Japanische Tempelgeometrie 2
|
|
|
- Ursula Heinrich
- vor 7 Jahren
- Abrufe
Transkript
1 Japanische Tempelgeometrie Workshop über das Lösen geometrischer Probleme im Zeitalter von PC und Internet vorgestellt von Ingmar Rubin, MNU Tagung an der FU Berlin, 1. Oktober 017 Gegeben ist der Inkreisradius vom Quadrat PQRS, bestimme den Inkreisradius vom Dreieck ABC.
2 Agenda Zielstellung, Motivation Definition: Berührungsproblem Dynamische Geometrie zur Wiederholung: Sätze aus der Kreisgeometrie Aufgabenbeispiele, Lösungswege Formulierung von Lösungsschritten Quellen im Internet
3 Motivation, Zielstellung 1 Wie schaffe ich eine Motivation für das Fach Mathematik im Zeitalter von YouTube, Smartphone und Internet? Geometrische Problem bieten einen visuellen Zugang zur Mathematik Dynamische Geometriesoftware schafft einen fast spielerischen Zugang zu geometrischen Konstruktionen
4 Motivation, Zielstellung Sangaku Probleme: Verbindung von Geometrie und Algebra aktive Anwendung elementargeometrischer Sätze (Pythagoras, Strahlensatz, Sehnensatz usw.) Schüler mögen die Herausforderung, z. B.: eine Unterrichteinheit(en) Geometrie Workshop in der Mathematik AG Aufgabenblätter für einen Schulwettbewerb
5 Motivation, Zielstellung 3 Einsatz von GeoGebra erarbeiten einer systematischen Lösungsstrategie Einführung neuer Sätze aus der Geometrie Was bedeutet die Zirkel und Lineal Konstruktion? Gleichungssysteme mit CAS lösen
6 Das Wesen der Berührungsprobleme Aufgabenstellung in der wenigstens zwei geometrische Objekte sich in einem gemeinsamen Punkt berühren. Sangaku: Berührungsprobleme zwischen Kreisen, Kreisbögen, Ellipsen, Dreiecken, Vierecken und Geraden in der Ebene. Hiroshi Okumura, Saitama prefectural library 1969 Bestimme den Radius vom grünen Kreis wenn der Radius vom gelben Kreis bekannt ist.
7 Handwerkszeug Die Lösung von Berührungsproblemen erfordert eine geschickte Kombination der bekannten Sätze aus der Dreiecks- und Kreisgeometrie. Im Einzelnen werden benötigt: Satz des Pythagoras Höhensatz im rechtwinkligen Dreieck Ähnlichkeitssatz, Strahlensätze Satz vom gemeinsamen Tangentenabschnitt am Kreis Sehnensatz Sekanten-Tangentensatz Peripheriewinkelsatz Satz des Thales Satz des Apollonius Lösung algebraischer Gleichungen
8 Buchtipp zur Kreisgeometrie
9 Dynamische Geometrie die klassische Konstruktion mit Zirkel und Lineal wird mit Hilfe eines Computerprogramms ausgeführt, geometrische Objekte können beliebig gedehnt, gestaucht werden (Vorteil gegenüber der statischen Konstruktion auf dem Papier) Punkte können entlang von Linien, Kreisen geführt werden, Schnittpunkte von Objekten können verfolgt werden (Ortskurven) GeoGebra: Markus Hohmeier EUKLID: Roland Mechling Zirkel und Lineal: Rene Grothmann Cinderella, Cabri-Geometrie
10 Geo Gebra so kann Mathe richtig Spaß machen siehe WEB -Seiten von Frau Professor Dörte Haftendorn
11 Satz vom gemeinsamen Tangentenabschnitt Sei k ein Kreis mit Mittelpunkt in M und Radius r. Sei P ein Punkt außerhalb von k, d.h. MP > r. Von P werden die Tangenten an k gelegt. Die Berührungspunkte auf k seien Q1 und Q. Es gilt nun stets: PQ1 = PQ, d.h. die Länge der Tangentenabschnitte von einem äußeren Punkt an einen Kreis sind stets gleich lang.
12 Beweis zum Satz vom gemeinsamen Tangentenabschnitt Der Beweis folgt unmittelbar, wenn man sich die Verbindungslinie MP einzeichnet und die Dreiecke MQ1P und MQP betrachtet. Die Dreiecke MPQ1 und MPQ besitzen beide einen rechten Winkel und stimmen in zwei Seiten überein, d.h. sind kongruent und es ist Q1P=QP SSW-Satz (vierter Kongruenzsatz) Zwei Dreiecke, die in zwei Seitenlängen und in jenem Winkel übereinstimmen, der der längeren Seite gegenüberliegt, sind kongruent.
13 Satz vom Berührpunkt zwischen zwei Kreisen Der innere oder äußere Berührungspunkt zwischen zwei Kreisen liegt immer auf der Verbindungsgeraden ihrer Mittelpunkte
14 Sehnensatz im Kreis Gegeben sei der Kreis k mit Mittelpunkt in M und Radius r. Im inneren des Kreises befinde sich der Punkt P. Durch P laufen zwei Sehnen. Ihre Schnittpunkte auf k seien A, B, C, D. Es gilt nun stets: a * b = c * d
15 Satz des Apollonius In einem Dreieck teilt die Winkelhalbierende die gegenüberliegende Seite im Verhältnis der anliegenden Seiten b m a n
16 Aufgabe 1 Einem Quadrat ABCD mit der Seitenlänge a ist ein Kreis einbeschrieben, der zwei Seiten des Quadrates und dessen Diagonale AC in je einem Punkt berührt. D C Bestimme den Radius vom Kreis. A B
17 Lösung zur Aufgabe 1 a r a r a 1 D C 0.5*sqrt()*a G M A E B
18 Aufgabe Gegeben sei das Quadrat ABCD mit der Seitenlänge a. Über der Seite CD liegt ein Halbkreis k1 innerhalb vom Quadrat. Weiterhin ist dem Quadrat ein Kreis k einbeschrieben, der die Seiten AB und BC sowie den Halbkreis über CD in je einem Punkt berührt. D k1 k M C Bestimme den Radius vom Kreis k. A B
19 Lösung zur Aufgabe k1 k a/ F a/-r a/ a r a r a r r a r a r a
20 Aufgabe 3 Gegeben sei das D C Quadrat ABCD mit der Seitenlänge a. Dem Quadrat sind die Kreisbögen AC und BD einbeschrieben. Über der Seite AB ist das Quadrat EFGH errichtet, das die Kreisbögen in den Punkten G, H berührt. Berechne den Radius der beiden eingezeichneten H G Kreise k1 und k A B F
21 Lösungsweg zur Aufgabe 3, Teil I Wie beginnen mit dem Radius u für Kreis k. Im Dreieck BKM erhalten wir mit dem Satz des Pythagoras: a a u a u a u 16 D H G C Für die Bestimmung von r im Kreis k1 benötigen wir die Seitenlänge b vom Quadrat EFGH. a a a b b b b 3 5 A F B
22 Lösungsweg zu Aufgabe 3, Teil II A B C D F G H Den Radius r im Kreis k1 können wir aus dem rechtwinkligen Dreieck BKL bestimmen: a r r a a a r a r a a r b r a
23 Drei Kreise im Rechteck und eine gemeinsame Tangente Gegeben sind a und b. Bestimme die Länge der Strecke PQ.
24 Konstruktionsskizze zur Aufgabe Drei Kreise im Rechteck
25 Lösungsskizze Drei Kreise im Rechteck R = b, r = b 4 k1: v + x = y + u AB: a = b + x + v + y + b 4 Im rechtwinkligen Dreieck gilt der Satz des Pythagoras: PTQ: b +v = (x + u + y) PKS und PFK: (v + y) + 9b 16 = b + (u + x) 16 Auflösung von allen Gleichungen im CAS ergibt: PQ = 1 8 1a 9b 16 a 4 a b + b
26 Lösung mit CAS GeoGebra 1 v + x = u + y a = (3 / 4 * b) + v + x + y 3 b^() + v^() = (u + x + y)^() 4 (9 / 16 * b^()) + (v + y)^() = (1 / 16 * b^()) + (u + x)^() 5 Löse({$1, $, $3, $4},{x, y, u, v}) 6 Element($5,) 7 x1:=rechteseite(element($6,1)) 8 y1:=rechteseite(element($6,)) 9 u1:=rechteseite(element($6,3)) 10 pq:=x1+y1+u1 11 (1 / 8 * ((1 * a) - (9 * b) - sqrt((16 * a^()) + b^() - ((4 * a) * b))))
27 Ein Sangaku für die Schule Sato Naosue, Schüler 13 Jahre alt, Akahagi Tempel in Ichinoseki, 1847 Zwei Kreise mit Radius r und zwei Kreise mit Radius t sind einem Quadrat einbeschrieben. Das Quadrat selbst ist einem großen Dreieck einbeschrieben. Ein Kreis mit Radius r und ein größerer Kreis mit Radius R ist den kleineren Dreiecken zwischen Quadrat und Dreieck eingeschrieben. Zeige dass R = t ist.
28 Lösungsvorschlag r + ( r t) = (r + t) r = 3 t a x = a a b x = x b a + b Der Inkreisradius ist die halbe Summe der anliegenden Seiten r = x 4 = x + a x x + (a x) x = 4 a 7 a b x = = 4 a 4 a b = a+b 7 3 R = b x + x + (b x) +x 7 R = 8 b r = a x + x a x + x 7 r = 6 b R = 4 3 t r = R = t r 3
29 Lösungsgedanken I Skizze anlegen (Zirkel und Lineal oder GeoGebra), es muss keine Konstruktion sein! Berührungspunkte markieren und bezeichnen Hilfstrecken einzeichnen und bezeichnen Wo sind die Mittelpunkte der Kreise bzw. Kreisbögen? Mittelpunkte (soweit sinnvoll) miteinander verbinden Wo finden sich rechtwinklige Dreiecke?
30 Lösungsgedanken II Wo liegen ähnliche Dreiecke und es lassen sich Verhältnisgleichungen aufstellen? Satz vom gemeinsamen Tagentenabschnitt anwenden Lassen sich Strecken als Differenz oder Summe von Kreisradien darstellen? Können der Sehnensatz oder Sekanten- Tangentensatz zur Anwendung kommen? es lohnt sich fast immer ein CAS zum Auflösen der Gleichungssysteme zu nutzen (Maxima, Mathematica, Maple V)
31 Ein schwieriges Sangaku Ein Theorem über sich berührende Kreise (kissing circles), Atsuta Shrein, Nagoya 1844 a (dunkelgrün,) b (hellgrün), c (dunkelblau), d (orange) 1 a + 1 c = 1 b + 1 d
32 Bestimme die Radien aller eingezeichneten Kreise!
33 Sangakuseite von Géry Huvent
34 Auswahl Sangaku Probleme 1 Bestimme d = GH und den Radius r von k, k3 wenn a = 4 und R = 5 gegeben sind. Gegeben sind a und b. Beweise: dass s = t ist.
35 Auswahl Sangku Probleme Bestimme die Radien aller Kreise in Abhängigkeit vom Kreissektorradius r. Bestimme die Seitenlänge a vom gleichseitigen Dreieck ABC wenn die gemeinsame Tangente t von k1 und k durch den Punkt C läuft
36 Auswahl Sangaku Probleme 3 Berechne die Seitenlängen a, b vom Rechteck, wenn die Radien wie folgt gegeben sind: r1 = 1 cm, r = cm, r3 = 3 cm Bestimme die Radien der Kreise A,B,C für u = 6 und v = 3. Zeige dass eine Konstruktion mit Zirkel und Lineal grundsätzlich möglich ist.
37 Auswahl Sangaku Probleme 4 Berechne den Radius r von k1 in Abhängigkeit von u, v und h. Gegeben sind Halbmesser a, b der beiden Ellipsen e1 und e. Zeige dass die Seitenlänge d der grünen Quadrate dem kleinen Halbmesser b entsprechen.
38 Literatur
39 Japanischen Tempelgeometrie im WEB Wer an den Sangaku Problemen Gefallen gefunden hat, findet im Internet zahlreiche Aufgaben und Artikel. Bei einer Suche unter Google nach sangaku problems, japanese temple geometry oder wasan fand ich die folgenden Seiten: Wasan Aufgabensammlung Sangku Tafeln und WEB Seite von Gery Huvent Sangaku Skript von Rosali Hosking Hirotaka's Ebisui Files Ramon Nolla Script Examensarbeit zur Tempelgeometrie Jean Constand, Matt Schulze Rund um den Arbelos / Floors wiskunde pagina Imaginary Projekt des math. Institutes Oberwolfach Filme des Imaginary Projekts
Sangaku - Probleme. Aufgaben aus der japanischen Tempelgeometrie. ein Beitrag von Ingmar Rubin, Berlin. Abbildung 1: Ein typisches Sangaku-Problem
A B O B B G F C C N C L K Sangaku - Probleme Aufgaben aus der japanischen Tempelgeometrie ein Beitrag von Ingmar Rubin, Berlin Abbildung 1: Ein typisches Sangaku-Problem Zusammenfassung Der Beitrag beschäftigt
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke
edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke
Der optimale Platz im Theater
Aufgabenblatt 51, März 005 Der Neubau des Theaters der Stadt Göttingen hat einen Zuschauerraum mit dem Grundriss eines gleichseitigen Dreiecks mit Seitenlänge 50 Meter. Die Bühne befindet sich in der Mitte
Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke
Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,
Zum Einstieg. Mittelsenkrechte
Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch
Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke
Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,
Dreieckssätze. Pythagoras und Co. W.Seyboldt SFZ 14/15
Dreieckssätze Pythagoras und Co 1 Pythagoras 300 v.chr.: Elemente des Euklid, Stoicheia unterteilt in 15 Bücher (Kapitel) I bis XV wobei die beiden letzten erst später dazu kamen, deshalb redet man oft
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Aufgaben Geometrie Lager
Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig
Repetition Begriffe Geometrie. 14. Juni 2012
Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte
Ähnlichkeit von Figuren
Ähnlichkeit von Figuren Beispiele: In dem Bild von Escher sind alle Fische einander ähnlich, d.h. sie besitzen dieselbe Form. Alle DIN-Format-Papiere sind einander ähnlich. Es handelt sich um Rechtecke,
1 Der Goldene Schnitt
Goldener Schnitt 1 Der Goldene Schnitt 1 1.1 Das regelmäßige Zehneck 1 1. Ein anderer Name für den Goldenen Schnitt 4 1.3 Der Goldene Schnitt in Zahlen 6 1.4 Die Potenzen von und 8 1.5 Drei Beispiele 10
Arbelos Kreisberechnung - Bögen und Kreise II
ZWILLINGE des Archimedes Zeige: Die schraffierten Kreise sind gleich groß. Berechne konkret den Radius z dieser 2 Kreise für den Fall: R :' EB ' 7cm r :' AC ' 3cm Konstruiere die nebenstehende Figur mit
Aufgaben zur Übung der Anwendung von GeoGebra
Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,
Konstruktionen am Dreieck
Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln
Geometrie: I. Vorkenntnisse Übungenn
Geometrie: I. Vorkenntnisse Übungenn Übung 1: Konstruiere ein Dreieck mit Hilfe folgender Angaben: Grundseite c = 10 cm, Höhe h = 4 cm, Winkel γ = 60. 6 Ist die Konstruktion eindeutig? Kann man das Dreieck
Drei Kreise im Dreieck
Ein Problem von, 171-1807 9. Juli 006 Gegeben sei das Dreieck ABC. Zeichne drei Kreise k 1, k, k im nneren von ABC, von denen jeder zwei Dreieckseiten und mindestens einen der übrigen zwei Kreise berührt
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
Geometrie der Polygone Konstruktionen Markus Wurster 1
Geometrie der Polygone Teil 6 Klassische Konstruktionen Geometrie der Polygone Konstruktionen Markus Wurster 1 Sechseck Gegeben ist der Umkreis des Sechsecks Zeichne einen Kreis mit dem gewünschten Radius
Mathematik Geometrie
Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen
Ähnlichkeit. GEOMETRIE Kapitel 1 NProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:
Ähnlichkeit GEOMETRIE Kapitel 1 NProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 6. März 2016 Inhaltsverzeichnis 1 Aehnlichkeit 1 1.1 Definition & Eigenschaften.....................
Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?
Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.
ÖMO. Geometrie. Grundlagen der. Birgit Vera Schmidt. Österreichische MathematikOlympiade
ÖMO Österreichische MathematikOlympiade Grundlagen der Geometrie 14. 11. 2008 Birgit Vera Schmidt 1 Wiederholung 1.1 Grundlagen 1.1.1 Strecken und Verbindungen Eine Strecke ist eine Verbindung zwischen
Karoline Grandy und Renate Schöfer
Karoline Grandy und Renate Schöfer 1 Lemma 1 (Haruki) In einem Kreis seien zwei sich nicht schneidende Sehnen AB und CD gegeben. Außerdem wähle einen beliebiger Punkt P auf dem Kreisbogen zwischen A und
Sekundarschulabschluss für Erwachsene. Geometrie A 2012
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1
Hinweise: Alle Zwischen- und Endergebnisse auf 2 Stellen nach dem Komma runden. Die Zeichnungen sind nicht maßstäblich. Alle Maße sind in mm, falls nicht anders angegeben. 1. Bestimme das Maß x in nebenstehender
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 24 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
S. 44 AAz Ich kann in Summentermen gemeinsame Faktoren finden und diese ausklammern.
Klasse 8b Mathematik Vorbereitung zur Klassenarbeit Nr. am 12.4.2018 Themen: Algebra (Ausmultiplizieren und Ausklammern, Binomische Formeln, Gleichungen und Ungleichungen) und Geometrie (Geraden am Kreis,
Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks
Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $
$Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich
Vorwort: Farbe statt Formeln 7
Inhaltsverzeichnis Vorwort: Farbe statt Formeln 7 1 Die Grundlagen 11 1.1 Vom Geodreieck zum Axiomensystem................ 11 1.2 Erste Folgerungen aus den Axiomen................. 24 1.3 Winkel.................................
Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen
3 6. Ähnlichkeitsabbildungen Bilde eine Figur durch Hintereinander Ausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen in eine
Aehnlichkeit. 1. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter
Aehnlichkeit 1. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 31. Oktober 2009 Inhaltsverzeichnis 1 Aehnlichkeit 1 1.1 Definition & Eigenschaften.....................
= = cm. = = 4.66 cm. = cm. Anschliessend: A = r 2 π = π = π =
Seiten 5 / 6 ufgaben Kreis 1 1 a) u Kreis r 15 30 cm ( 94.5 cm) Kreis r 15 5 cm ( 706.86 cm ) b) u Kreis r d 5.6 cm ( 17.59 cm) Kreis r.8 7.84 cm ( 4.63 cm ) c) u Kreis r 99 198 cm ( 6.04 cm) Kreis r 99
Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.
Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende
Hilfsmittel bei Geometrieaufgaben. Ein Kompendium für Klasse 8
Hilfsmittel bei Geometrieaufgaben. Ein Kompendium für Klasse 8 Lisa Sauermann März 2013 Geometrie ist ein wichtiges Gebiet bei der Olympiade, das neben viel Kreativität und einem geübtem Auge auch einige
Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc.
AB 25, Seite 1 Satz von Thales 8e 08.03.2012 Aus alten Klassenarbeiten: 1) Trapez: Gegeben ist ein Trapez mit den gegenüber liegenden Seiten a und c und der Höhe h a auf a. Erläutere mit einer Skizze,
Geometrie-Dossier Kreis 2
Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert
Elementare Geometrie Vorlesung 19
Elementare Geometrie Vorlesung 19 Thomas Zink 28.6.2017 1.Gleichungen von Kreisen Es sei OAB ein kartesisches Koordinatensystem der Ebene E. Für einen Punkt P mit den Koordinaten (x, y) schreiben wir auch
FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011
1 FACHHOCHSCHULE ZÜRICH Musterprüfung Geometrie * Klasse ZS K2 18. März 2011 A Name:... 1. Teil: Winkelberechnungen Aufgabe W-1: In nebenstehendem Sehnenviereck sei = 80º und = 70º. Wie gross sind dann
Beweisen mithilfe von Vektoren
330 9 Abstände und Winkel zwischen Geraden und Ebenen Beweisen mithilfe von Vektoren In den vorherigen Abschnitten sind Vektoren dazu benutzt worden, Geraden und Ebenen im Raum zu beschreiben und ihre
/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras
Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND
Das Sehnen- & Tangentenviereck
Das Sehnen- & Tangentenviereck Geometrie-Ausarbeitung Sarah Schultze & Jakob Priwitzer 2083686 & 2083267 Vorwort 2 Vorwort Diese Ausarbeitung wurde im Rahmen der Geometrie-Vorlesung (VAK 03-220) von Prof.
6 Rund um den Kreis (angepasst an das Lehrmittel Mathematik 2)
Name: Geometrie-Dossier 6 Rund um den Kreis (angepasst an das Lehrmittel Mathematik 2) Inhalt: Berechnungen in Kreis und Kreissektoren (Bogenlängen, Umfang, Durchmesser, Fläche) In- und Umkreis eines Vielecks
Didaktik der Elementargeometrie
Humboldt-Universität zu Berlin Sommersemester 2014. Institut für Mathematik A. Filler Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 2 Konstruieren im Geometrieunterricht Konstruieren
Aufgabe 1: Bundesgartenschau: Morgens
Aufgabe 1: Bundesgartenschau: Morgens Lisa macht mit ihrer Klasse einen Ausflug zur Bundesgartenschau. Damit die Klasse nicht einfach so durch das Gelände läuft, bekommen die SchülerInnen Aufgaben zu verschiedenen
Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :
GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle
Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.
GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle
Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.
Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur
Die Strahlensätze machen eine Aussage über Streckenverhältnisse, nämlich:
Elementargeometrie Der. Strahlensatz Geschichte: In den Elementen des Euklid wird im 5.Buch die Proportionenlehre behandelt, d.h. die geometrische Theorie aller algebraischen Umformungen der Proportion.
Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze
Kapitel 3 Dreieck, Viereck, Fünfeck, Kreis Anwendungen & bekannte Sätze 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Im Folgenden werden Maßzahlen für Winkelgrößen
Zwei Kreise im gleichseitigen Dreieck
-. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.
Dualität in der Elementaren Geometrie
1 Dualität in der Elementaren Geometrie Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected] url: www.wias-berlin.de/people/stephan FU Berlin,
Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich
GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt
3 Geometrisches Beweisen
22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette
Quadratische Gleichungen. Kreise und Berührkreise. Binomische Formeln. Satz des Pythagoras. Goldener Schnitt
Quadratische Gleichungen Kreise und Berührkreise Binomische Formeln Satz des Pythagoras Goldener Schnitt 9. Klasse Jens Möller Tel. 07551-6889 [email protected] Quadratische Gleichungen 1. Beispiel:
Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $
$Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken
Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6
Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke
Aufgaben für die Klassenstufen 11/12
Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe
Achsen- und punktsymmetrische Figuren
Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken
3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen
3. Mathematik Olympiade. Stufe (Kreisolympiade) Klasse 1 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade. Stufe (Kreisolympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
GEOMETRIE (4a) Kurzskript
GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.
Elemente der Algebra
Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 25 Auch Albrecht Dürer hatte Spaß an der Quadratur des Kreises Unter den drei klassischen Problemen der antiken Mathematik versteht
Geometrie, Einführung
Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion
Grundlagen der Geometrie
Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode
Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile
Geometrie I (Sommersemester 006, Dr. Christian Werge, [email protected]) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst
Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis?
Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat sich eine Leiter gekauft, die er beim Anstreichen seiner Hauswand benötigt. Diese Leiter ist 5,60 m lang. Damit sie nicht umkippt,
Der Satz des Pythagoras
Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen
SEHNEN-TENGENTEN-VIERECK...10
Inhaltsverzeichnis EINLEITUNG...2 1 SEHNENVIERECK...3 1.1 KONSTRUKTION EINES SEHNENVIERECKS...3 1.2 NOTWENDIGE EIGENSCHAFT EINES SEHNENVIERECKS (WINKELSATZ)...4 1.2.1 Beweis des Winkelsatzes...4 1.2.2
Satz des Pythagoras Lösung von Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA
Satz des Pythagoras Lösung von Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Länge x der Hypotenuse: Ansatz: x² = 8² + 15² x = 17 cm b ) Beispiel für den Nachweis der Rechtwinkligkeit:
Rechtwinklige Dreiecke, die in einem weiteren Winkel übereinstimmen, sind schon zueinander ähnlich.
1 9. Ähnlichkeit rechtwinkliger Dreiecke Rechtwinklige Dreiecke, die in einem weiteren Winkel übereinstimmen, sind schon zueinander ähnlich. Die Höhe h zerlegt das Dreieck in zwei ähnliche Teildreiecke
MW-E Mathematikwettbewerb der Einführungsphase
MW-E Mathematikwettbewerb der Einführungsphase. Februar 0 MW-E Mathematikwettbewerb der Einführungsphase Hinweis: Von jeder Schülerin bzw. jedem Schüler werden fünf Aufgaben gewertet. Werden mehr als fünf
Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :
Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden
Protokoll Geometrie
Protokoll Geometrie 21.04.2008 Thema: Beweise zum Satz des Pythagoras DGS: Dynamische Geometrie Software Datei Pyth_rechn1.ggb Hier kann allgemein festgestellt werden, dass die Addition der Flächen ACFE
Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist
7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d
Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte
AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.
8 Der Inkreis des Arbelos
Elemente der Geometrie 16 8 Der Inkreis des Arbelos Im Kapitel 7 hatten wir den Arbelos durch eine Gerade in zwei Teile geteilt und zu jedem den Inkreis konstruiert. Nun wollen wir den gesamten Arbelos
Die Kreispotenz und die Sätze von Pascal und Brianchon
1 Die Kreispotenz und die Sätze von Pascal und Brianchon 26. September 2007 1 Kreispotenz Zur Konstruktion der Potenzlinie zweier Kreise k 1 und k 2, die sich nicht schneiden, wähle man sich einen Hilfskreis
Themenbereich: Besondere Dreiecke Seite 1 von 6
Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften
Grundwissen Mathematik - 7. Jahrgangsstufe
Stichworte Termbegriff äquivalente Terme Rechenregeln Grundwissen Mathematik - 7. Jahrgangsstufe 1. Terme Terme sind Rechnungen, die Zahlen und Variable enthalten dürfen. Alle aus der 5. Klasse bekannten
Euklid ( v. Chr.) Markus Wurster
Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid
Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm
Kreise und Kreisteile 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) r 2,45 m d 8,6 cm A 26,3 cm² U 149 cm 2. Aufgabe: Berechne bei den folgenden Kreisbögen die fehlenden
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Aufgaben für Klausuren und Abschlussprüfungen
Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.
Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus
Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch
Aufgabe 1: Das Stanzblech: Gewicht
Aufgabe 1: Das Stanzblech: Gewicht Aus einem Blech werden kreisförmige Löcher im abgebildeten hexagonalen Muster ausgestanzt (d.h. die Mittelpunkte benachbarter Kreise bilden gleichseitige Dreiecke). Der
Grundwissen. 7. Jahrgangsstufe. Mathematik
Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf
2.2A. Das allgemeine Dreieck
.A. Das allgemeine Dreieck Koordinatentransformation eines Dreiecks Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = (
Elemente der Mathematik - Sommer 2016
Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit
13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011
13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 20/2011 Aufgabe 1 Sonja hat neun Karten, auf denen die neun kleinsten zweistelligen Primzahlen stehen. Sie will diese Karten so in eine
