3) Linearzeit-Eigenschaften

Ähnliche Dokumente
4) Automaten auf unendlichen Wörtern

Software Engineering Ergänzung zur Vorlesung

Automaten, Spiele und Logik

Automaten und Formale Sprachen ε-automaten und Minimierung

Die Nerode-Relation und der Index einer Sprache L

Abstrakte Temporale Eigenschaften

Informatik III. Christian Schindelhauer Wintersemester 2006/07 3. Vorlesung

2.1 Lineare Temporallogiken: LTL

Das Pumping Lemma: Ein Anwendungsbeispiel

FORMALE SYSTEME. Der Satz von Myhill und Nerode. Automaten verkleinern mit Quotientenbildung. Verschiedene Äquivalenzrelationen

Bsp.: Nichtdeterministische Automaten

GPS: Realzeit-Systeme Realzeit-Automaten 209. Motivation

Formale Grundlagen der Informatik 3 Kapitel 6 Automatenbasiertes LTL Model Checking

Model Checking mit Büchi Automaten

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann.

Potenzmengenkonstruktion. Vergleich DFAs NFAs. NFA DFA ohne überflüssige Zust. Ansatz nicht praktikabel

liefern eine nicht maschinenbasierte Charakterisierung der regulären

Seminarvortrag zum Thema ω-automaten. Simon Kostede & Markku Lammerz

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

MODEL CHECKING 2 - AUTOMATEN

Die mathematische Seite

Das Pumping-Lemma Formulierung

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

Homomorphismen. Defnition: Σ und Γ seien zwei endliche Alphabete, und h sei eine Abbildung h : Σ Γ. Wir definieren die folgenden Sprachen:

FORMALE SYSTEME. 10. Vorlesung: Grenzen regulärer Sprachen / Probleme für Automaten. TU Dresden, 14. November 2016.

Erfüllbarkeit von Formelmengen

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

DisMod-Repetitorium Tag 4

Beispiel: A d zum Automaten, der OTTO im Text erkennt. Zur Erinnerung: der nichtdeterministische Automat sieht so aus:

Automaten und Formale Sprachen SoSe 2013 in Trier

MODEL CHECKING 3 TEMPORALE LOGIKEN

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 20.

Grundlagen der theoretischen Informatik

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Informatik Mitschrift

Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.8 Aussagenlogik Der Sequenzen-Kalkül 99. Sequenzen

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )}

Einführung in die Logik

10 Kellerautomaten. Kellerautomaten

Theorie der Informatik

Lösungsvorschläge Blatt 4

Theoretische Informatik für Wirtschaftsinformatik und Lehramt

Äquivalenzrelation R A zu DFA A. Rechtsinvarianz. Relation R L zur Sprache L

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018

1 Was ist Model Checking? 2 Modellierung reaktiver Systeme. 3 Eigenschaften linearer Zeit & ihre Verifikation

Verifikation reaktiver Systeme durch Model Checking

Aussagenlogische Testspezifikation

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier

Übung Theoretische Grundlagen

Foundations of System Development

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 19.

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 2. Mai HA-Lösung. TA-Lösung

Grundlagen der Theoretischen Informatik

Sternfreie Sprachen. 6.1 Erststufige Logik. 6.2 Das Ehrenfeucht-Fraïssé-Spiel

Polynomielle Verifizierer und NP

Übung 8 Transitionssysteme Formale Techniken in der Software-Entwicklung

Vorlesungsmitschrift zur Vorlesung Theoretische Informatik I vom 23. Juni Christian Franz

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Automaten, Spiele, und Logik

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

Einführung in die Theoretische Informatik

4. Alternative Temporallogiken

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

Diskrete Mathematik. Anna-Lena Rädler Christina Kohl Georg Moser Christian Sternagel Vincent van Oostrom

Übungsaufgaben zu Formalen Sprachen und Automaten

Das Halteproblem für Turingmaschinen

Worterkennung in Texten speziell im Compilerbau 20. April Frank Heitmann 2/64

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}}

KONGRUENZEN VON VISIBLY PUSHDOWN SPRACHEN REZART QELIBARI PROSEMINAR WS14/15

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65

Einführung in die Theoretische Informatik

1. Einführung in Temporallogik CTL

TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012)

Berechenbarkeitstheorie 19. Vorlesung

Modellierung verteilter Systeme

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 11. Juli HA-Lösung. TA-Lösung

Grundlagen der Theoretischen Informatik, SoSe 2008

Induktive Definition

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier

Lineare Temporale Logik

Algorithmen auf Sequenzen

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

Typ-0-Sprachen und Turingmaschinen

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat

Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15

Endliche Automaten. Endliche Automaten J. Blömer 1/24

4.2.4 Reguläre Grammatiken

Formale Systeme. LTL und Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Teil VI. Anwendungen, Teil 1: XML und deterministische reguläre Ausdrücke

2.3 Abschlusseigenschaften

Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken

LTL und CTL*-Model Checking

Automaten und Formale Sprachen SoSe 2013 in Trier

Spiele für den. Christian Dax. Betreuer: Dr. Martin Lange. Wiederholung Spiele für VAL und SAT ν-line Automaten Entscheidungsverfahren

Transkript:

3) Linearzeit-Eigenschaften

GPS: Linearzeit-Eigenschaften Einführung 129 Linearzeit-Eigenschaften Erinnerung: endliche Trace-Fragmente = Wörter Def.: Σ ω bezeichnet Menge aller unendlichen Wörter (Sequenzen) über Alphabe Σ Def. 20 Linearzeit-Eigenschaft ist ein P (2 AP ) ω. Eigenschaft hier implizit definiert über Menge aller Objekte, die diese besitzen in diesem Kapitel: alle LTS total

GPS: Linearzeit-Eigenschaften Einführung 130 Linearzeit-Eigenschaften und Zustände sei T =(S,, I, L) LTS,s S, P Linearzeit-Eigenschaft Def. 21 T, s = P gdw. Tr(s) P T = P gdw. s I : T, s = P oft geschrieben: s = P statt T, s = P beachte: Zustand identifiziert über Menge der Traces aller seiner ausgehenden Pfade existentielle Quantifizierung ebenso möglich, hier nicht betrachtet

GPS: Linearzeit-Eigenschaften Einführung 131 Examples AP =ZustandsnamenimBeispieldesGetränkeautomaten 1 P 1 = {A 0 A 1... i N, A i = {getraenka}} T? = P 1 2 P 2 = {A 0 A 1... i : A i = {bezahlen} j > i, A j {getraenka, getraenkb}} T? = P 2 3 P 3 = zwischen je zwei bezahlen-zuständen wurde ein Getränk serviert T? = P 3

GPS: Linearzeit-Eigenschaften Einführung 132 Lin.zeit-Eigenschaften und Trace-Inklusion Thm. 6 seien T 1, T 2 LTS, Tr (T 1 ) Tr (T 2 ) P (2 AP ) ω : T 2 = P T 1 = P Beweis: = klar = Angenommen Tr (T 1 ) Tr (T 2 ). Setze P := Tr (T 2 ).Beachte: 1 T 2 = P trivialerweise 2 es gibt ρ Tr (T 1 ) mit ρ Tr (T 2 ) und somit ρ P Also gilt T 1 = P. intuitiv: je mehr Traces es gibt, desto schwieriger ist es, eine Linearzeiteigenschaft zu erfüllen

GPS: Linearzeit-Eigenschaften Einführung 133 Lin.zeit-Eigenschaften und Trace-Äquivalenz Kor. 7 seien T 1, T 2 LTS Tr (T 1 )=Tr (T 2 ) P (2 AP ) ω : T 1 = P T 2 = P heißt: Linearzeit-Eigenschaften können trace-äquivalente Modelle nicht unterscheiden

GPS: Linearzeit-Eigenschaften Invarianten 134 Invarianten im folgenden: Klassen von Linearzeiteigenschaften (LZE) 1 Invarianten 2 Safety 3 Liveness 4 Fairness Def. 22 LZE P inv (2 AP ) ω ist Invariante, falls es aussagenlogisches ϕ gibt, so dass P inv = {A 0 A 1... i N : A i = ϕ}

GPS: Linearzeit-Eigenschaften Invarianten 135 Erreichbare Zustände sei T LTS mit Zustand s Def. 23 Post (s) ist kleinste Menge, für die gilt: s Post (s), und s Post (s) :Post(s ) Post (s) welcher Algorithmus verbirgt sich hinter dieser Definition? Breitensuche! Post (s) = alle, von s aus erreichbaren Zustände leicht erweiterbar zu: Post (T ) = alle, von einem Zustand in T aus erreichbaren Zustände

GPS: Linearzeit-Eigenschaften Invarianten 136 Invarianten überprüfen sei P inv Invariante mit Invariantenbedingung ϕ Lemma 8 Sei T =(S,, I, L) LTS. T = P gdw. s Post (I ):L(s) = ϕ Beweis: Übung beachte: Breitensuche liefert kürzesten Trace, der P verletzt

GPS: Linearzeit-Eigenschaften Safety 137 Safety intuitiv: Safety = nie passiert etwas schlechtes Def.: Seien v, w Σ Σ ω. v w gdw. u Σ Σ ω.w = vu ist strikter Anteil von Def. 24 LZE P (2 AP ) ω ist Safety-Eigenschaft, gdw. σ (2 AP ) ω \ P : ˆσ σ mit P {σ ˆσ σ } = ˆσ heißt schlechtes Präfix

GPS: Linearzeit-Eigenschaften Safety 138 Schlechte Präfixe Def. 25 Sei P Saftey-Eigenschaft. BadPref (P) = {ˆσ (2 AP ) σ (2 AP ) ω :ˆσσ P} ˆσ ist minimales schlechtes Präfix, falls σ (2 AP ) : σ ˆσ = σ BadPref (P) beachte: Definition macht nur für Safety-Eigenschaften Sinn

GPS: Linearzeit-Eigenschaften Safety 139 Beispiele System: Getränkeautomat (wie oben) Bsp.: 1 nach Bezahlen erhält man ein Getränk im nächsten Schritt 2 Summe der eingezahlten Beträge ist immer gleich der Summe der Preise der ausgegebenen Getränke werden Eigenschaften erfüllt? gibt es schlechte Präfixe?

GPS: Linearzeit-Eigenschaften Safety 140 Reguläre Safety-Eigenschaften Def. 26 Safety-Eigenschaft P heißt regulär, falls BadPref(P) reguläre Sprache über dem Alphabet 2 AP ist. Bsp.: 1 P = nach Bezahlen erhält man Getränk im nächsten Schritt ist regulär BadPref (P) =Σ {bezahlen} Σ \{getraenk} Σ 2 P = Summe Einzahlung = Summe Auszahlung ist nicht regulär

GPS: Linearzeit-Eigenschaften Safety 141 Safety-Eigenschaften und Invarianten Thm. 9 a) Für alle LZE P gilt: P ist Invariante = Pistreguläre Safety-Eigenschaft. b) Es gibt LZE P, die (reguläre) Safety-Eigenschaft, aber nicht Invariante ist. Beweis: Übung.

GPS: Linearzeit-Eigenschaften Safety 142 Beispiel System: Ampel AP = {rot, gelb, gruen} Anforderungen: immer ist mindestens ein Licht an und niemals drei wenn zwei Lichter an sind, dann sind dies Rot und Gelb vor jeder Rot-Phase findet immer eine Grün-Phase statt sind dies Invarianten / Safety-Eigenschaften / reguläre Safety-Eigenschaften? wie sehen dann NFAs für BadPref (P) jeweilsaus?

GPS: Linearzeit-Eigenschaften Safety 143 Safety-Eigenschaften überprüfen Def.: Tr fin (T )=endlichetracefragmente von T Lemma 10 Sei P Safety-Eigenschaft, T totales LTS. T = P gdw. Tr fin (T ) BadPref (P) = Beweis: Übung. liefert Charakterisierung, aber noch nicht notwendigerweise Algorithmus

GPS: Linearzeit-Eigenschaften Safety 144 NFA mit bewachten Transitionen Def.: AL(V ) = Menge aller aussagenlogischen Formeln über Variablenmenge V Def. 27 Nicht-deterministischer, bewachter, endlicher Automat (NFA) ist (hier) ein A =(Q, AP, q 0,δ,F ), wobei QendlicheZustandsmenge, q 0 Q Anfangszustand, F Q Endzustandsmenge Alphabet ist 2 AP Transitionsrelation ist endliches δ Q AL(AP) Q

GPS: Linearzeit-Eigenschaften Safety 145 Läufe bewachter NFAs aussagenlogische Formeln in Transitionsrelation repräsentieren symbolisch mehrere Alphabetsymbole q A p gdw. ϕ AL(AP) mit(q,ϕ,p) δ und A = ϕ NFAs akzeptieren Tracefragmente A 0,...,A n 1 Def. 28 Lauf ist Sequenz q 0, A 0, q 1, A 1, q 2,...,A n 1, q n,sodass A i =0,...,n 1:q i i q i+1 akzeptierender Lauf: q n F Sprache L(A) = Menge aller endlichen Tracefragmente, für die es akzeptierenden Lauf gibt

GPS: Linearzeit-Eigenschaften Safety 146 Produkt von LTS und NFA Idee: reduziere Testen von regulärer Safety-Eigenschaft auf Überprüfung einer Invarianten (nicht im selben System natürlich) Def. 29 Sei T =(S,, I, L) LTS über AP, A =(Q, AP, q 0,δ,F ) NFA. Produkt ist T A:= (S Q,, I, L ) über atomaren Propositionen {f}, mit I L(s = {(s 0, q) s 0 Iundq 0 ) 0 q} L {f }, falls q F (s, q) =, sonst (s, q) (t, p) gdw. s t und q L(t) p

GPS: Linearzeit-Eigenschaften Safety 147 Reguläre Safety-Eigenschaften überprüfen Thm. 11 Sei T LTS, P reguläre Safety-Eigenschaft, A P NFA mit L(A P )=BadPref (P) und P f = {A 0, A 1, A 2,... i N : A i = f }. T = P gdw. T A P = P f Beweis: Übung.

GPS: Linearzeit-Eigenschaften Liveness 148 Liveness-Eigenschaften beachte: Safety = niemals passiert etwas schlimmes normalerweise leicht zu erfüllen, indem Implementierung einfach nichts macht komplementäre Anforderung: Liveness = irgendwann wird etwas gutes passieren Def. 30 P (2 AP ) ω ist Liveness-Eigenschaft, falls {ˆσ (2 AP ) σ Pmitˆσ σ} = (2 AP ) intuitiv: jedes endliche Präfix hat keine Aussagekraft

GPS: Linearzeit-Eigenschaften Liveness 149 Beispiel wieder mal der Getränkeautomat... typische Liveness-Eigenschaften der Automat wird irgendwann Getränk A servieren ist nicht erfüllt, aber kein endliches Präfix zeigt dies an der Automat wird irgendwann ein Getränk servieren der Automat serviert unendlich oft ein Getränk beachte: bei Linearzeit-Eigenschaften gilt unendlich oft = immer irgendwann

GPS: Linearzeit-Eigenschaften Liveness 150 Safety und Liveness Prop. 12 Ist P Liveness- und Safety-Eigenschaft, soistp =(2 AP ) ω. Prop. 13 Es gibt LZE P, die weder Liveness- noch Safety-Eigenschaft ist. Prop. 14 Sei P LZE. Dann gibt es Safety-Eigenschaft P safe und Liveness-Eigenschaft P live,sodassp = P safe P live.

GPS: Linearzeit-Eigenschaften Fairness 151 Liveness und Nebenläufigkeit Bsp.: asynchrones Produkt zweier Ampeln Liveness-Eigenschaft beide Ampeln sind unendlich oft grün ist nicht erfüllt widerspricht Intuition über System aus zwei unabhängigen Ampeln Grund: unfaire Läufe im asynchronen Produkt sinnvoll: Einschränkung der Läufe auf solche, die gewisse Fairness-Bedingungen erfüllen

GPS: Linearzeit-Eigenschaften Fairness 152 Fairness Def. 31 Sei F =(P 1,...,P n ) (2 AP ) n Fairness-Constraints. Trace A 0, A 1,... ist F-fair, falls i =1,...,n. j.p i A j = = es gibt unendlich viele Def. 32 Sei T LTS, F Fairness-Constraints, P Linearzeit-Eigenschaft. Tr F (T )={σ Tr (T ) σ ist F-fair } T = F P gdw. Tr F P

GPS: Linearzeit-Eigenschaften Fairness 153 LZE-Eigenschaften: Zusammenspiel Jede Invariante ist eine Safety-Eigenschaft. Safety und Liveness sind in gewissem Sinne komplementäre Anforderungen. Fairness-Annahmen können notwendig sein, um Liveness zu zeigen. Fairness-Annahmen zerstören Safety-Eigenschaft nicht, solange erstere überall nicht alle Traces ausschließt.