SPEKTRALANALYSE. Spezialgebiet aus Physik Christian Danecek 1999/2000

Ähnliche Dokumente
SPEKTRALANALYSE. entwickelt um 1860 von: GUSTAV ROBERT KIRCHHOFF ( ; dt. Physiker) + ROBERT WILHELM BUNSEN ( ; dt.

Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht)

Die Natriumlinie. und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

Wie das unsichtbare Infrarotweltall seine Geheimnisse Preis gibt Cecilia Scorza

KAISERSLAUTERN. Untersuchung von Lichtspektren. Lampen mit eigenem Versuchsaufbau. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht

Abiturprüfung Physik, Grundkurs

9. GV: Atom- und Molekülspektren

Licht als Teilchenstrahlung

Übungsfragen zu den Diagrammen

Kontrollaufgaben zur Optik

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

Die Farben des Lichts oder Das Geheimnis des Regenbogens

2 Einführung in Licht und Farbe

Quantenphysik in der Sekundarstufe I

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld

Entstehung des Lichtes und Emissionsspektroskopie

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale

Große Teleskope für kleine Wellen

Broschüre-Licht und Farbe

Quasare Hendrik Gross

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

9. GV: Atom- und Molekülspektren

Das Wasserstoffatom Energiestufen im Atom


Die Grundlagen der Spektroskopie: Theorie FÜR EINE BESSERE WISSENSCHAFT AGILENT AND YOU

Quantenphysik in der Sekundarstufe I

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler

Optische Eigenschaften fester Stoffe. Licht im neuen Licht Dez 2015

Weißes Licht wird farbig

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

Spektren von Himmelskörpern

Einfaches Spektroskop aus alltäglichen Gegenständen

Physik für Naturwissenschaften. Dr. Andreas Reichert

Physikalisches Praktikum

6 Farben und Entstehung von Licht

Die Sonne. Ein Energieversorger

Das CD-Spektroskop. 15 min

Physikalisches Praktikum

Lösung: a) b = 3, 08 m c) nein

Spektroskopie im sichtbaren und UV-Bereich

Lernfeld 4 - Seite 1. Welle-Teilchen Dualismus

Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN

Julia Wahl FOS

Physikalisches Praktikum

UNIVERSITÄT BIELEFELD

SS 2015 Supplement to Experimental Physics 2 (LB-Technik) Prof. E. Resconi

Einführung in die Astronomie und Astrophysik I

Technische Raytracer

PS4. Grundlagen-Vertiefung Version vom 2. März 2012

Klausurtermin: Nächster Klausurtermin: September :15-11:15

PHY. Brechzahlbestimmung und Prismenspektroskop Versuch: 17. Brechzahlbestimmung und Prismenspektroskop

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

SPEKTRUM. Bilden Sie zu Beginn des Beispieles eine Blende oder einen Spalt ab und studieren Sie die Eigenschaften

Wechselwirkung zwischen Licht und chemischen Verbindungen

Welle, Frequenz und Energie 2018

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

Vorlesung Allgemeine Chemie (CH01)

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2

BIOPHYSIK 7. Vorlesung

2. Sterne im Hertzsprung-Russell-Diagramm

Strukturaufklärung (BSc-Chemie): Einführung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Licht und Optik. Das komplette Material finden Sie hier:

Glühende feste Körper und Gase unter hohem Druck senden Licht mit einem Kontinuierlichen Spektrum aus.

Konvektion. Prinzip: Bei Konvektion ist Wärmetransport an Materialtransport. Beispiel: See- und Landwind

Spektroskopie. Einleitung

Spektroskopie. Einleitung

Spektren von Himmelskörpern

22. Vorlesung EP. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

Ein Stück Weltall in Basler Mausefallen

Thema heute: Das Bohr sche Atommodell

Lernziele zu Farbigkeit von Stoffen

Das Atom Aufbau der Materie (Vereinfachtes Bohrsches Atommodell)

Die Sonne. das Zentrum unseres Planetensystems. Erich Laager / Bern 1

Versuchsanleitung zu den Experimenten zur Spektroskopie Lichtquellen, Sonnenspektrum, Absorption und Fluoreszenz von Licht

P H Y S I K - Spektroskopie - Helene Plank Stephan Giglberger

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt

Weißes Licht wird farbig

5.2.3 Emissions- und Absorptionsspektren, Resonanzfluoreszenz

Abiturprüfung Physik, Leistungskurs

1.1 Auflösungsvermögen von Spektralapparaten

Physikalisches Praktikum I

Planungsblatt Physik für die 3B

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.

Die Anzahl der Protonen und Neutronen entspricht der Atommassenzahl.

Atomabsorptionsspektroskopie (AAS)

Gitterspektrometer mit He-Lampe

1.1 Auflösungsvermögen von Spektralapparaten

Photom etrieren Photometrie Fraunhofer sche Linien

Laserlicht Laser. Video: Kohärenz. Taschenlampe. Dieter Suter Physik B Grundlagen

Lehrbuchaufgaben Strahlung aus der Atomhülle

Was bedeutet Optik? Lehrerinformation

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Licht und Farbe mit Chemie

Lösungen zu den Aufg. S. 363/4

Transkript:

SPEKTRALANALYSE Spezialgebiet aus Physik Licht besteht aus unterschiedlichsten Wellen bzw. Strahlungen, von denen nur ein kleiner Teil der Bereich des sichtbaren weißen Lichtes ist. Nach Wellenlänge geordnet (längste Wellenlänge zuerst) wird das gesamte elektromagnetische Spektrum folgendermaßen unterteilt. Überschneidungen der einzelnen Bereiche sind möglich: technischer Wechselstrom tonfrequenter Wechselstrom Langwellen Mittelwellen Kurzwellen Ultrakurzwellen kosmische Radiowellen und Mikrowellen Infrarotstrahlung sichtbares Spektrum Ultraviolettstrahlung Röntgenstrahlung Gammastrahlung sekundäre Höhenstrahlung um 10 7 Meter um 10 5 Meter 30 Kilometer bis 600 Meter 600 bis 200 Meter 200 bis 10 Meter 10 bis 1 Meter 1 Meter bis 0,1 Millimeter 1,5 Millimeter bis 0,75 Mikrometer 0,8 bis 0,4 Mikrometer 400 bis 3 Nanometer 10 8 bis 10 15 Meter 10 10 bis 10 15 Meter 10 15 bis 10 17 Meter Schickt man nun einen weißen Lichtstrahl des sichtbaren Lichtes (0,8 bis 0,4 Mikrometer) durch ein Glasprisma wird dieser 2 mal gebrochen und das sichtbare Licht wird in seine Spektralfarben aufgefächert. Die Zerlegung des Lichts in die Farben des Spektrums hatte bereits Newton entdeckt. Mit einem dreieckigen Prisma wird ein zuvor durch eine Sammellinse gebündelter Lichtstrahl in seine einzelnen Wellenlängen zerlegt. Das Ergebnis ist eine Abfolge von Farben von Rot und Orange am einen Ende über Gelb, Grün und Blau bis zu Indigo und Violett am anderen Ende. Joseph von Frauenhofer wollte feststellen ob sich in dem Regenbogenmuster, das die Lichtbrechung erzeugte, eventuelle Fehler seines Linsenglases zeigten. Zunächst hatte er mit künstlichem Licht gearbeitet (dem gelben Licht das bei der Erwärmung von Natrium entsteht). Dabei hatte er bemerkt, daß das Licht einer solchen Lampe bei der Brechung ein oder zwei rätselhafte Lücken zeigte dunkle Linien, an denen die kontinuierliche Ausbreitung der Farben jedesmal, wenn er das Lampenlicht zerlegte, an ganz bestimmten Stellen unterbrochen wurde. Allerdings erzeugte das Natriumlicht nur einen Teil des Spektrums, daher wollte Fraunhofer das ganze Spektrum prüfen, um herauszufinden ob die Linien auch im Sonnenspektrum auftreten. Unter den überaus sorgfältigen Bedingungen, für die er bei der Überprüfung seiner Linsen sorgte, konnte er nicht nur den Regenbogeneffekt sehen, den er durch die Lichtbrechung hervorrief, sondern er bemerkte auch eine große Anzahl deutlich erkennbarer Linien quer über das ganze Spektrum. Es gab einige tiefdunkle und einige andere, die heller und daher nicht ganz so gut sichtbar waren. Unter Fraunhofers Versuchsbedingungen waren sie zweifelsfrei sichtbar. Bald darauf erhitzte er andere chemische Stoffe und zerlegte das von ihnen erzeugte Licht. Abermals zeigten sich Linien oder Lücken, doch diesmal an anderen Stellen. Zwar wußte er nicht wie sie zustande kamen, aber jeder chemische Stoff produzierte ein charakteristisches Linienmuster, das sich von dem der anderen unterschied. Ein bißchen glichen sie den Strichcodes, die heute in Kaufhäusern für die Preisauszeichnung dienen; jedes Muster aus hellen und dunklen Streifen im Farbspektrum war eine Art Lichtfingerabdruck, - 1 -

durch den man das betreffende chemische Element bei Erwärmung identifizieren vermag was Fraunhofer allerdings noch nicht erkannte. Im Augenblick wußte er lediglich, daß er diese Linien gesehen hatte und daß er sie im Interesse der Wissenschaft veröffentlichen konnte. Heute wissen wir, daß es sich bei diesen Linien in der Tat um Stellen im Spektrum oder bestimmte Wellenlängen des Lichts handelt, bei denen jedes Element Licht absorbiert und dadurch Abwesenheit von Licht, also eine dunkle Linie erzeugt oder eine leuchtende Farbe, also eine zusätzliche Aufhellung produziert. Das hängt mit dem subatomaren der Elemente und der Art und Weise zusammen wie sie auf Energiezufuhr reagieren. Man kann diese Vorgänge am besten verstehen, wenn man die Emission ( aussenden ) und Absorption ( verschlucken ) von Licht an einem Modell des einfachsten Atoms, dem Wasserstoff, erklärt. Hier umkreist ein einzelnes elektrisch negativ geladenes Elektron den aus einem positiven Proton bestehenden Kern. Dem Elektron stehen zahlreiche, aber ganz bestimmte Bahnen offen, die ganz bestimmten Energiestufen entsprechen. Die innerste Bahn 1 (Grundzustand) ist die energieärmste. Soll eine äußere Bahn erreicht werden, so muß das Elektron dazu angeregt werden, das heißt es muß Energie von außen zugeführt werden. Für den Sprung von Bahn 1 auf Bahn 2 ist zum Beispiel ein Energiebetrag von 10,19 e.v. (Elektronenvolt) erforderlich. Wobei 1 e.v. die Energie ist, die ein Elektron gewinnt, wenn es ein Feld mit einer Spannungsdifferenz von 1 Volt durchläuft. Für einen Sprung von Bahn 1 auf die Bahn 3 sind 12,07 e.v. notwendig. Bei einer Zufuhr von 13,595 e.v. oder mehr wird das Elektron vom Atomkern völlig getrennt (Ionisation). Umgekehrt wird bei Elektronensprüngen von einer äußeren auf eine innere Bahn ein jeweils ganz bestimmter Energiebetrag in Form einer Strahlung bestimmter Wellenlänge frei. Es entsteht also eine Emissionslinie, also eine helle Linie im Spektrum. Wenn wir nun diese Linien identifizieren, können wir sagen, welche chemischen Elemente in einer Lichtquelle vorhanden sind. Sonnen und Sternspektren zeigen auf dem kontinuierlichen Farbenhintergrund (Kontinuum) eben auch dunkle (selten hellere) Linien. Die auffälligsten dunklen Linien wurden erstmals von W.H. Wollaston 1802 im Sonnenspektrum entdeckt und von J. Fraunhofer 1814 mit lateinischen Buchstaben bezeichnet. Ihre Bedeutung wurde erst klar, als R.W.Bunsen und G.R. Kirchhoff 1859 die Grundlagen der Spektralanalyse aus Laboratoriumasversuchen ermittelten: - Ein glühender, fester oder flüssiger Körper sowie Gase unter sehr hohem Druck und hoher Temperatur erzeugen ein zusammenhängendes, kontinuierliches Spektrum ohne Linien. - Leuchtende Gase unter geringerem Druck oder niedriger Temperatur zeigen einzelne helle Emissionslinien. Jedes chemische Element erzeugt seine eigenen Linienserien. Das Emissionsspektrum irgendwelcher leuchtender Gase verrät also deren chemische Zusammensetzung. - Durchläuft das Licht eines Körpers, das für sich allein genommen ein kontinuierliches Spektrum ergibt, ein (kühleres) Gas, so zeigen sich auf dem Kontinuum genau bei denjenigen Wellenlängen dunkle Linien (Absorptionslinien, Fraunhofer sche Linien), bei denen das durchstrahlte Gas im alleinigen Leuchtzustand Emissionslinien erzeugen würde. Dies gilt auch für die meisten Sterne und die Sonne, wo die von tieferen Zonen stammenden Lichtstrahlen äußere, kühle Randschichten durchlaufen und in dieser umkehrenden Schicht die Fraunhofer-Linien entstehen. Im übrigen war Fraunhofer nicht der einzige, dem die Bedeutung seiner Entdeckung zunächst verschlossen blieb. Erst um 1880 fand William Huggins heraus, daß die Fraunhofer schen - 2 -

Linien die Fingerabdrücke der Elemente sind. Noch wichtiger: Ihm wurde klar, daß sich mit ihrer Hilfe herausfinden ließ, woraus Sonne und Sterne bestehen. Als er das Licht der Sonne zerlegte und es mit dem Licht eines Sterns verglich, erkannte er nicht nur, daß beide Lichter mit identischen Fingerabdrücken abstrahlten, sondern auch, daß in beiden die einander überlagernden Fingerabdrücke von Helium und Wasserstoff vorhanden sind. Daraus ergab sich unweigerlich der Schluß, daß die Sterne und die Sonne in ähnlicher Weise aus Wasserstoff und Helium aufgebaut sind und diese Stoffe durch einen Verbrennungsvorgang oder eine ähnliche Reaktion veranlassen, Wärme und Licht abzustrahlen wie Riesenversionen von Fraunhofers Lampen. Das war an sich schon eine Erkenntnis von hohem wissenschaftlichem Wert, aber ihre philosophische Bedeutung lag in dem Beweis, daß sich die Sonne und die Sterne nicht voneinander unterscheiden. Mit anderen Worten: Huggins hatte eine Tatsache entdeckt, die dem Rang des Menschen in der Natur einen viel größeren Abbruch tat als das Galileis Beobachtung, daß sich die Erde nicht im Mittelpunkt des Universums befindet. Die Sonne, die das Herz unseres Planetensystems bildet, ist beileibe nicht einzigartig, sonder ein Stern unter anderen, Milliarden an anderen, die alle aus den Elementen Wasserstoff und Helium bestehen. Absorptionsspektren Der größte Teil der Information über den Aufbau des Atoms stammt aus der Spektroskopie. Spektren von Molekülen sind ähnlich nützlich bei der Erforschung von Molekülen, was für die Chemie noch wichtiger ist als für die Physik. Die meisten Molekülspektren sind typische Bandenspektren, d. h., das Spektrum besteht aus einer Reihe von hellen Banden, von denen jede aussieht wie ein Stück des kontinuierlichen Spektrums. Diese Stücke sind durch dunkle Stellen getrennt. Diese Banden sind nicht kontinuierlich, sondern bestehen aus vielen dicht nebeneinander liegenden Linien, die mit hoch auflösenden Spektroskopen getrennt werden können. Die Trennungen der Linien in jeder Reihe hängen davon ab, ob es sich um ein Rotations- oder ein Vibrationsspektrum handelt. Weil die Rotationsenergieniveaus durch geringe Energiemengen angeregt werden können und daher dicht beisammen liegen, sind die Linien in einem Rotationsband dicht gepackt und besitzen kaum Zwischenräume. Die Vibrationsniveaus liegen jedoch viel weiter auseinander, daher weisen die Linien in einem Vibrationsband größere Zwischenräume auf. Die Energieniveaus der Elektronen eines Moleküls können auch angeregt werden, und die Übergänge von Elektronen zwischen solchen Niveaus verursachen weit voneinander getrennte Linien im Molekülspektrum. Neben den atomaren gibt es auch molekulare Absorptionsspektren. Man erhält sie, indem man kontinuierliche Strahlung durch eine aus Molekülen bestehende Flüssigkeit oder ein solches Gas leitet. Derartige Spektren werden bei der Erforschung von Molekülstrukturen am häufigsten verwendet. Geräte Prismenspektroskop Gustav Robert Kirchhoff und Robert Wilhelm Bunsen entwickelten die moderne Form des Prismenspektroskops und verwendeten es für die chemische Analyse. Dieses Instrument, das einen von zwei grundlegenden Typen von Spektroskopen darstellt, besteht aus einem Spalt, der Licht von einer externen Quelle durchlässt. Außerdem enthält ein - 3 -

Prismenspektroskop eine Gruppe von Linsen, ein Prisma sowie ein Okular. Das zu analysierende Licht läuft durch eine Linse, die die Strahlen parallel ausrichtet, und anschließend durch das Prisma. Dann wird das Bild auf das Okular fokussiert. Man kann dabei eine Reihe von Abbildungen sehen. Jede erscheint in einer anderen Farbe, da das Licht durch das Prisma in seine Komponenten zerlegt wurde. Bunsen und Kirchhoff erkannten als Erste, dass charakteristische Farben des Lichtes von jedem Element abgestrahlt und absorbiert werden. Spektrograph In einem Spektrograph ist das Okular durch eine Kamera ersetzt. Farbphotographie ist für die Identifikation der Abbilder (Spektrallinien) nicht nötig. Ihre Wellenlängen können aus ihrer Position auf dem Film berechnet werden. Spektrographen setzt man im gesamten ultravioletten, im sichtbaren und darüber hinaus auch im infraroten Bereich bis 1 200 Nanometer ein. Das Verfahren in den extrem ultravioletten und infraroten Bereichen ist der Methode im Bereich des sichtbaren Lichtes ähnlich. Zwischen ihnen besteht lediglich der Unterschied, dass normales Glas für diese Strahlung nicht durchlässig ist. Bei der Ultraviolett- und Infrarot-Spektroskopie verwendet man deshalb Linsen und Prismen z. B. aus Quarz, Fluorit, Sylvin oder Steinsalz. Auch konkave Spiegel können Linsen ersetzen. Spezielle photographische Emulsionen finden Verwendung. Auf diese Weise kann das ultraviolette Spektrum bis zu Wellenlängen von weniger als 60 Nanometer und das infrarote Spektrum bis in Bereiche über 0,1 Millimeter untersucht werden. Spektralphotometer Mit einem Spektralphotometer misst man die Intensität eines besonderen Spektrums und vergleicht diese mit der Lichtintensität einer Standardstrahlungsquelle. Durch diesen Vergleich kann die Konzentration der Substanz ermittelt werden, die das Spektrum aussendet oder absorbiert. Spektralphotometer sind auch zur Untersuchung von Spektren im nicht sichtbaren Bereich geeignet. So genannte Bolometer sind besonders für Untersuchungen im Infrarotbereich geeignet. Bolometer werden als Messgerät für kleinste Strahlungsmengen im Bereich von Lichtwellen bis Mikrowellen verwendet. Für den ultravioletten Bereich verwendet man Photometer, in denen Photozellen als Sensoren dienen. Beugungsgitter Für spektroskopische Untersuchungen sehr gebräuchliche Geräte sind Gitterspektrometer. In diesen Apparaten wird das Licht nicht durch ein Prisma, sondern mit Hilfe eines Beugungsgitters gestreut. Das Beugungsgitter wurde von dem deutschen Physiker Joseph von Fraunhofer zu Beginn des 19. Jahrhunderts erfunden. Fraunhofer setzte seine Erfindung in selbst konstruierten Gitterspektralapparaten ein. In den heute üblichen Geräten besteht das Gitter häufig aus einer spiegelnden Metall- oder Glasoberfläche, auf der mit einem Diamant eine große Zahl paralleler Rillen eingeritzt worden sind. Ein gutes Gitter hat eine sehr hohe Streukraft und ermöglicht daher eine detailliertere Darstellung. Die Linien des Beugungsgitters können auf einem konkaven Spiegel abgebildet werden, so dass das Gitter auch der Fokussierung des Lichtes dient. Linsen sind daher in einem Gitterspektrometer überflüssig. Das Licht muss keine transparenten Substanzen durchlaufen. Deshalb eignet sich ein Beugungsgitter auch für Apparate, mit denen man den gesamten ultravioletten Bereich bis hinein in den Röntgenbereich spektroskopisch untersucht. - 4 -

- 5 - Spezialgebiet aus Physik