? 12
13 3.3. Lichtgeschwindigkeit Licht, das von einer Lichtquelle an einen andern Ort gelangt, braucht Zeit, um die dazwischenliegende Strecke zu überwinden. Erst im 19. Jahrhundert konnte die Lichtgeschwindigkeit erstmals gemessen werden. Lichtgeschwindigkeit: km s Aufgaben Löse die folgenden Berechnungsaufgaben zur Lichtgeschwindigkeit. 1. Unsere Sonne ist etwa km von der Erde entfernt. Wie lange sind die Lichtteilchen zwischen Sonne und Erde unterwegs? 2. Ein Lichtjahr ist die Distanz, welche das Licht in einem Jahr zurücklegt. Rechne ein LJ in km um. 3. Ein Raumschiff ist km von der Erde entfernt. Wie lange ist ein Funkspruch von der Erde zum Raumschiff, oder umgekehrt, unterwegs? (Funksignale breiten sich auch mit Lichtgeschwindigkeit aus) 13
14 4. Das Reflexionsgesetz Experiment Material Wie? Was? - Optischer Winkel - Trafostation à Spannung beachten - Lichtbox 12v/20W - Schlitzblende - weisses Papier Linie in der Mitte (Hochformat) - Flacher Spiegel Schliesse die Lichtbox an den Trafo mit 12V/8A (oben links) an. Untersuche wie sich die Lichtstrahlen verändern, nachdem sie vom Spiegel reflektiert worden sind. Kannst du ein Gesetz beschreiben? Einfallswinkel a Reflexionswinkel a` Zeichne Spiegel Notiere das Gesetz 14
15 Aufgaben In einem Kasten sind mehrere Spiegel so angeordnet, wie das Bild es zeigt. Welchen der drei Gegenstände wirst du sehen, wenn du bei A hineinblickst? Licht trifft unter verschiedenen Winkeln auf unterschiedliche Spiegel. Ergänze jeweils den Strahlenverlauf! a) b) c) d) Mit Hilfe von Spiegeln kannst du um die Ecke gucken. Wie müssen ebene Spiegel angeordnet werden, damit ein Beobachter B den Gegenstand G sehen kann? Zeichne Spiegel und Strahlenverlauf ein! a) b) c) G B B G G B 15
16 5. Die Spiegelung Spiegelbilder sind Scheinbilder (virtuelle Bilder). Sie liegen hinter der Spiegelebene, also an einem Ort, von dem kein Licht in unser Auge gelangen kann. Das Spiegelbild hat den gleichen Abstand von der Spiegelebene und ist ebenso gross wie der Gegenstand. Das Licht vom Gegenstand wird am Spiegel umgelenkt und in unser Auge geworfen. Aufgabe Wir betrachten einen Pfeil im Spiegel. Ergänze die Zeichnung mit dem virtuellen Bild des Bleistifts. Zeichne auch den Strahlenverlauf auf. Auge N Spiegel 16
17 5.1. Aufgaben zu Reflexion und Spiegelung 1. In der nebenstehenden Abbildung sind Lichtstrahlen dargestellt, die in einen schwarzen Kasten fallen und ihn in einer anderen Richtung wieder verlassen. In dem Kasten befindet sich ein Spiegel. Gib an, welche der angegebenen Stellungen dieser Spiegel hat! a b c d a) b) c) d) In jedem dieser Kästchen steckt ein Spiegel. Zeichne seine Lage ein. 2. Die obere, untere und rechte Seite des Kastens besteht aus Spiegeln. Konstruiere den reflektierten Strahl. Wenn du sorgfältig zeichnest, trifft der Strahl auf einen der drei Buchstaben. A B C 17
18 3. Für Messungen im Gelände werden Winkelspiegel verwendet. Konstruiere den Strahlengang in nebenstehender Zeichnung. Der Lichtstrahl fällt im Punkt A unter 30 zum Lot auf den Spiegel. Unter welchem Winkel kreuzen sich Einfallsstrahl und Reflexionsstrahl? A Spiegel Spiegel 4. An welcher Stelle der Wand muss ein Spiegel hängen, damit Luzia von ihrem Auge aus den leuchtenden Kreis K sieht? Auge N Wand K V 18
19 5. Angela und Beate können sich nur über den Spiegel stehen. An welcher Stelle des Spiegels sieht Angela ihre Freundin Beate und wo sieht Beate Angela? Spiegel Angela Beate 6. Die beiden Gehäuse enthalten Spiegel an denen die gezeichneten Lichtstrahlen umgelenkt werden. Vervollständige die beiden Zeichnungen mit den Spiegeln und dem entsprechenden Strahlenverlauf. Die Grösse der Spiegel darf beliebig sein, jedoch so gross, dass sie gut erkennbar sind. 19
20 6. Die Lichtbrechung Versuch Lege eine Münze in eine mit Wasser gefüllte Wanne. Befestige dann ein Glasrohr schräg an einem Stativ - und zwar so, dass du die Münze durch das Rohr hindurch sehen kannst. Das Rohr darf dabei nicht ins Wasser ragen. Lass nun eine lange Stricknadel durch das Rohr hindurch gleiten. Hast du die Münze getroffen? Erklärung Wenn Licht schräg von einem Stoff in einem anderen übergeht, ändern die Lichtstrahlen ihre Richtung. Man sagt dann: Das Licht wird an der Grenzfläche zweier Stoffe (Medien) gebrochen. 1. a) Wie lautet das Brechungsgesetz? Für den Übergang Luft-Wasser gilt b a. Für den umgekehrten Übergang gilt b a. b) Ergänze in der Skizze den Strahlenverlauf! Benenne alle gezeichneten Teile Luft Wasser einschliesslich der Winkel! a) b) c) Luft Luft Luft Beim Übergang Luft à Glas wird das Licht gebrochen. Beim Übergang Luft à Wasser wird das Licht gebrochen. Beim Übergang Wasser à Luft wird das Licht gebrochen. 20
21 21
22 7. Linsen 7.1. Die Sammellinse (Konvexlinse) Die parallelen Strahlen werden so gebrochen, dass sie sich in einem Punkt kreuzen: im Brennpunkt. Er wird mit dem Buchstaben F gekennzeichnet. Der Abstand zwischen Brennpunkt und Linsenmitte heisst Brennweite f. Jeder Lichtstrahl wird zweimal gebrochen, nämlich am linken und am rechten Rand der Linse. Mit Hilfe einer Sammellinse (Konvexlinse) kann man scharfe Bilder von Gegenständen erzeugen. Von jedem Punkt der Oberfläche eines Gegenstandes wird ja Licht nach allen Seiten ausgesandt, z.b. von Spitze und Fuss der Tanne. Viele dieser Lichtstrahlen treffen auf die Linse. Dort werden sie so gebrochen, dass sie sich hinter der Linse wieder in einem Punkt vereinigen. Dieser Punkt heisst Bildpunkt. Punkt für Punkt wird so der Gegenstand abgebildet. Schirm, auf dem das Bild entsteht (die Bildweite). Ein scharfes Bild entsteht aber nur an einer bestimmten Stelle hinter der Linse - dort, wo sich die Strahlen jeweils im Bildpunkt treffen. Wenn das Bild nicht scharf ist, kann man zweierlei verändern: entweder den Abstand zwischen Gegenstand und Linse (die Gegenstandsweite) oder den Abstand zwischen Linse und 22
23 7.2. Strahlengang durch eine Konvexlinse 1) Installiere die Lichtbox wie in der Abbildung und stelle die Linse auf das vorbereitete Blatt. 2) Beschreibe nun den Verlauf der gebrochenen Lichtstrahlen. 3) Den Verlauf der Lichtstrahlen vor und hinter der Linse mit je zwei Kreuzchen markieren. 4) Verbinde die Linien und schreibe auf, was du feststellst. Fragen Wie verlaufen die gebrochenen Strahlen? Wie gross ist der Abstand M F: cm Vervollständige die Skizze: Die Lichtstrahlen laufen bei einer Konvexlinse im Brennpunkt zusammen. Wie könnte man diese Linse noch nennen? Ergänze Lichtstrahlen, die parallel zur optischen Achse auf eine linse fallen, werden im F gesammelt. Die Entfernung von der Linse heisst f. Schreibe auf, wo Sammellinsen im Alltag eine Verwendung finden: 23
24 7.3. Bildkonstruktion an der Sammellinse Aufgabe Damit du mit der Bildkonstruktion und Bildberechnung bei der Sammellinse sicher wirst, sollst du für eine Sammellinse mit f = 3,0 cm die Lage und die Grösse der Bilder überlegen. Konstruiere möglichst sauber und genau die Bilder des Gegenstandes (G = 2,5 cm), der sich in verschiedenen Entfernungen von der Linse befindet. Zusammenhang zwischen Gegenstands- und Bildweite Gegenstandsweite g Bildweite b Eigenschaften des Bildes g > 2f g = 2f f < g < 2f g = f g > f f < b < 2f b = 2f b > 2f - b > g 24
25 7.4. Das Linsengesetz 1 f = 1 g + 1 b Abbildungsgesetz B = G b g Aufgabe 1 Es sei f = 20 cm und g = 45 cm. Berechne die Bildweite b. Aufgabe 2 Es sei B = 43 cm, G = 132 cm und g = 20 cm. Berechne die Brennweite f. 25
26 7.5. Die Zerstreuungslinse (Konkavlinse) Brennebene Zerstreuungslinsen sind in der Mitte dünner als am Rand. Deshalb heissen sie auch Konkavlinsen. Das Bild zeigt, wie ein paralleles Lichtbündel durch eine Zerstreuungslinse gebrochen wird. Obwohl Zerstreuungslinsen nicht als Brenngläser wirken, ordnet man auch ihnen einen Brennpunkt F und eine Brennebene zu. Man erhält F, indem man die Randstrahlen des divergierenden Lichtbündels nach hinten verlängert. Da es diese Strahlen nicht wirklich gibt, hat die Zerstreuungslinse nur einen scheinbaren Brennpunkt. Fragen Wie verlaufen die gebrochenen Strahlen? Wie müssen die gebrochenen Strahlen verlängert werden, damit sie sich schneiden? Ergänze Lichtstrahlen, die parallel zur optischen Achse auf eine Zerstreuungslinse fallen, laufen hinter der Linse. Diese Strahlen kommen von einem virtuellen (scheinbaren) Brennpunkt der der Linse liegt. 26
27 8. Sehschwächen Die Augenlinse kann sich durch Verformung, Verdicken und Abflachen, der Sehdistanz anpassen. Diese Verformung wird mit Hilfe kleinster Muskeln erreicht. à Akkommodation 8.1. Weitsichtigkeit des Auges Wenn der Glaskörper zu kurz oder die Augenlinse zu flach ist, dann sieht diese Person ferne Gegenstände scharf, nahe Gegenstände jedoch unscharf, da auch bei vollständiger Akkommodation der Linse ihr scharfes Bild noch hinter der Netzhaut entsteht. Diese Fehlsichtigkeit heisst Weitsichtigkeit. Eine besondere Form der Weitsichtigkeit ist die Altersweitsichtigkeit. Sie kommt dadurch zustande, dass die Elastizität der Augenlinse nachlässt und sie sich nicht mehr so zusammenkrümmt wie bei einem jungen Menschen. Weitsichtigen Personen kann durch eine Brille oder Kontaktlinse mit konvexen Gläsern geholfen werden. 27
28 8.2. Kurzsichtigkeit des Auges Wenn der Glaskörper zu lang oder die Augenlinse zu krumm ist, dann sieht diese Person nahe Gegenstände scharf, ferne Gegenstände jedoch unscharf, da auch bei vollständiger Akkommodation der Linse ihr scharfes Bild noch vor der Netzhaut entsteht. Diese Fehlsichtigkeit heisst Kurzsichtigkeit (Myopie). Kurzsichtigen Personen kann durch eine Brille oder Kontaktlinse mit konkaven Gläsern geholfen werden. 28
29 Aufgabe 29
30 8.3. Sehtest Die Sehschärfe ist der wichtigste messbare Parameter des Sehsinns. Der normale Visus ist altersabhängig und liegt bei einem 20-jährigen Menschen bei 1,0 bis 1,6, bei einem 80-jährigen bei 0,6 bis 1,0. 30
Die hier im pdf-format dargestellten Musterblätter sind geschützt und können weder bearbeitet noch kopiert werden.
Die hier im pdf-ormat dargestellten Musterblätter sind geschützt und können weder bearbeitet noch kopiert werden. Inhalt Themengebiet Beschreibung Arbeitsblatt zur Schattengröße Arbeitsblatt zum Schattenraum
Aufbau & Funktion. Das Sinnesorgan Auge. Nr Halten in der Augenhöhle Verformung der Aufhängung der Linse
Aufbau & Funktion Nr. 1 2 3 4 5 6 7 8 9 10 11 12 Teil Bindehaut Ziliarmuskel Iris (Regenbogenhaut) Linse Hornhaut Vordere Augenkammer Lederhaut Adlerhaut Pigmentschicht mit Netzhaut Glaskörper Gelber Fleck
Im Original veränderbare Word-Dateien
Arbeitsblatt Das menschliche Auge (1) Name: Datum: Trage zunächst in die Skizze die fehlenden Bezeichnungen ein! Fülle dann im folgenden Text die Lücken aus bzw. streiche die falschen Begriffe durch! 1.
Lernkontrolle Lehrerinformation
Lehrerinformation 1/5 Arbeitsauftrag Evaluation und Ergebnissicherung Ziel Die SuS lösen den Test. Material Testblätter Lösungen Sozialform EA Zeit 30 Testblatt 2/5 Aufgabe: Löse die Aufgaben. 1. Beschrifte
Musterprüfung Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet?
1 Musterprüfung Module: Linsen Optische Geräte 1. Teil: Linsen 1.1. Was besagt das Reflexionsgesetz? 1.2. Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet? 1.3. Eine Fläche bei einer
Das Auge Lehrerinformation
Lehrerinformation 1/8 Arbeitsauftrag Ziel Die SuS setzen sich zu zweit gegenüber, betrachten die Augen des Nachbarn und erstellen eine Skizze. Sie beschriften diejenigen Teile des Auges, die sie kennen.
Funktion und Aufbau des Auges. 02 / Sehen
Funktion und Aufbau des Auges 02 / Sehen Hallo, wir nehmen dich nun mit auf die Entdeckungsreise durch das Auge. Überlege dir, welche Aufgabe unsere Augenlider haben. Die Augenlider schützen unsere Augen
4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht.
4 Optische Linsen 4.1 Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus Glas oder transparentem Kunststoff hergestellt ist. Die Linse ist von zwei Kugelflächen begrenzt (Kugelflächen
Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017
4 Linsen 4.1 Linsenformen Optische Linsen sind durchsichtige Körper, welche (im einfachsten Fall) auf beiden Seiten von Kugelflächen oder auf der einen Seite von einer Kugelfläche, auf der anderen Seite
Man sieht den Wald vor lauter Bäumen nicht!
Man sieht den Wald vor lauter Bäumen nicht! Klassenstufe Thema Niveau Vorbereitungszeit Sek I Funktion des Auges Wie das menschliche Auge ein Bild empfängt Das Auge ist eines der wichtigsten Sinnesorgane
Stunde 6: Bau des Auges und Funktion der Bestandteile
Informationssysteme Bildungsplanbezug: 3.2.2.4 Informationssysteme Die Schülerinnen und Schüler kennen Sinnesorgane des Menschen und ihre Bedeutung für die Informationsaufnahme aus Umwelt und eigenem Körper.
Hauptschulabschlußprüfung im Fach. Thema:
Biologie Hauptschulabschlußprüfung im Fach Thema: Das Auge Martin Schlecht Klasse 9b Oberdischingen, den 19 Juni 2001 Das Auge Die Augen der einzelnen Lebensformen sind sehr unterschiedlich aufgebaut:
Lernkontrolle Arbeitsblatt
Lehrerinformation 1/7 Arbeitsauftrag Evaluation und Ergebnissicherung Ziel Die SuS lösen den Test. Material Testblätter Lösungen Sozialform EA Zeit 45 Zusätzliche Informationen: Die Punktezahl zur Bewertung
PROJEKTMAPPE. Name: Klasse:
PROJEKTMAPPE Name: Klasse: REFLEXION AM EBENEN SPIEGEL Information Bei einer Reflexion unterscheidet man: Diffuse Reflexion: raue Oberflächen reflektieren das Licht in jede Richtung Regelmäßige Reflexion:
Aufg. 2: Skizziere die Abbildung einer Person im Auge. (Wähle einen beliebigen Punkt und zeichne die wichtigsten Strahlen.)
Aufgaben zu Linsen : Aufg. 1: Zeichne den Verlauf des gesamten Lichtbündels, vor und nach der Linse, das von der Spitze des Pfeils ausgehend, den gesamten Querschnitt der Linse füllt: Aufg. 1a: Zeichne
Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen!
Kapiteltest Optik 2 Lösungen Der Kapiteltest Optik 2 überprüft Ihr Wissen über die Kapitel... 2.3a Brechungsgesetz und Totalreflexion 2.3b Brechung des Lichtes durch verschiedene Körper 2.3c Bildentstehung
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Linsen und optische Geräte
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Lernwerkstatt Linsen und optische
A K K O M M O D A T I O N
biologie aktiv 4/Auge/Station 2/Lösung Welche Teile des Auges sind von außen sichtbar? Augenbraue, Augenlid, Wimpern, Pupille, Iris, Lederhaut, Hornhaut (durchsichtiger Bereich der Lederhaut) Leuchte nun
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #22 01/12/2010 Vladimir Dyakonov [email protected] Sammellinse Hauptstrahlen durch einen Sammellinse: Achsenparallele Strahlen verlaufen nach der
Das Auge ein natürliches optisches System
Das Auge ein natürliches optisches System Das menschliche Auge funktioniert ähnlich wie ein Fotoapparat: Gegenstände leuchten entweder selbst oder reflektieren Licht. Hornhaut, Augenkammer und Linse entsprechen
Augenklinik am Rothenbaum - Das Auge
Aufbau des Auges Der Akt des Sehens ist ein hochkomplizierter Prozess, der an vielen Stellen gestört werden kann. Um ihn zu verstehen, sind Kenntnisse vom Aufbau und von der Funktion des Auges erforderlich.
Optik. Was ist ein Modell? Strahlenoptik. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl
Modelle in der Physik Optik Strahlenoptik vereinfachte Darstellungen der Wirklichkeit dienen der besseren Veranschaulichung Wesentliches wird hervorgehoben Unwesentliches wird vernachlässigt Was ist ein
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Thema:
2. Klassenarbeit Thema: Optik
2. Klassenarbeit Thema: Optik Physik 9d Name: e-mail: 0. Für saubere und übersichtliche Darstellung, klar ersichtliche Rechenwege, Antworten in ganzen Sätzen und Zeichnungen mit spitzem Bleistift erhältst
Sehen. Prof. Dr. Ulrike Spörhase-Eichmann Pädagogische Hochschule Freiburg
Sehen Prof. Dr. Ulrike Spörhase-Eichmann Pädagogische Hochschule Freiburg Verlauf und Lehrziele 1. Augenhöhle und Lider 2. Tränenwege und äußere Struktur des Auges 3. Innere Strukturen des Auges 4. Das
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #21 26/11/2008 Vladimir Dyakonov [email protected] Brechkraft Brechkraft D ist das Charakteristikum einer Linse D = 1 f! Einheit: Beispiel:! [ D]
Medium Luft zueinander, wenn diese Linse ein reelles, gleich großes und umgekehrtes Bild eines Medium Luft zueinander, wenn diese Linse ein reelles, verkleinertes und umgekehrtes Bild eines Medium Luft
Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.
Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)
Astro Stammtisch Peine
Astro Stammtisch Peine ANDREAS SÖHN OPTIK FÜR DIE ASTRONOMIE ANDREAS SÖHN: OPTIK FÜR DIE ASTRONOMIE < 1 Grundsätzliches Was ist Optik? Die Optik beschäftigt sich mit den Eigenschaften des (sichtbaren)
OPTIK. Theorien zum Sehvorgang/zur Lichtausbreitung
OPTIK Theorien zum Sehvorgang/zur Lichtausbreitung Theorie 1: Man erklärt sich den Sehvorgang folgendermassen: Vom Auge gehen heisse Sehstrahlen aus, die von kalten Körpern (à Körper, welche kein Licht
Zusammenhang zwischen dem Aufbau des Auges und dem Sehen
Zusammenhang zwischen dem Aufbau des Auges und dem Sehen 1. Verteilung der Sehzellen (zu zweit) Material: Holzstäbchen mit kleinen Pappen in Rot, Grün und Blau; Geodreieck Durchführung: Suche dir einen
Experimente Lehrerinformation
Lehrerinformation 1/11 Arbeitsauftrag Die SuS führen in Gruppen die mit Hilfe der en durch. Ziel Material Die SuS entdecken selbstständig die Eigenschaften von Licht und Optik durch Handeln und Ausprobieren.
Auge. Aufgaben 11.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Auge, Seiten 1067 bis 1070)
Aufgaben 11 Optische Instrumente Auge Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt analysieren
thh Abbildung 83 Das Auge Wimpern und Augenlider schutzen das empfindliche Hornhaut wird stets mit Tranenflussigkeit befeuchtet.
Unsere Sinnesorgane Fur uns Menschen ist das Auge das wichtigste Sinnesorgan 1m taglichen Leben erkennen wir einander mit den Augen, finden mit deren Hilfe unseren Weg und sehen die Rot-Grun-Lichter im
Strahlengang und Brennweite bei einer Konkavlinse
Lehrer-/Dozentenblatt Strahlengang und Brennweite bei einer Konkavlinse (Artikelnr.: P1065500) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Optik Unterthema:
Physik 2 (GPh2) am
Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter
1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks
1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.
Lichtbrechung an Linsen
Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen
1. Licht, Lichtausbreitung, Schatten, Projektion
1. Licht, Lichtausbreitung, Schatten, Projektion Was ist Licht? Definition: Die Optik ist das Gebiet der Physik, das sich mit dem Licht befasst. Der Begriff aus dem Griechischen bedeutet Lehre vom Sichtbaren.
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de
Bildkonstruktionen an Sammellinsen
Bildkonstruktionen an Sammellinsen 1. Beim Durchgang durch eine Sammellinse wird: ein achsenparalleler Strahl zum Brennpunktsstrahl durch F' ein Mittelpunktsstrahl bleibt unabgelenkt Mittelpunktsstrahl.
Optik. Physik, 2./3. OG. Stiftsschule Engelberg, Schuljahr 2016/2017
Optik Physik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 Einleitung Die Optik befasst sich mit der Untersuchung des Lichts und seinen Wechselwirkungen mit Materie. Sie stellt also sowohl die
Grundwissen Optik und Akustik
Nabil Gad Grundwissen Optik und Akustik 5. 10. Klasse Bergedorfer Kopiervorlagen Inhaltsverzeichnis Optik n I... 1 n II... 2 Die Lichtgeschwindigkeit... 3 Die Lichtausbreitung... 4 Wie entstehen Schatten?...
Physik - Optik. Physik. Graz, 2012. Sonja Draxler
Wir unterscheiden: Geometrische Optik: Licht folgt dem geometrischen Strahlengang! Brechung, Spiegel, Brechung, Regenbogen, Dispersion, Linsen, Brillen, optische Geräte Wellenoptik: Beugung, Interferenz,
Eine Abbildung ist eindeutig, wenn jedem Gegenstandspunkt genau ein Bildpunkt zugeordnet wird 2.1 Lochkamera
Physik: Strahlenoptik 1 Linsen 1.1 Sammellinse (Konvexlinsen) f = Brennweite = Abstand von der Mitte zur Brennebene Strahlenverlauf: Parallelstrahl (parallel zur optischen Achse) wird zu Brennpunktstrahl
OPTIK Versuchsanleitung einfach schnell sicher
OPTIK Versuchsanleitung einfach schnell sicher DL720-1C OPTIK Lichtausbreitung O 1 Licht breitet sich geradlinig aus O 2 Punktförmige Lichtquellen erzeugen Schlagschatten O 3 Ausgedehnte Lichtquellen erzeugen
AUFGABENSAMMLUNG. Lösungen. Bildwahrnehmung 1. Bildwahrnehmung 2 BIOLOGIE
Bildwahrnehmung 1 Ein Lichtreiz trifft auf dein Auge. Nenne die Strukturen in richtiger Reihenfolge, die der Lichtreiz nacheinander durchläuft bzw. erregt, bis der Reiz das Sehzentrum im Gehirn erreicht.
Brechung des Lichts Arbeitsblatt
Brechung des Lichts Arbeitsblatt Bei den dargestellten Strahlenverläufen sind einige so nicht möglich. Zur Erklärung kannst du deine Kenntnisse über Brechung sowie über optisch dichtere bzw. optisch dünnere
Geometrische Optik Die Linsen
1/1 29.09.00,19:40Erstellt von Oliver Stamm Geometrische Optik Die Linsen 1. Einleitung 1.1. Die Ausgangslage zum Experiment 2. Theorie 2.1. Begriffe und Variablen 3. Experiment 3.1.
Optik. Optik. Optik. Optik. Optik
Nenne das Brechungsgesetz! Beim Übergang von Luft in Glas (Wasser, Kunststoff) wird der Lichtstrahl zum Lot hin gebrochen. Beim Übergang von Glas (Wasser...) in Luft wird der Lichtstrahl vom Lot weg gebrochen.
Vorkurs Physik des MINT-Kollegs
Vorkurs Physik des MINT-Kollegs Optik MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum in der
Geometrische Optik Reflexion. Prof. Dr. Taoufik Nouri
Geometrische Optik Reflexion Prof. Dr. Taoufik Nouri [email protected] Unter Reflexion (lat. reflectere: zurückbeugen, drehen) wird in der Physik das vollständige oder teilweise Zurückwerfen von Wellen (elektromagnetischen
Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres
Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Historisches und Grundlagen: Generell wird zwischen zwei unterschiedlichen Typen von Fernrohren unterschieden. Auf der einen Seite gibt es das
Lösungen zur Geometrischen Optik Martina Stadlmeier f =
Lösungen zur Geometrischen Optik Martina Stadlmeier 24.03.200. Dicke Linse a) nach Vorlesung gilt für die Brechung an einer gekrümmten Grenzfläche f = n2 n 2 n r Somit erhält man für die Brennweiten an
Arbeitsauftrag: Biologie und Aufbau des Auges studieren Arbeitsblätter lösen. Ziel: Kennenlernen des Normalauges, der Abarten und deren Korrekturen
Wie funktioniert das Auge Arbeitsauftrag: Biologie und Aufbau des Auges studieren Arbeitsblätter lösen Ziel: Kennenlernen des Normalauges, der Abarten und deren Korrekturen Material: Text, Modelle, Arbeitsblätter,
Bildentstehung auf der Netzhaut
Bildentstehung auf der Netzhaut Folgende vereinfachende Annahmen müssen getroffen werden: Das Linsensystem wird durch eine einzige "dünne" Linse geeigneter ersetzt Auf beiden Seiten der Linse liegt das
Die Schutzeinrichtungen des Auges
Station 1: 4: Die Schutzeinrichtungen des s Arbeitsblatt An dieser Station könnt ihr anhand von einfachen Versuchen erkennen, wie unsere n von Natur aus recht gut vor äußeren Einflüssen geschützt sind.
Kammerwinkel. Makula. Augenlinse. Hornhaut. Sehnerv. Netzhaut. Das Auge
Kammerwinkel Hornhaut Makula Sehnerv Netzhaut Das Auge Die ist für die Brechung des Lichtes zuständig. Ihre Flexibilität ermöglicht das Fokussieren auf unterschiedliche Distanzen. Die Einstellfähigkeit
Bildkonstruktion an Konkavlinsen (Artikelnr.: P )
Lehrer-/Dozentenblatt Bildkonstruktion an Konkavlinsen (Artikelnr.: P065600) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Optik Unterthema: Linsengesetze Experiment:
Unser Auge ist sehr kompliziert aufgebaut. Um zu verstehen wie es funktioniert, haben wir einige Experimente für dich vorbereitet:
Die Betreuungspersonen (BP) lesen die Anleitungen zu den Experimenten laut für die Gruppe vor. Die Antworten sind in grüner Schrift. Nur das, was nicht grau hinterlegt ist, befindet sich auf dem SuS-Blatt.
Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert
Ebener Spiegel Spiegelsymmetrie Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Konstruktion des Bildes beim ebenen Spiegel Reelles Bild: Alle Strahlen schneiden sich Virtuelles
Das menschliche Auge Lehrerinformation
Lehrerinformation 1/11 Arbeitsauftrag Ziel Material Sozialform Die LP gibt zum Einstieg folgenden Auftrag: Zeichnet ein Auge, ohne nachzuschauen. Nach 5 Minuten werden die Kunstwerke entweder an die Tafel
3 Brechung und Totalreflexion
3 Brechung und Totalreflexion 3.1 Lichtbrechung Lichtstrahlen am Übergang von Luft zu Wasser In der Luft breitet sich ein Lichtstrahl geradlinig aus. Trifft der Lichtstrahl nun auf eine Wasseroberfläche,
Längenbeziehungen bei der Lochkamera
Längenbeziehungen bei der Lochkamera (Lochkameras wurden früher von Malern für Landschaftsbilder benutzt.) Zusammenfassung: Strahlensätze Alle bisherigen Experimente lassen sich mathematisch mit einem
Vorstudienlehrgang der Wiener Universitäten VWU. Skriptum. Physik-Kurs
Vorstudienlehrgang der Wiener Universitäten VWU Skriptum Physik-Kurs Teil 6: Elektromagnetische Strahlung, Optik, Ausgewählte Gebiete der modernen Physik Geometrische Optik Katharina Durstberger-Rennhofer
Aufgaben zu Licht und Schatten - Lösungen:
Aufgaben zu Licht und Schatten - Lösungen: Aufg. 5a: ØSo ØM Bei einer Sonnenfinsternis reicht die Spitze des rdschattens ungefähr bis zur rdoberfläche. Manchmal nicht ganz ==> ringförmige Sonnenfinsternis,
Optische Phänomene im Sachunterricht
Peter Rieger Uni Leipzig Optische Phänomene im Sachunterricht Sehen Schatten Spiegel Brechung Optische Phänomene im Sachunterricht Die Kinder kennen die Erscheinung des Schattens, haben erste Erfahrungen
Physik beim Augenarzt Diagnose und Therapie von Sehfehlern
1 von 26 Physik beim Augenarzt Diagnose und Therapie von Sehfehlern Monika Veismann, Dr. Henrike Schieferdecker, Bonn Volles Wartezimmer beim Augenarzt! Ella Kurzgut, Max Besserweit, Hannes Akkommod und
Vorträge zum Thema Optik Lehrerinformation
Lehrerinformation 1/10 Arbeitsauftrag Die SuS bereiten Kurzvorträge zu neuen Themen auf. Ziel Vorbereitung der Vorträge und Präsentation Material für die Kurzvorträge Sozialform GA Zeit 45 Vortrag 1: Der
Physikalisches Schulversuchspraktikum I. Handversuche Optik. (4. Klasse) Marlene hack ( /412)
Physikalisches Schulversuchspraktikum I Handversuche Optik (4. Klasse) Marlene hack (9955515/412) Abgabedatum: 9. 1. 2003 Inhaltsverzeichnis Lerninhalt...3 In welcher Klasse?...3 Lernziele...3 Arbeitsblatt
Bildkonstruktion an Konvexlinsen (Artikelnr.: P )
Lehrer-/Dozentenblatt Bildkonstruktion an Konvexlinsen (Artikelnr.: P065400) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Optik Unterthema: Linsengesetze Experiment:
Othmar Marti Experimentelle Physik Universität Ulm
Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm [email protected] Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002
Auge. 1.) Lochkamera ) Abbildung mit Linsen
Auge Um sehen zu können ist ein System nötig, das Bilder erzeugen und diese auch auswerten kann. Im Laufe der Evolution wurden verschiedene Formen verwirklicht, wichtige Grundlagen sollen in diesen Einheiten
PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe
1.9.08 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: O 2 - Linsensysteme Literatur Eichler, Krohnfeld, Sahm: Das neue physikalische Grundpraktikum, Kap. Linsen, aus dem Netz der Universität http://dx.doi.org/10.1007/3-540-29968-8_33
4 Brechung und Totalreflexion
4 Brechung und Totalreflexion 4.1 Lichtbrechung Experiment: Brechung mit halbkreisförmigem Glaskörper Experiment: Brechung mit halbkreisförmigem Glaskörper (detailliertere Auswertung) 37 Lichtstrahlen
1. Lernzielkontrolle
Optik - Lichtausbreitung, Licht u. Schatten 1. Welches sind 1 Lichtquellen, welches sind 2 beleuchtete Körper? Schreibe die richtige Ziffer in die Kreise. Sonne Autoscheinwerfer Fahrradrückstrahler LCD-Uhr
Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik
Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Matthias Brasse, Max v. Vopelius 24.02.2009 Aufgabe 1: Zeigen Sie mit Hilfe des Fermatschen Prinzips, dass aus der Minimierung des optischen
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.
Weitsichtigkeit und ihre Korrektur (Artikelnr.: P )
Lehrer-/Dozentenblatt Weitsichtigkeit und ihre Korrektur (Artikelnr.: P1066900) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Optik Unterthema: Das Auge Experiment:
Examensaufgaben - STRAHLENOPTIK
Examensaufgaben - STRAHLENOPTIK Aufgabe 1 Ein Prisma mit einem brechenden Winkel von 60 hat eine Brechzahl n=1,5. Berechne den kleinsten Einfallswinkel, für welchen noch ein Strahl auf der anderen Seite
Stiftsschule Engelberg Physik Schuljahr 2017/2018
2 Reflexionen 2.1 Reflexion und Reflexionsgesetz Wir unterscheiden zwei Arten der Spiegelung: regelmässige und unregelmässige Reflexion (= Streuung). Auf rauen Oberflächen eines Körpers wird das Licht
Weißes Licht wird farbig
B1 Experiment Weißes Licht wird farbig Das Licht, dass die Sonne oder eine Glühlampe aussendet, bezeichnet man als weißes Licht. Lässt man es auf ein Glasprisma fallen, so entstehen auf einem Schirm hinter
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #21 30/11/2010 Vladimir Dyakonov [email protected] Brechungsgesetz Das Fermat sches Prinzip: Das Licht nimmt den Weg auf dem es die geringste Zeit
3. Physikschulaufgabe
Thema: Optik Lichtausbreitung, Licht und Schatten, Abbildung durch Linsen 1. Skizziere die drei möglichen Verlaufsformen von Lichtbündeln und benenne sie. 2. Gib zwei grundlegende Eigenschaften des Lichts
Titel: Optische Brillen
Plan Titel: Optische Brillen Themen: Optische Brillen Zeit: 90 Minuten (2 Einheiten) Alter: 10. Klasse 15 16 Jahre Differenzierung: Talentiertere Lernende können gebeten werden, den Fehler einer Messung
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Optik II: Reflexion und Brechung des Lichts
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Optik II: Reflexion und Brechung des Lichts Das komplette Material finden Sie hier: School-Scout.de Schriftliche Übung Name: Reflexion
Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009
Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite
Tutorium Physik 2. Optik
1 Tutorium Physik 2. Optik SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 11. OPTIK - REFLEXION 11.1 Einführung Optik:
Klausurtermin: Anmeldung: 2. Chance: voraussichtlich Klausur am
Klausurtermin: 13.02.2003 Anmeldung: www.physik.unigiessen.de/dueren/ 2. Chance: voraussichtlich Klausur am 7.4.2003 Optik: Physik des Lichtes 1. Geometrische Optik: geradlinige Ausbreitung, Reflexion,
3. Beschreibe wie eine Mondfinsternis entstehen kann. + möglichst exakte, beschriftete Skizze
Probetest 1 1. Wann wird Licht für uns sichtbar? (2 Möglichkeiten) 2. Den Lichtkegel eines Scheinwerfers sieht man besser wenn a) Rauch in der Luft ist b) die Luft völlig klar ist c) Nebeltröpfchen in
Warum brauchen manche Menschen eine Brille?
Warum brauchen manche Menschen eine Brille? Dr. med. Hartmut Mewes Institut für Physiologie der Universität Rostock Lichtstrahlen breiten sich nicht immer geradlinig aus. An der Grenzfläche von Luft und
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Das Auge - Unser wichtigstes Sinnesorgan
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das Auge - Unser wichtigstes Sinnesorgan Das komplette Material finden Sie hier: School-Scout.de S 2 M 1 Aufbau des menschlichen Auges
Reflexion. - Wie groß muss ein Spiegel mindestens sein, damit eine Person der Größe G sich darin komplett sehen kann? Ergebnisse:
Reflexion Betrachte dich und einige Gegenstände im Spiegel. Welche Zusammenhänge und Beziehungen erkennst du zwischen den Objekten und ihren Spiegelbildern? (Entfernung, Größe, Händigkeit...) Was vertauscht
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Titel:
Wie breitet sich Licht aus?
A1 Experiment Wie breitet sich Licht aus? Die Ausbreitung des Lichtes lässt sich unter anderem mit dem Strahlenmodell erklären. Dabei stellt der Lichtstrahl eine Idealisierung dar. In der Praxis beobachtet
Im Vakuum bewegt sich Licht mit der Vakuum-Lichtgeschwindigkeit: Brechungsindex
2. 3L 1. Brechung Brechungsindex Im Vakuum bewegt sich Licht mit der Vakuum-Lichtgeschwindigkeit: c Vak 3.00 10 8 m s Wenn Licht auf Materie trifft, dann treten die Elektronenhüllen der Materiebausteine
(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )
. Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik
