Neurosensorik - Touch Zentrale Verarbeitung

Ähnliche Dokumente
Neurosensorik - Touch Tastsensoren der Haut

2.1. Allgemeine Sinnesphysiologie

Modul Biologische Grundlagen Kapitel IV-6.2 Reizweiterleitung und Reizverarbeitung Hautsinne

Psychophysiologische Konzepte Messmethodische Grundlagen

Entstehung rezeptiver Felder

VL Gehirn... Struktur. Ratte. Kaninchen. Katze

Computational Neuroscience Rezeptive Felder

Sensorische Erregung und Wahrnehmung II: Photorezeption und Sehsystem

VL.4 Prüfungsfragen:

Somatosensorik. Das protopathische System dient der Empfindung von grobem Druck Schmerz und Temperatur. Die Fasern sind unmyelinisiert.

Allgemeine Psychologie: Sinnesphysiologie. Sommersemester Thomas Schmidt

Das Zentralnervensystem des Menschen

Biopsychologie als Neurowissenschaft Evolutionäre Grundlagen Genetische Grundlagen Mikroanatomie des NS

Cortikale Architektur

Neuro- und Sinnesphysiologie

Gesundheit und Prävention. Prof. (FH) Reinhard Beikircher, MAS

Themenblock ZNS Rückenmark II: Verbindungen und Bahnsysteme

Rückenmark Verbindungen und Bahnsysteme

Neuronale Kodierung sensorischer Reize. Computational Neuroscience Jutta Kretzberg

Themenblock ZNS Rückenmark II: Verbindungen und Bahnsysteme

Aufrechterhaltung der Retinotopie. Bear 10.14; Kandel 27-9

Hautsinne. Dr. Knut Drewing Uni Gießen

Neuronale Codierung und Mustererkennung

Schmerz, Grundlagen AB 1-1, S. 1

Signaltransduktion bei Mechano- & Temperaturrezeptoren. Von Derya Aydin

Nervensysteme 19. Nervensysteme im Vergleich. Einfache Nervennetze. Regenwurm Längsschnitt, Kopfregion. Oesophagus Segment.

Vom Reiz zum Aktionspotential. Wie kann ein Reiz in ein elektrisches Signal in einem Neuron umgewandelt werden?

1 Physiologische Grundlagen von Nozizeption und Schmerz

Verarbeitung von sensorischer Information

neurologische Grundlagen Version 1.3

neurologische Grundlagen Version 1.3

Neurobiologie des Lernens. Hebb Postulat Die synaptische Verbindung von zwei gleichzeitig erregten Zellen wird verstärkt

Die Hauptstrukturen des Gehirns

Biologische Psychologie I

Elektrophysiologischer Nachweis langsam leitender Pyramidenbahnfasern

Das visuelle System. Das Sehen von Kanten: Das Sehen von Kanten ist eine trivial klingende, aber äußerst wichtige Funktion des visuellen Systems!

Was versteht man unter partiellen (fokalen) epileptischen Anfällen? Welche Unterformen gibt es?

Wahrnehmung schwellennaher taktiler Vibrationsreize

Farbensehen. Wahrnehmung verschiedener Wellenlängen des Lichtes. nm

Gibt es den richtigen Zeitpunkt für ein zweites Cochlea-Implantat? -

Neuro- und Sinnesphysiologie

Integrative Leistungen des ZNS, kortikale und thalamischer Verschaltung, Elektroenzephalographie (EEG)

Wie viele Neuronen hat der Mensch? a b c

Neurale Grundlagen kognitiver Leistungen I

Parallelverarbeitung von Farbe, Bewegung, Form und Tiefe

Entwicklung des ZNS. Prosenzephalon Telenzephalon. Cortex. Hippocampus Bulbus olfactorius Thalamus Hypothalamus Epithalamus Retina.

Höhere geistige Funktionen; die Assoziationsareale

Seminar: Sehen - Vom Photon zum Bewusstsein - Von der Retina zum visuellen Kortex

Zentrales Nervensystem

Grundlagen des Schmerzes

Neuronale Kodierung. Jutta Kretzberg. Lehrprobe Oldenburg,

Grundlagen der Allgemeinen Psychologie: Wahrnehmungspsychologie

VL Wahrnehmung und Aufmerksamkeit: visuelle Wahrnehmung II

Modul 3 Biologische Grundlagen ZN S und VNS. Organ/ Funktion, Lage, Zugehörigkeit, Verbindung Bestandte il des ZNS oder VNS Rückenmark

Vorlesung Neuro- und Sinnesphysiologie WS 07/08

M 3. Informationsübermittlung im Körper. D i e N e r v e n z e l l e a l s B a s i s e i n h e i t. im Überblick

Rezeptives Feld primär und sekundär Redundanz laterale Hemmung. Lemniskales und spinothalamisches System Modalitäten. Transduktion.

Farbensehen. Wahrnehmung verschiedener Wellenlängen des Lichtes. nm

Sportmotorik. 1. Sportmotorik Definitionen. Sportmotorik. Beinhaltet alle organismischen Teilsysteme und

Visuelles Bewusstsein und unbewusste Wahrnehmung. Thomas Schmidt Justus-Liebig-Universität Gießen Abteilung Allgemeine Psychologie 1

Vorlesung Neurobiologie SS10

Ringvorlesung - Teil Neurobiologie Übungsfragen und Repetitorium

Farbensehen. Wahrnehmung verschiedener Wellenlängen des Lichtes. nm

5 Anatomischer Aufbau und funktionale Struktur des Nervensystems


P.H.Lindsay D.A.Norman. Psychologie. Informationsaufnahme und -Verarbeitung beim Menschen

Vorlesung Einführung in die Biopsychologie

Struktur und Funktion des menschlichen Körpers

Physiologische Messungen am Gehirn bei bewussten und unbewussten Wahrnehmungen. André Rupp Sektion Biomagnetismus Neurologische Universitätsklinik

Riechen. 1. Die Analyse der Luft in der Nase

Workshop C Gedächtnis und Plastizität des Gehirns

Nervensysteme und neuronale Koordination

Exzitatorische (erregende) Synapsen

Skriptum VO Spezifische Aspekte der Anatomie (WS 2017/18) Propriozeption, Nozizeption, Grundlagen der Wundheilung Dr.

Die Entwicklung der Gefühle: Aspekte aus der Hirnforschung. Andreas Lüthi, Friedrich Miescher Institut, Basel

Motorische Systeme. 3 Ebenen: Hirnstamm Endhirn. Motorische Cortex: direkte Projektion indirekte Projektionen

Neuropsychologische Störungen der visuellen Wahrnehmung. Vorlesung / Seminar SoSe FU Berlin

KURS 3: NEUROBIOLOGIE

Warum hat mein Patient Schmerzen? Hans-Georg Schaible Institut für Physiologie 1/ Neurophysiologie Universität Jena

Pathophysiologie des Schmerzes II VO

7 Neurobiologie. 7.1 Die Nervenzelle. Aufgabe 7.1-1: Bau der Nervenzelle

Vorlesung Einführung in die Biopsychologie. Kapitel 6 und 7: Visuelles System und Mechanismen der Wahrnehmung

Überblick. Grundlagen der Allgemeinen Psychologie: Wahrnehmungspsychologie. Prof. Dr. Adrian Schwaninger (aktualisiert)

Wolfgang Laube Bewegung und Schmerzen. Linderung durch Bewegung? Kopfschmerz George Cruikshank 1819

Der sensorische Assoziationskortex am Beispiel der visuellen Wahrnehmung

Allgemeine Psychologie I. Vorlesung 4. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Aufmerksamkeit II Bewusstsein

Schmerztherapie. Grundlegende Einblicke in die Thematik Schmerz

Das sensomotorische System

adäquater Reiz Riechorgan Schnüffeln? Riechzellen / Aufbau Riechzellen / Mechanismus vomeronasales Organ

Transkript:

Neurosensorik - Touch Zentrale Verarbeitung Jutta Kretzberg 26.1.2006 http://www.uni-oldenburg.de/sinnesphysiologie/

3 Vorlesungstermine Fühlen Überblick über verschiedene Aspekte des Fühlens Somatosensorik Propriozeption Enterozeption Temperaturempfindung Nozizeption hauptsächlich Mechanorezeptoren freie Nervenendigungen Tastsensoren der Haut Zentrale Verarbeitung

3 Vorlesungstermine Fühlen Überblick über verschiedene Aspekte des Fühlens Tastsensoren der Haut Meissner Körperchen, RA Merkel Zellkomplex, SA I Pacini Körperchen, PA Ruffini Körperchen, SA II Oberfläche Oberfläche & Form Vibration Form Zentrale Verarbeitung

3 Vorlesungstermine Fühlen Überblick über verschiedene Aspekte des Fühlens Tastsensoren der Haut Zentrale Verarbeitung zentrale Verarbeitung der Nozizeption und der Somatosensorik Entstehung komplexer rezeptiver Felder Plastizität des somatosensorischen Systems

Das somatosensorische System Somatosensorischer Kortex quartäre Neuronen quartäre Neuronen Thalamus tertiäre Neuronen tertiäre Neuronen Mechanosensorik: dicke, markhaltige Afferenzen des Hinterstranglemniskalen Systems Nozizeption: dünne Afferenzen verlängertes des anterolateral/ Rückenmark spinothalamischen sekundäre Neuronen Systems Rückenmark primäre Neuronen primäre & sekundäre Neuronen Kandel et al 2000

Das Rückenmark Die Zellkörper der Tastsensoren und der Nozizeptoren liegen im (dorsal root ganglion cells) Kandel et al 2000 Purves et al 2004 Die Axone der Nozizeptoren enden im Hinterhorn des Rückenmarks und verschalten dort auf Afferenzen, die im Seitenstrang zum Gehirn ziehen Die Axone der Tastsensoren ziehen im Hinterhorn zum Gehirn und verschalten ausserdem auf Motoneurone

Verschaltung von Nozizeptoren im Rückenmark Im Rückenmark laufen Nozizeptoren aus verschiedenen Körperregionen zusammen Woher die Erregung eines nachgeschlateten Neurons kommt, kann nicht mehr nachvollzogen werden Kandel et al 2000 Deshalb werden Schmerzen teilweise falsch zugeordnet

Verschaltung von Nozizeptoren im Rückenmark Nozizeptor Mechanorezeptor Nach der gate control Hypothese interagieren im Rückenmark Nozizeptoren mit somatosensorischen Afferenzen Die Nozizeptoren wirken sowohl direkt als auch indirekt durch Hemmung eines inhibitorischen Interneurons auf die Projektionsneurone Die Aktivität der Projektionsneurone repräsentiert das Verhältnis zwischen Nozizeptor- und andern Afferenzen Kandel et al 2000

Wirkung von Opiaten und Efferenzen auf die Nozizeption Efferenzen können die Schmerzempfindung reduzieren Opiate wirken Aktivitätsverkürzend auf Nozizeptoren Kandel et al 2000 Opiate wirken prä- und postsynaptisch aktivitätsverringernd auf die Synapse zwischen Nozizeptor und Projektionsneuron

Das verlängerte Rückenmark Im Hirnstamm kreuzt die somatosensorische Information auf die ipsilaterale Seite Die primären sensorischen Afferenzen verschalten auf Projektionsneurone, die zum Thalamus ziehen Kandel et al 2000 Die rezeptiven Felder von sekundären Neuronen sind meistens größer und komplexer als die von primären Neuronen

Verschaltungen im Relay Nucleus des Hirnstamms Sekundäre Neurone integrieren Eingangssignale mehrerer primärer Neurone. Dadurch sind ihre rezeptiven Felder größer Jedes Rezeptorneuron schaltet auf mehrere Projektionsneurone => Kombination aus Konvergenz und Divergenz Kandel et al 2000

Verschaltungen im Relay Nucleus des Hirnstamms Durch Inhibition können bei sekundären Neuronen komplexe rezeptive Felder entstehen Typisch sind Zentrum- Umfeld Organisationen, es kommen aber auch asymmetrische rezeptive Felder vor Kandel et al 2000 Inhibition dient der Kontrastverstärkung und der Unterdrückung von Rauschen

Inhibition im Relay Nucleus des Hirnstamms Feed-Forward: Aktivste primäre Afferenz unterdrückt Aktivität benachbarter Relayneurone (winner take all) Local Feedback: Aktivstes Relayneuron unterdrückt benachbarte Global Feedback: Efferenzen von höheren Zentren beeinflussen die Verrechnung Kandel et al 2000

Der Thalamus Die tertiären Neurone des Thalamus bilden den Eingang zum somatosensorischen Kortex Die Verarbeitung der taktilen Information erfolgt nach den gleichen Prinzipien wie im Hirnstamm, die rezeptiven Felder sind also noch größer Kandel et al 2000

Purves et al 2004 Der Thalamus Zwei thalamische Kerne der Somatosensorik und Nozizeption: Nucleus ventralis posterolateralis für Körperregion Nucleus ventralis posteromedialis für Kopfregion

Der somatosensorische Kortex Die quartären Neurone des somatosensorischen und des nozizeptiven Systems liegen im primären somatosensorischen Kortex SI Im SI enden die Afferenzen aller Rezeptortypen Der SI ist somatotop aufgebaut Kandel et al 2000

Der somatosensorische Kortex Purves et al 2004 SI gliedert sich in Brodmanns Areale 3a Eingang aus Thalamus über Hautsensoren 3b Eingang aus Thalamus über Propriorezeptoren 1 Verarbeitung Hautsensoren 2 Verarbeitung Propriorezeptoren SII: Eingang aus SI, Einfluss von Motivation etc Parietaler Cortex: Assoziationen, Eingang für den Motorcortex Area 5: integriert Somatosensorik und Propriorezeption Area 7: verknüpft taktile mit visueller Information

Heldmaier & Neuweiler 2003 Der somatosensorische Kortex Alle Bereiche des SI erhalten direkten Thalamischen Eingang Areale 1 und 2 dienen aber in erster Linie der Weiterverarbeitung von Signalen aus den Arealen 3a und 3b

Kolumnen im somatosensorischen Cortex Innerhalb der Areale von SI gibt es eine Aufteilung in Kolumnen entsprechend der Rezeptortypen Das rezeptive Feld eines SI Neurons umfasst also einen bestimmten Ort auf der Haut und eine bestimmte Reizmodalität Kandel et al 2000

Lokale Verarbeitung in einer cortikalen Kolumne Die hauptsächliche Informationsverarbeitung wird durch lokale Interneurone (stelate neurons) vorgenommen Diese vermitteln zwischen eingehenden Thalamischen Afferenzen und ausgehenden Pyramidenzellen, die in andere Cortexregionen projezieren Kandel et al 2000

Rezeptive Felder im somatosensorischen Cortex Die rezeptiven Felder sind umso größer, je weiter die Verarbeitung fortschreitet (Rezeptor < Projektionsneuron < SI Area 3a,b < SI Area 1, 2 < SII) Im parietalen Cortex werden Informationen beider Körperhälften zusammengeführt Kandel et al 2000

Rezeptive Felder im somatosensorischen Cortex Laterale Inhibition im Hirnstamm, im Thalamus und im somatosensorischen Cortex beeinflusst die Struktur der rezeptiven Felder Durch laterale Inhibition wird Zweipunktdiskrimination verschärft Kandel et al 2000

Rezeptive Felder im somatosensorischen Cortex Richtungssensitiv Bewegungssensitiv Neurone in Area 2 Im somatosensorischen Cortex antworten Neurone speziell auf bestimmte Eigenschaften taktiler Stimuli Neurone in höheren Verarbeitungszentren haben komplexere Eigenschaften ihrer rezeptiven Felder, z.b. Richtungs- und Bewegungssensitivität Kandel et al 2000

Rezeptive Felder im somatosensorischen Cortex Kandel et al 2000 Die Grundlage für die Detektion komplexer Reizeigenschaften im somatosensorischen Cortex wird durch Verschaltung der Projektionsneurone gelegt Inhibition dauert länger an als Excitation, deshalb bewirkt eine Bewegung vom excitatorischen in den inhibitorischen Bereich eine stärkere Antwort

Somatotopie des somatosensorischen Cortex Somatotope Abbildung der Körperoberfläche auf den somatosensorischen Cortex Je sensibeler der Tastsinn einer Körperregion ist, desto mehr Rezeptoren besitzt sie und desto größer ist die sie repräsentierende Fläche des Cortex Jedes Areal des SI hat seine eigene Repräsentation des Körpers Purves et al 2004

Der sensorischen cortikalen Karte entspricht eine motorische Getrennt durch den zentralen Gyrus liegt der motorische Cortex direkt neben dem somatosensorischen und zeigt die gleiche Topographie des Körpers Reichert 1990

Somatosensorischer Kortex von Nagetieren Kandel et al 2000 Bei Nagern nimmt die Repräsentation der Vibrissen den größten Teil des somatosensorischen Cortex ein Jeder Vibrisse entspricht ein Barrel

Heldmaier & Neuweiler 2003 Somatosensorischer Cortex des Sternmulls Beim Sternmull ist die Tastschnauze im somatosensorischen Cortex extrem überrepräsentiert

Purves et al 2004 Cortikale Karten sind plastisch Wenn ein Finger amputiert wird, übernehmen die Neuronen der entsprechenden Cortexregion die Repräsentation der benachbarten Finger

Cortikale Karten ändern sich durch Training Kandel et al 2000 Affen, die darauf trainiert wurden, mit der Spitze des Mittelfingers eine rotierende Scheibe zu berühren, haben eine vergrößerte Repräsentation dieses Bereiches und verkleinerte rezeptive Felder

Nozizeption wird auf mehreren Bahnen vermittelt Kandel et al 2000

Dimensionen der Schmerzwahrnehmung Die Wahrnehmung von Schmerz ist ein komplexer Vorgang, der sich in drei Dimensinen aufteilen lässt: sensorisch-diskriminative Dimension (Wahrnehmung von Ort und Stärke des Schmerzreizes): Somatosensorischer Cortex affektive Dimension (Auslösen einer Aktivierungsreaktion, Angst): Formatio Reticularis des Hirnstammes, Limbisches System kognitiv-evaluative Schmerzdimension (kognitive Leistung, Bewertung, Lernprozesse): Frontallappen Die Wahrnehmung von Schmerz wird durch top-down - Prozesse beeinflusst

Zusammenfassung Die Verarbeitung somatosensorischer Information erfolgt im Hirnstamm, im Thalamus, im somatosensorischen Cortex (SI und SII) und im parietalen Cortex Je weiter die Verarbeitung voranschreitet, desto größer und komplexer sind die rezeptiven Felder und desto weniger deutlich ist die Somatotopie Schmerzempfindung ist ein sehr komplexer Vorgang, an dem viele Gehirngebiete mitwirken und der massiv durch Rückprojektionen aus dem Cortex beeinflusst wird

Wichtigste Quellen Kandel et al., 2000, Principles of neural science, 4th ed., McGraw-Hill Sehr ausführlich und forschungsnah Heldmaier & Neuweiler, 2003, Vergleichende Tierphysiologie Band 1, Springer Vergleichender Aspekt im Vordergrund Purves et al., 2004, Neuroscience, 3rd ed., Sinauer Einführung mit menschl. Hirnatlas Nichols et al., 2001, From Neuron to Brain, 4th ed., Sinauer Einführung, auch Invertebraten Schmidt & Schaible, 2000, Neuro und Sinnesphysiologie, 4. Aufl., Springer kurze Einführung, eher Medizin Reichert, 1990 Neurobiologie, Thieme veraltete Einführung, Informationsverarbeitung