Der optimale Platz im Theater
|
|
|
- Georg Kolbe
- vor 9 Jahren
- Abrufe
Transkript
1 Aufgabenblatt 51, März 005 Der Neubau des Theaters der Stadt Göttingen hat einen Zuschauerraum mit dem Grundriss eines gleichseitigen Dreiecks mit Seitenlänge 50 Meter. Die Bühne befindet sich in der Mitte einer der Seiten des Dreiecks und ist genau 0 Meter lang. Entlang der anderen beiden Seiten befinden sich die Sitzplätze. Wo muss man sich hinsetzen, um die beste Sicht auf die Bühne zu haben, um also die Bühne unter dem größtmglichen Blickwinkel zu sehen? Abbildung 1: Skizze vom Theaterraum und der Bühne Der Oberbürgermeister verlangt, parallel zur Bühne eine zusätzliche Sitzreihe einzubauen, die die beiden anderen Seiten des Dreiecks verbindet. In der Mitte dieser Reihe soll die Bürgermeisterloge von allen vorhandenen Sitzen die beste Sicht auf die Bühne garantieren. Wie lang ist diese Sitzreihe dann mindestens? 1
2 O Lösungsvorschlag nach einer Idee von Jutta Gut und Wolfgang Kirschenhofer, Österreich Der optimale Fasskreis, -! Abbildung : Der optimale Fasskreis tangiert genau beide Dreieckseiten Die Punkte- und Streckenbezeichner seien nach Abbildung gewählt. Wir konstruieren die Mittelsenkrechte g zur Strecke AB. Von der Mittelsenkrechten konstruieren wir (Fass-) Kreise durch die Punkte D, E. Wir erinnern uns an den Peripheriewinkelsatz, wonach alle Winkel γ über der Sehne DE stets gleich groß sind. Je kleiner der Kreisradius r ist, desto größer wird der zugehörige Peripheriewinkel. Ist der Kreisradius r zu klein (in Abbildung 1 der Kreis k 1 ) dann berührt (bzw. schneidet) er nicht mehr die Dreieckseiten. Der Kreis k tangiert die Dreieckseiten und liefert damit für unsere Aufgabenstellung das optimale Ergebnis. Wir können den Winkel γ aus dem doppelt so großen Zentriewinkel mit ilfe des Kosinsussatzes bestimmen: y = r r cos( γ) cos( γ) = 1 y r (1)
3 J N 6, I. I - 5 Bestimmung des Radius vom optimalen Fasskreis O O I 7 8 I I I 6 = J Abbildung : Bestimmung des Kreisradius Den Radius r von k bestimmen wir aus dem Sehnen-Tangentensatz und dem Satz des Pythagoras (Abbildung ). Vom Punkt A aus gilt: t = x (x y), x = a y a y, t = () Die öhe h im gleichseitigen Dreieck AB setzt sich aus dem Abschnitten m, n zusammen: h = m n = a () Die Abschnitte m, n berechnen sich aus dem Pythagoras: DMF : n = r y 4, TM : m = r (a t) (4) Die Auflösung der Gleichungen ().. (4) nach r ergibt mit a = 50, y = 0: 5 a y 4 a a y r = = 10 (5) Der Bürgermeister soll von seinem Sitz einen wenigstens ebenso großen Sehwinkel haben wie von den Plätzen S und T. Die Verbindung zwischen den Dreieckseiten sollte daher den
4 optimalen Fasskreis tangieren (Strecke UV = s). Zur Berechnung der Seite UV = s gibt es wenigstens zwei Möglichkeiten. Vom Punkt U sind die Tangentenabschnitte an den Kreis gleich groß, d.h. UT = s/. Außerdem ist das Dreieck UV ebenfalls ein gleichseitiges Dreieck. Es gilt nun : UT U = T s s = a t, s = (a t) = 0 (6) Weiterhin können wir die Länge von UV = s aus einer Verhältnisgleichung berechnen: m r s = h a s = (m r) = ( r (a t) r) (7) Setzen wir für r das Ergenis aus (5) ein und fassen zusammen, ergibt sich mit a = 50, y = 0: s = 1 5 a y 4 a a y = 0 (8) 4
5 N J., O Geometrische Konstruktion - N J N N O 6 5 Abbildung 4: Konstruktion des optimalen Fasskreis Aus dem Sehnen-Tangentensatz erkennen wir die Strecke t als geometrisches Mittel aus den Strecken x = AD und x y = AE. Wir zeichnen den ilfskreis k mit Durchmesser AB. In D errichten wir die Senkrechte zu AB. Der Schnittpunkt mit k sei der Punkt F. Für die Strecke t = DF gilt nun der öhensatz im rechtwinkligen Dreieck AFB: t = x (y x) (9) Die Strecke t = DF tragen wir mit dem Zirkel von A auf A ab und erhalten den gesuchten Punkt T mit t = AT. In T konstruieren wir die Senkrechte zu A. Der Schnittpunkt der Senkrechten mit der Mittelsenkrechten g von AB ist der gesuchte Kreismittelpunkt M vom optimalen Fasskreis. Bemerkung: Die numerischen Werte der Aufgabenstellung bedingen, das der Punkt T genau lotrecht über dem Punkt D liegt (und S lotrecht über E). Damit ist natürlich ein kürzerer Konstruktionsweg möglich, d.h. man errichtet in D die Senkrechte und hat mit dem Schnittpunkt auf A sofort den gesuchten Punkt T. Für andere Werte von y (bei gleichen a) ist das aber nicht der Fall. Im allgemeinen Fall muß man wie oben beschrieben, das geometrische Mittel der Strecken AD und AE konstruieren. 5
Drei Kreise im Dreieck
Ein Problem von, 171-1807 9. Juli 006 Gegeben sei das Dreieck ABC. Zeichne drei Kreise k 1, k, k im nneren von ABC, von denen jeder zwei Dreieckseiten und mindestens einen der übrigen zwei Kreise berührt
Geometrische Grundkonstruktionen
Geometrische Grundkonstruktionen Strecken...2 Halbierung einer Strecke und Mittelsenkrechte...2 Teilung einer Strecke in eine bestimmte Anzahl gleicher Teile...2 Halbierung eines Winkels...3 Tangente an
Konstruktionen am Dreieck
Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln
Ähnlichkeit von Figuren
Ähnlichkeit von Figuren Beispiele: In dem Bild von Escher sind alle Fische einander ähnlich, d.h. sie besitzen dieselbe Form. Alle DIN-Format-Papiere sind einander ähnlich. Es handelt sich um Rechtecke,
Fünf Euromünzen im Kreis
Gerhard J. Woeginger 1. September 2006 Wir betrachten zwei 2-Euro Münzen (mit Durchmesser 25.75mm) und drei 1-Euro Münzen (mit Durchmesser 23.25mm). Bis auf Rotationen und Spiegelungen gibt es grundsaetzlich
Lösungen Geometrie-Dossier Kreis 2 - Kreiskonstruktionen. Diese Aufgabe entspricht genau der Grundkonstruktion 2 (Genaueres kannst du dort nachlesen).
Seiten 12-19 Aufgaben Kreiskonstruktionen (Achtung, Lösungen z.t. verkleinert gezeichnet) 1. 1. Mittelsenkrechte von PQ (Der Kreismittelpunkt muss auf der Mittelsenkrechten von zwei Kreispunkten liegen)
Grundbegriffe Geraden Kreis Winkel Kreis. Rund um den Kreis. Dr. Elke Warmuth. Sommersemester / 20
Rund um den Kreis Dr. Elke Warmuth Sommersemester 2018 1 / 20 Grundbegriffe Geraden Kreis Winkel Kreis 2 / 20 Kreis Kreisfläche oder Kreislinie Definition Die Kreislinie um M mit dem Radius r ist die Menge
Zum Einstieg. Mittelsenkrechte
Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch
Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt:
Aufgabe 1: [4P] Erkläre mit zwei Skizzen, vier Formeln und ein paar Worten die jeweils zwei Varianten der beiden Strahlensätze. Lösung 1: Es gibt viele Arten, die beiden Strahlensätze zu erklären, etwa:
Jgst. 11/I 2.Klausur
Jgst. 11/I 2.Klausur 10.12.2010 A1. Gegeben sind die vier Punkte A(2/2), B(3/6), C(7/5) und D(6/1). Berechne die Gleichung des größten Kreises, den man in das Viereck, das aus diesen Punkten gebildet wird,
Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke
Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,
Konstruktion von Kreistangenten
Konstruktion von Kreistangenten 1 Gegeben sind die Punkte A und B mit AB = 5cm Konstruiere die Geraden durch B, die von A den Abstand 3cm haben! 2 Eine Ecke einer Rasenfläche, an der die geraden Ränder
Prüfungsteil 2, Aufgabe 4 Analytische Geometrie
Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über
Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras
Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =
Elemente der Mathematik - Sommer 2016
Elemente der Mathematik - Sommer 2016 Prof. Dr. Matthias Lesch, Regula Krapf Lösungen Übungsblatt 9 ufgabe 31 (6 Punkte). Konstruieren Sie mit Zirkel und Lineal alle Dreiecke mit folgenden ngaben: (a)
Geometrie-Dossier Kreis 2
Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
Übungen. Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt aus den folgenden. Angaben. Angaben.
Übungen A1 Konstruiere ein Dreieck ABC und dessen Umkreismittelpunkt aus den folgenden Angaben. a) A( 4 2), B(2 2), C(2 4) b) a = 5cm, b = 4cm und c = 8cm A2 Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt
Qualiaufgaben Konstruktionen
Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der
Seitenhalbierende im Dreieck
>, J H + = Ingmar Rubin, Berlin. November 003 Gegeben sei das Dreieck AB mit der Grundseite AB und dem Winkel γ = BA. Die Seitenhalbierende D = r bildet mit der Grundseite den Winkel t. Gesucht ist die
Kreis, Zylinder, Kegel, Kugel
Kreis, Zylinder, Kegel, Kugel Kreis Ziele: Kenntnis der Begriffe: Radius, Umfang, Durchmesser, Sehne, Sekante, Tangente, Berührungsradius einfache Berechnungen durchführen können, Formeln für Umfang und
Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $
$Id: dreieck.tex,v 1.16 015/04/3 18:14:0 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir gezeigt das die drei Seitenhalbierenden eines Dreiecks sich immer
Inhalt. Aufgaben zu den Themen: Umfangswinkel Mittelpunktwinkel Sehnen-Tangenten-Winkel Satz des Thales Fasskreis
Geometrie Kreis Inhalt ufgaben zu den Themen: Umfangswinkel ittelpunktwinkel Sehnen-Tangenten-Winkel Satz des Thales Fasskreis Sekantensatz Sekanten-Tangentensatz Sehnensatz it vielen Konstruktionsbeispielen
1 Der Goldene Schnitt
Goldener Schnitt 1 Der Goldene Schnitt 1 1.1 Das regelmäßige Zehneck 1 1. Ein anderer Name für den Goldenen Schnitt 4 1.3 Der Goldene Schnitt in Zahlen 6 1.4 Die Potenzen von und 8 1.5 Drei Beispiele 10
Klausur zur Einführung in die Geometrie im SS 2002
Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt
4.18 Buch IV der Elemente
4.18 Buch IV der Elemente Buch IV behandelt die folgenden Konstruktionsaufgaben: Buch IV, Einem Kreis ein Dreieck mit vorgegebenen Winkeln einschreiben. Buch IV, 3 Einem Kreis ein Dreieck mit vorgegebenen
4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen
4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 1 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit
Konstruktionen mit Zirkel und Lineal
Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie
= = cm. = = 4.66 cm. = cm. Anschliessend: A = r 2 π = π = π =
Seiten 5 / 6 ufgaben Kreis 1 1 a) u Kreis r 15 30 cm ( 94.5 cm) Kreis r 15 5 cm ( 706.86 cm ) b) u Kreis r d 5.6 cm ( 17.59 cm) Kreis r.8 7.84 cm ( 4.63 cm ) c) u Kreis r 99 198 cm ( 6.04 cm) Kreis r 99
Begründen in der Geometrie
Nr.6 9.6.2016 Begründen in der Geometrie Didaktische Grundsätze Zuerst die geometrischen Phänomene erkunden und kennenlernen. Viel zeichnen! Vierecke, Kreise, Dreiecke, Winkel, Strecken,... In dieser ersten
Zwei Kreise im gleichseitigen Dreieck
-. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.
Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Blatt 7 1.06.017 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a) Um ein rechtwinkliges Dreieck in seiner
Ortslinien und Konstruktionen
Ortslinien und Konstruktionen Dr. Elke Warmuth Sommersemester 2018 1 / 17 Ortslinien Konstruktionen Dreieckskonstruktionen 2 / 17 Wo liegen alle Punkte P, die von einem Punkt M den gleichen Abstand r haben?
Ähnlichkeit. GEOMETRIE Kapitel 1 NProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:
Ähnlichkeit GEOMETRIE Kapitel 1 NProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 6. März 2016 Inhaltsverzeichnis 1 Aehnlichkeit 1 1.1 Definition & Eigenschaften.....................
Mathematik I Prüfung für den Übertritt aus der 8. Klasse
Aufnahmeprüfung 08 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Aufgabe 1: Das Stanzblech: Gewicht
Aufgabe 1: Das Stanzblech: Gewicht Aus einem Blech werden kreisförmige Löcher im abgebildeten hexagonalen Muster ausgestanzt (d.h. die Mittelpunkte benachbarter Kreise bilden gleichseitige Dreiecke). Der
Kreissektoren - Bogenlänge und Sektorfläche
Kreissektoren - Bogenlänge und Sektorfläche 1 In folgender Tabelle ist r Radius, b Bogenlänge und φ Mittelpunktswinkel eines Kreissektors A s ist dessen Flächeninhalt Berechne die fehlenden Größen: r φ
SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
Die Kanten der Grundfläche mit je 7 cm sind die Katheten a und b des rechtwinkligen Dreiecks, die Hypotenuse c ist die gesuchte Bodendiagonale c.
Aufgabe 1 Schritt 1: Ansatz und Skizze Bei einem Würfel, bei dem ja alle Kantenlängen gleich sind, kannst du mit einer Raumdiagonale, einer senkrechten Kante und einer Decken oder Bodendiagonalen ein rechtwinkliges
1 Pyramide, Kegel und Kugel
1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche
Inhaltsverzeichnis. 1. Einleitung Eigenschaften von Kreisen Literaturverzeichnis... 11
Inhaltsverzeichnis 1. Einleitung...2 2. Eigenschaften von Kreisen... 3 2.1 Sehnensatz.................................................... 3 2.2 Sekantensatz..................................................
Übungen. Löse folgende Aufgaben mit GeoGebra
Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden
Aufgabe E 1 (8 Punkte)
Aufgabe E (8 Punkte) Auf einem Billardtisch (bei dem die Koordinatenachsen x = 0 und y = 0 als Banden dienen) liegen zwei Kugeln P( ) und Q(3 ) Die Kugel P soll so angestoßen werden, dass sie nach Reflexion
1 Grundwissen Pyramide
1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken
6 Rund um den Kreis (angepasst an das Lehrmittel Mathematik 2)
Name: Geometrie-Dossier 6 Rund um den Kreis (angepasst an das Lehrmittel Mathematik 2) Inhalt: Berechnungen in Kreis und Kreissektoren (Bogenlängen, Umfang, Durchmesser, Fläche) In- und Umkreis eines Vielecks
Kompetenzbereich. Kompetenz
Faltkunst Du vertiefst dein Verständnis für Achsenspiegelungen und achsensymmetrische Figuren, indem du vom einfachen Scherenschnitt bis zur anspruchsvollen Origamifigur vieles mit Papier umsetzt. Die
Mathematik verstehen 7 Lösungsblatt Aufgabe 6.67
Aufgabenstellung: Berechne die Schnittpunkte der e k1 und k mit den Mittelpunkten M1 bzw. M und den Radien r1 bzw. r a. k1: M1 3, 4, P 5, 3 k 1, k geht durch A 0 und B 4 0 r 5 M liegt im 1. Quadranten
Lösungen der Übungsaufgaben III
Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion
Aufgaben zur Übung der Anwendung von GeoGebra
Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,
Japanische Tempelgeometrie 2
Japanische Tempelgeometrie Workshop über das Lösen geometrischer Probleme im Zeitalter von PC und Internet vorgestellt von Ingmar Rubin, MNU Tagung an der FU Berlin, 1. Oktober 017 Gegeben ist der Inkreisradius
Name/Vorname:... Z. Zt. besuchte Schule:...
KANTONALE PRÜFUNG 2015 für den Übertritt in eine Maturitätsschule auf Beginn des 11. Schuljahres Mathematik Z. Zt. besuchte Schule:... Bitte beachten: - Bearbeitungsdauer 120 Minuten - Aufgabenserie umfasst
Kreis - Kreisgleichung (+ Lagebeziehung Punkt / Kreis)
Kreis - Kreisgleichung (+ Lagebeziehung Punkt / Kreis. Kreisgleichung. Kreis durch 3 Punkte 3. Lage Punkt / Kreis. Kreisgleichung Ein Kreis mit dem Mittelpunkt M - Ortsvektor m - und dem Radius r ist beschrieben
Klausur zur Vorlesung Elementargeometrie
Klausur zur Vorlesung Elementargeometrie 08.08.2012 Prof. Klaus Mohnke und Mitarbeiter Nachname, Vorname: Matrikelnummer: Bitte unterschreiben Sie hier bei der Abgabe: Zum Bearbeiten der Klausur haben
Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich
GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt
2.5. Aufgaben zu Dreieckskonstruktionen
2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere
Aufgaben für die Klassenstufen 11/12
Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe
Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.
Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Prüfungsausschuss für die Zwischenprüfungen im Ausbildungsberuf Vermessungstechniker/in Prüfungstermin: 2005 Datum: Praktische Prüfung
Maximale Punktzahl: 100 Note: Name: Ausgegeben: 30. September 2005-8.30 Uhr Abgegeben: 30. September 2005 Uhr Aufgabenstellung: Die in den Anlagen 1-10 enthaltenen Aufgaben 1-10 sind zu lösen. Lösungsfrist:
Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1
Hinweise: Alle Zwischen- und Endergebnisse auf 2 Stellen nach dem Komma runden. Die Zeichnungen sind nicht maßstäblich. Alle Maße sind in mm, falls nicht anders angegeben. 1. Bestimme das Maß x in nebenstehender
Die Eulergerade. Begrie. Spezialfälle. Konstruktion der Euler-Gerade
Die Eulergerade Begrie In einem Dreieck liegen der Schwerpunkt S, der Höhenschnittpunkt H und der Umkreismittelpunkt U auf einer gemeinsamen Geraden, der Euler-Geraden (Bezeichnung: e). Zur Erinnerung:
Lösungen Crashkurs 7. Jahrgangsstufe
Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der
3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen
3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
Schulübung zur Wiederholung. für die 4. Schulaufgabe
Schulübung zur Wiederholung für die 4. Schulaufgabe Aufgabe 1 Bestimmung der Burggrabenweite Man beginnt mit der Seite ST. Vorgehensweise: Man beginnt mit der Seite ST. Aufgabe 1 Bestimmung der Burggrabenweite
Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE
Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse
Konstruktionen mit Kreisen
Konstruktionen mit Kreisen Kreis und Gerade 1. Gegeben: k(m 5); Punkt P mit M P = 4. Konstruiere Sehnen der Länge 8 durch P (mit KB). 2. Gegeben: k(m 4); P k, Q k mit P Q = 5. Gesucht: Kreis durch P und
Unterrichtsreihe zur Parabel
Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis
Die Oberfläche der Verpackung besteht aus sechs Teilen: 2 Trapeze (vorne und hinten), und 4 Rechtecke.
Aufgabe 1a) Schritt 1: Oberflächenformel aufstellen Gesucht ist die Oberfläche des Prismas. Das heißt, 2, mit G als Grundfläche und M als Mantel. Die Oberfläche der Verpackung besteht aus sechs Teilen:
Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.
Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)
MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt
MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt Definitionen: 1. Kongruenz: Zwei Figuren, die sich beim Aufeinanderlegen decken, heißen deckungsgleich oder kongruent. 2. Kongruenzabbildung: Eine Abbildung,
Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5
(Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei
Ein modularer Ring mit 11 Ecken
www.mathegami.de September 2017 Ein modularer Ring mit 11 Ecken Michael Schmitz In [2], [3] und [4] haben wir bereits verschiedene regelmäßige n-ecke aus Modulen zusammengesetzt. Dazu kam die Anregung
Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $
$Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in
Geometrie, Einführung
Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende
Prüfungsteil 2, Aufgabe 4 Analytische Geometrie
Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über
Abitur 2011 G8 Abitur Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur 0 G8 Abitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem sind die Punkte A( 7 ), B(6 7 ) und C( ) gegeben. Teilaufgabe a (4 BE) Weisen
Geometrie der Polygone Konstruktionen Markus Wurster 1
Geometrie der Polygone Teil 6 Klassische Konstruktionen Geometrie der Polygone Konstruktionen Markus Wurster 1 Sechseck Gegeben ist der Umkreis des Sechsecks Zeichne einen Kreis mit dem gewünschten Radius
Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag):
Seite 10 1 a) Konstruktionsbericht (Vorschlag): 1. Alle Eckpunkte mit Z verbinden 2. Die Strecke ZC halbieren (das entspricht der Streckung mit k 0.5) C 3. Parallelverschieben CB // durch C B 4. AB //
E r g ä n z u n g. zur Trigonometrie
E r g ä n z u n g zur Trigonometrie Klasse 10 b 2018 / 19 Deyke www.deyke.com Trigonometrie.pdf W I N K E L F U N K T I O N E N Die Strahlensätze und der Satz des Pythagoras sind bisher die einzigen Hilfsmittel
Lösungen zum Thema Kreis & Kugel
Lösungen zur Aufg. : a r ; r 8 (,8 ; M M m m M M Dann gilt: r +r + 8 > M M und weiter: r r 8, < M M b Aus r r < M M
Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006
Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die
Der Satz des Pythagoras
Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen
a) Welcher Planet ist am schnellsten unterwegs? Mit welcher Geschwindigkeit?
1. Berechne die Geschwindigkeiten von Planeten: Erklärungen: h: Stunde; d: Tag; Y: Jahr; (?): unsichere Daten Planetenjahr: In dieser Zeit kreist ein Planet einmal um die Sonne Planetentag: In dieser Zeit
Relativitätstheorie mit Zirkel und Lineal zur Addition von Geschwindigkeiten
Relativitätstheorie mit Zirkel und Lineal zur Addition von Geschwindigkeiten. Die Konstruktion von a b nach Jerzy Kocik. Eine Folgerung für die halbe Geschwindigkeit 3. als Gruppenoperation 4. Die Addition
Achsen- und punktsymmetrische Figuren
Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken
Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie
Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Prof. Dr. Thomas Risse www.weblearn.hs-bremen.de/risse/mai www.weblearn.hs-bremen.de/risse/mai/docs Fakultät Elektrotechnik & Informatik
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
Tag der Mathematik 2017
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen.
Winkel zeichnen. Hilfe. ACHTUNG! Achte immer genau darauf
Hilfe Winkel zeichnen 1. Zeichne einen Schenkel (die rote Linie) S 2. Lege das Geodreieck mit der Null am Scheitelpunkt an. (Dort wo der Winkel hinkommen soll) S 3. Möchtest du zum Beispiel einen Winkel
Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten
Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten Jo rn Saß, [email protected] Fachbereich Mathematik, TU Kaiserslautern Arbeitsgruppe Stochastische Steuerung und Finanzmathematik Kaiserslautern
Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2
Seite http://www.realschulrep.de/ Seite 2 Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Aufgabe B2. Der Punkt A 2 2 ist gemeinsamer Eckpunkt von Rauten A B n C n D n. Die Eckpunkte B n 3 liegen auf
Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $
$Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
2. Grundkonstruktionen, Einführung in die Kreislehre
Arthur Krämer Kreiskonstruktionen 1. Zielsetzungen Als großes Thema wird für die Herbsttagung 1995 des Mathematikseminars I in Sterzing die Kreisgeometrie in der euklidischen Ebene gewählt. Da sich die
Aufgabe 1: Bundesgartenschau: Morgens
Aufgabe 1: Bundesgartenschau: Morgens Lisa macht mit ihrer Klasse einen Ausflug zur Bundesgartenschau. Damit die Klasse nicht einfach so durch das Gelände läuft, bekommen die SchülerInnen Aufgaben zu verschiedenen
