Flüssig/Fest Phasengleichgewicht binärer Systeme



Ähnliche Dokumente
Flüssig/Fest Phasengleichgewicht binärer Systeme

Flüssig/Fest Phasengleichgewicht binärer Systeme

Fest/Flüssig Phasengleichgewicht binärer Systeme

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

Versuch: Siedediagramm eines binären Gemisches

Reale Zustandsdiagramme und ihre Interpretation

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

Die innere Energie eines geschlossenen Systems ist konstant

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Lineare Funktionen. 1 Proportionale Funktionen Definition Eigenschaften Steigungsdreieck 3

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Elektrischer Widerstand

Innere Reibung von Gasen

2 Gleichgewichtssysteme

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Technische Thermodynamik

Chemie Zusammenfassung KA 2

Für die Abhängigkeit der Freiheitsgrade von der Zahl der Komponenten und der Phasen eines Systems existiert die Gibbs sche Phasenregel: F = K P + 2

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Flüssigkeiten. einige wichtige Eigenschaften

Biochemisches Grundpraktikum

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Zeichen bei Zahlen entschlüsseln

Offset, Buffer, Nullpunkt, DpH, Asymmetrie oder ph = 7.

Die Leiterkennlinie gibt den Zusammenhang zwischen Stromstärke I und Spannung U wieder.

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Stationsunterricht im Physikunterricht der Klasse 10

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Wellen. 3.&6. November Alexander Bornikoel, Tewje Mehner, Veronika Wahl

Physik & Musik. Stimmgabeln. 1 Auftrag

PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN

Grundlagen der Theoretischen Informatik, SoSe 2008

Phasendiagramme. Seminar zum Praktikum Modul ACIII

Strom - Spannungscharakteristiken

Motorkennlinie messen

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Fit in Mathe. Juni 2014 Klassenstufe 9. Lineare Funktionen

Aufgaben Wechselstromwiderstände

Klasse : Name : Datum :

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:...

WÄRMEMESSUNG MIT DURCHFLUSSMENGENMESSER, TEMPERATURSENSOREN UND LOXONE

Bestimmung des Schmelzdiagramms eines eutektischen Gemisches aus Naphthalin und Phenantren (SMD)

Gefrierpunktserniedrigung

Versuch 3. Frequenzgang eines Verstärkers

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG

Lineare Gleichungssysteme

Gase, Flüssigkeiten, Feststoffe

Mischungslücke in der flüssigen Phase

Lichtbrechung an Linsen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

SUPERABSORBER. Eine Präsentation von Johannes Schlüter und Thomas Luckert

Theoretische Grundlagen der Informatik WS 09/10

Die chemischen Grundgesetze

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Anleitung über den Umgang mit Schildern

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung

Kennlinienaufnahme elektronische Bauelemente

Lernaufgabe: Richtigstellen von Reaktionsgleichungen

Technische Universität Chemnitz Chemisches Grundpraktikum

Statistische Thermodynamik I Lösungen zur Serie 1

Plotten von Linien ( nach Jack Bresenham, 1962 )

Säure-Base Titrationen. (Seminar zu den Übungen zur quantitativen Bestimmung von Arznei-, Hilfs- und Schadstoffen)

Infrarot Thermometer. Mit 12 Punkt Laserzielstrahl Art.-Nr. E220

Primzahlen und RSA-Verschlüsselung

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

Zerlegung der Verbindung Wasser. Weiterbildung für fachfremd unterrichtende Lehrkräfte

1. Theorie: Kondensator:

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben Wurzelgleichungen

Leichte-Sprache-Bilder

Sichere Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere . der

Elektrische Energie, Arbeit und Leistung

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

6.2 Scan-Konvertierung (Scan Conversion)

Einen Wiederherstellungspunktes erstellen & Rechner mit Hilfe eines Wiederherstellungspunktes zu einem früheren Zeitpunkt wieder herstellen

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Lineare Gleichungssysteme

1 Mathematische Grundlagen

IIE4. Modul Elektrizitätslehre II. Transformator

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

SICHERN DER FAVORITEN

Che1 P / CheU P Praktikum Allgemeine und Anorganische Chemie. Gasmessung. 15. September 2008

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse Lösung 10 Punkte

Kapitalerhöhung - Verbuchung

Erstellen von x-y-diagrammen in OpenOffice.calc

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: MORE Projects GmbH

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

Transkript:

Fest/Flüssig Phasengleichgewicht binärer Systeme 1 Flüssig/Fest Phasengleichgewicht binärer Systeme In diesem Experiment geht es um das Gleichgewicht zwischen festen und flüssigen Phasen in einem Zwei-Komponenten-System. Je nach Stoffmengenverhältnissen (Molenbruch) handelt es sich dabei um die Temperaturabhängigkeit der Löslichkeit fester Stoffe in einem Lösemittel (bei gesättigten Lösungen) oder um die Konzentrationsabhängigkeit des Gefrierpunkts der Lösung (bei nicht gesättigten Lösungen. Stichworte Phasendiagramm, thermodynamische Freiheitsgrade, Gibbssche Phasenregel, Eutektikum, Gefrierpunktserniedrigung, kolligative Eigenschaften, Löslichkeit, Sättigung, Gleichgewicht, Entropie, freie Gibbssche Enthalpie, chemisches Potential Theoretischer Teil Abb. 1: Das chemische Potenzial eines Lösungsmittels bei Anwesenheit eines gelösten Stoffs Für die Lösung eines Feststoffes in einer Flüssigkeit wird zur einfacheren etrachtung angenommen, dass der gelöste Stoff nicht flüchtig ist, d.h. nicht zur Zusammensetzung der Gasphase beiträgt, und dass der gelöste Stoff im festen Lösungsmittel unlöslich ist. Eine Lösung des Feststoffs in der flüssigen Phase alleine trägt durch die Mischungs-(Lösungs-)Entropie dazu bei, dass im Phasendiagramm der Existenzbereich der flüssigen Phase auf Kosten der

Fest/Flüssig Phasengleichgewicht binärer Systeme 2 gasförmigen und der festen Phase zunimmt: Es kommt, aus rein entropischen Gründen, zur Siedepunktserhöhung und zur Gefrierpunktserniedrigung (s. Abb. 1). eide hier untersuchte Phänomene - die Gefrierpunktserniedrigung und die Temperaturabhängigkeit der Löslichkeit - werden durch ein Schmelzdiagramm mit Eutektikum beschrieben, wie es schematisch in Abbildung 2 für ein Lösemittel A und einen gelösten Feststoff dargestellt ist. Dabei wurde vereinfachend angenommen, dass die Komponenten im flüssigen Zustand (d.h. für T > T ) vollkommen mischbar sind. T A und T bezeichnen die Schmelzpunkte der reinen Stoffe. E ist der eutektische Punkt mit der eutektischen Temperatur T E und der Zusammensetzung x E. Der linke Ast der Schmelzpunktskurve (T A -E) ist die Gefrierpunktskurve des Lösemittels. Hier befinden sich die Lösung und die reine feste Phase des Lösungsmittels im Gleichgewicht. Der rechte Ast der Schmelzpunktskurve (E-T ) ist die Löslichkeitskurve des gelösten Stoffs. Hier befinden die Lösung und der reine Feststoff im Gleichgewicht. Oberhalb der Schmelzpunktskurve (L) liegt nur eine Phase, die flüssige Lösung, vor, während unterhalb der Schmelzpunktskurve das Zweiphasengebiet C liegt, in dem kein thermodynamisches Gleichgewicht herrscht. Dort liegen entweder Lösung und festes (gefrorenes) Lösemittel (C 1 ), gesättigte Lösung und Feststoff (C 2 ) oder reines, festes (gefrorenes) Lösemittel und reiner Feststoff (C 3 ) nebeneinander vor. Am eutektischen Punkt E liegen drei Phasen im Gleichgewicht vor: das reine feste Lösemittel, der reine Feststoff und die flüssige Lösung mit dem Molenbruch x E. Durch Vertauschung der Achsen (T x) und Umrechnung des Molenbruchs x auf das Massenverhältnis w erhält

Fest/Flüssig Phasengleichgewicht binärer Systeme 3 man oberhalb der eutektischen Temperatur T E aus dem oben abgebildeten Schmelzdiagramm die nachfolgend dargestellten Löslichkeitskurven von Salzen: Abb. 3: Temperaturabhängigkeit der Löslichkeit einiger Salze Löslichkeitsgleichgewicht Die Temperaturabhängigkeit der Sättigungskonzentration x des gelösten Stoffes ist - unter den nachfolgend aufgeführten Voraussetzungen: ideal verdünnte Lösungen, Temperaturunabhängigkeit von Schmelzwärme und Schmelzentropie - mit seiner molaren Schmelzwärme (heat of fusion) ΔH,m verknüpft: bzw. ΔH m, 1 1 R T T0 x( T) = x( T0 ) e ΔH m, ln x = + const RT (1a) (1b) Zur Herleitung der eziehungen (1a/b) betrachten Sie das Löslichkeitsgleichgewicht in einer gesättigten Lösung auf dem Kurvenast E T aus Abb. 2. Hier gilt für jede Temperatur T: μ s *(T) = μ l *(T) + RT ln x (T) (2)

Fest/Flüssig Phasengleichgewicht binärer Systeme 4 wobei die μ i * die chemischen Standardpotentiale der festen (i=s) bzw. der flüssigen (i=l) Phase des Stoffes, R die allgemeine Gaskonstante und x der Stoffmengenanteil (Molenbruch) des Stoffs sind. Auflösen der Gleichung (2) nach x (unserer Messgröße) ergibt: * * * μl(t) μs (T) Δμ(T) ln x (T) = = (3) RT RT Δμ Β *(T) ist dabei das "chemische Standardschmelzpotenzial", also die beim Schmelzen auftretende Differenz der chemischen Standardpotentiale der reinen festen und der reinen flüssigen Phase. Das Minuszeichen erscheint, damit die Schmelzenthalpie, wie man es gewohnt ist, positiv wird. Für einen Reinstoff ist das chemische Standardpotential µ* definitionsgemäß gleich der molaren freien Gibbsschen Enthalpie G m µ* = G m = H m TS m (4) Damit wird die Phasenumwandlungsdifferenz zu Δµ* = ΔG m = ΔH m TΔS m (5) ΔH m und ΔS m sind die molare Schmelzenthalpie und die molare Schmelzentropie, die im Folgenden näherungsweise - als temperaturunabhängig angesehen werden sollen. Wird nun Gl. (5) in Gl. (3) eingesetzt, so erhält man ln x (T) ΔH TΔS ΔH ΔS RT RT R m m m m = = + (6) ildet man nun die Differenz für den Logarithmus des Molenbruchs für zwei beliebige, verschiedene Temperaturen (T und T 0 ), so erhält man x (T) ΔH 1 1 m ln x (T) ln x (T 0) = ln = x (T 0 ) R T T 0 (7) Die Entropie-Terme fallen weg, da die molare Schmelzentropie als temperaturunabhängig angesehen wurde. Durch Entlogarithmieren erhält man Gl. (1a)

Fest/Flüssig Phasengleichgewicht binärer Systeme 5 Gefrierpunktserniedrigung Da das Phänomen der Gefrierpunktserniedrigung eine kolligative Eigenschaft des gelösten Stoffes ist, d.h. nur von der Molalität y der gelösten Teilchen im Lösemittel A und nicht von der Art der Teilchen abhängt, kann es zur Molmassenbestimmung herangezogen werden: Die Masse m der eingewogenen Substanz wird durch eine Wägung, die Teilchenzahl durch die Gefrierpunktserniedrigung ΔT bestimmt. ΔT = K K y (8) K K wird als kryoskopische Konstante bezeichnet. Sie ist spezifisch ausschließlich für das Lösungsmittel, nicht für den gelösten Stoff. Da die Stoffmenge n durch das Verhältnis der Masse m zur Molmasse M gegeben ist, ergibt sich für den Zusammenhang zwischen Molmasse M und Gefrierpunktserniedrigung ΔT: m K = (9) Δ K M m A T Herleitung Analog zu Gleichung (2) für den gelösten Stoff erhält man für das Lösemittel A die Gleichgewichtsbedingung: μ (T) =μ (T) + RT ln x (T) * * As Al A (10) In einem binären System gilt x A = 1 x, und für kleine Werte von x gilt ln (1 x ) x. Somit wird Gl. (10) zu μ (T) =μ (T) RTx (T) * * As Al (11) Daraus folgt mit Gl. (4) und (5): * * ΔμA ΔGAm ΔHAm ΔSA m x (T) = = = + (12) RT RT RT R Für das reine Lösungsmittel gilt: x = 0 und T = T A, also x (T A ) = 0. Analog zu Gl. (7), aber nun für T und T A, erhält man:

Fest/Flüssig Phasengleichgewicht binärer Systeme 6 Am = A = R T T (13) A x (T) x (T) x (T ) ΔH 1 1 wobei ΔH Am und ΔS Am als temperaturunabhängig angenommen wurden. Für nicht zu große Gefrierpunktserniedrigungen ΔT = T A T «T A gilt: T T A T 2 A und aus Gl. (13) wird: bzw. ΔH x (T) = x (T) x (T ) = Δ T (14) Am A 2 RTA 2 RT T = A x Δ H Am Δ (15) Gleichung (15) beschreibt die im Zustandsdiagramm (Abb. 2) dargestellte Grenzgerade durch den Punkt T A. Für kleine Molenbrüche x ist die Molalität y des gelösten Stoffes y n n n x m n M (n n )M M = = = A A A A + A A (n i : Stoffmenge, M A : Molmasse des Lösungsmittels. Damit geht Gl. (15) über in Gl. (9) mit K K M RT ΔH 2 = A A (16) Am Ausführung und Auswertung der Messung 1) estimmen Sie die Temperaturabhängigkeit der Sättigungskonzentration von enzoesäure zwischen 30 C und 65 C in 5 -Intervallen und berechnen Sie daraus die molare Schmelzwärme von enzoesäure. 2) estimmen Sie die Molmasse eines unbekannten, in Wasser löslichen organischen Stoffes durch Messung seiner Gefrierpunktserniedrigung. erechnen Sie die kryoskopische Konstante von Wasser mittels Gl. (16) und vergleichen Sie mit dem Literaturwert. Wie müsste ein Stoff beschaffen sein, dessen kryoskopische Konstante einen möglichst großen Wert hat?

Fest/Flüssig Phasengleichgewicht binärer Systeme 7 Schmelzwärmebestimmung von enzoesäure Zur Schmelzwärmebestimmung von enzoesäure benötigen Sie gesättigte enzoesäurelösungen. Erwärmen Sie dazu je 250 ml der vorbereiteten, bei Raumtemperatur gesättigter enzoesäurelösung) in 2 echergläsern. Achten Sie darauf, dass genügend feste enzoesäure vorhanden ist, um Sättigung auch bei hohen Temperaturen sicherzustellen. Nach Erwärmen und Umrühren setzen Sie die echergläser in ein thermostatisiertes Wasserbad, dessen Temperatur kleiner als die der Lösung ist und im ereich der höchsten Messtemperatur liegen soll. Nach etwa 20 Minuten hat sich die zur Temperatur des Thermostaten gehörige Sättigungskonzentration eingestellt. Zur Konzentrationsbestimmung entnehmen Sie 20 ml Lösung mit einer Vollpipette, an deren Spitze ein Glasrohr mit einer Glasfritte angesetzt wird, und titrieren Sie mit 0.1 n NaOH gegen Phenolphthalein. Die Glasfritte verhindert das Einsaugen kristalliner enzoesäure. Entnehmen Sie zwei weitere Proben nach jeweils einigen Minuten und bilden Sie den Mittelwert. Messen Sie in gleicher Weise die Sättigungskonzentrationen für die übrigen, tieferen Temperaturen. In der Pipette auskristallisierte enzoesäure überführen Sie in das Titrationsgefäß, indem Sie die Pipette mit heißem dest. Wasser ausspülen. Tragen Sie den Logarithmus der gemessenen Sättigungskonzentrationen gegen l/t auf und legen Sie mittels linearer Regression eine Ausgleichsgerade durch die acht Messpunkte. Aus der Steigung ergibt sich die gesuchte molare Schmelzwärme gemäß Gl. (1b). Molmassenbestimmung Zur Molmassenbestimmung verwenden Sie die in Abb. 4 dargestellte Apparatur. Der Versuchsaufbau besteht aus einem zweiteiligen Versuchsgefäß und einem Kühlthermostaten. Der Einsatz A dient zur Aufnahme der Probe (Lösungsmittel bzw. Lösung) sowie eines Pt100- Widerstandsthermometers. Ein Magnetrührer sorgt für eine gute Durchmischung der Lösung. Ein Messverstärker erzeugt ein Spannungssignal, das dem Widerstand proportional ist und von einem Digital-Multimeter registriert wird. Der Messverstärker ist so konfiguriert, dass er Temperaturen im hier interessierenden ereich zwischen ca. 10 ºC und + 10 ºC in eine Gleichspannung von 0 V bis 5 V umwandelt. Das Programm Digiscop überträgt die im Multimeter digitalisierten Daten an den Computer, stellt die Messwerte als Temperaturverlaufskurve in Echtzeit dar und speichert die Daten im ASCII-(Text-)Format. Zur Auswertung müssen Sie die vom Computer aufgezeichneten Spannungswerte in Temperaturwerte umrechnen. Führen Sie dazu eine Kalibrier-Messreihe durch, bei der Sie (mindestens) drei verschiedene (konstante) Temperaturen sowohl mit einem Thermometer als auch mit dem Pt100-Widerstand messen und die mit dem Thermometer gemessenen Temperatur-

Fest/Flüssig Phasengleichgewicht binärer Systeme 8 werte T mit den aufgezeichneten Spannungswerten U vergleichen. Sie können die Kalibriermessungen zu einem beliebigen Zeitpunkt vornehmen - vor, nach oder während der eigentlichen Messungen. Temperieren Sie entweder Wasser durch unterschiedliche Zugabe von Eis oder verwenden Sie den Kältethermostaten, der den Kühlmantel C versorgt. Achten Sie in jedem Fall auf konstante und homogene Temperatur im System (Geduld!), damit der Pt100- Widerstand und das Thermometer dieselbe Temperatur messen. Legen Sie durch die Messpunkte eine Ausgleichsgerade T(U), mittels derer Sie die anschließend aufgenommenen Temperatur-Zeit-Kurven auswerten. Geben Sie die Geradengleichung für T(U) explizit an und bestimmen Sie den Fehler für den Umrechnungsfaktor von Spannung in Temperatur aus der linearen Regressionsanalyse. Widerstands- Thermometer Abb. 4: Apparatur zur Messung der Gefrierpunktserniedrigung Nehmen Sie zweimal die Temperatur-Zeit-Kurve des Abkühlvorganges auf.. Die Temperatur-Zeit-Kurve wird etwa den in Abbildung 5 dargestellten Verlauf zeigen. estimmen Sie daraus die Lage des Gefrierpunktes T 0 von Wasser als reinem Lösungsmittel. Nehmen Sie dann Abkühlkurven mit m = 0.5, 1.0 und 1.5 g Einwaage auf. Lösen Sie dazu die abgewogenen Mengen m in bekannten Mengen m A reinen Wassers und kühlen Sie die Lösung vor. Füllen Sie dann die Lösung in den Einsatz A und nehmen die Abkühlkurve der Lösung auf, die einen ähnlichen Verlauf wie in Abbildung 5 zeigen sollte. Während die Temperatur des zweiphasigen Lösungsmittels (Wasser/Eis) während des gesamten Gefriervorgangs streng konstant bleibt, sollte sich die zweiphasige Lösung (Eis und Lösung) weiter abkühlen, bis das Eutektikum erreicht ist. Der Grund ist der zusätzliche thermodynamische Freiheitsgrad des zweikomponentigen Systems. Allerdings ist dieser Unterschied wegen der geringen Kühlleistung des Praktikumsaufbaus experimentell nicht beobachtbar.

Fest/Flüssig Phasengleichgewicht binärer Systeme 9 Abb. 5: Abkühlkurve des Lösemittels (schwarz) und der Lösung (rot) Tritt keine Unterkühlung auf, so scheidet sich bei der Temperatur T das feste Lösungsmittel ab. In der Regel sind jedoch erhebliche Unterkühlungen, in der Skizze bis zur Temperatur T'', zu beobachten. Arbeiten Sie zur estimmung der Gefrierpunktserniedrigung ΔT näherungsweise mit der Temperatur T', die sich unmittelbar nach Aufheben der Unterkühlung einstellt: ΔT = T 0 T'. Der steile Temperaturanstieg um ΔT U = T' T'' ist eine Folge der durch das Ausfrieren einer gewissen Menge Δm A des Lösungsmittels freiwerdenden Gitterenergie Δm A ΔH A. Dabei ist ΔH A die spezifische Schmelzwärme des Lösungsmittels. ei starker Unterkühlung bedarf deshalb die Größe m A noch einer Korrektur, die die bei der Aufhebung der Unterkühlung abgeschiedene Menge Δm A des festen Lösungsmittels berücksichtigt. Δm A erhält man aus der Energiebilanz: (m A + m ) c L ΔT U = Δm A ΔH A. Dabei ist c L die spezifische Wärme der Lösung. Nimmt man an, dass c L in etwa gleich der spezifischen Wärme c des Lösungsmittels ist, so lässt sich die Größe Δm A berechnen und zur Korrektur von m A in der Weise m A ' = m A - Δm A verwenden. Verwenden Sie den korrigierten Wert m A ' an Stelle von m A in ΔT = K K y, um die Molmasse M des unbekannten Stoffes nach Gleichung (9) zu bestimmen. Die Zahlenwerte c, ΔH A und K K für Wasser entnehmen Sie der Literatur oder Tabellenwerken. Geben Sie die benutzten Werte sowie die Quelle bei der Auswertung an. Vergleichen Sie Ihren Wert für M mit dem tatsächlichen Wert. Wie groß ist die relative Abweichung?