Oder auch Geräusche, die Menschen stören, ja fast zum Wahnsinn treiben, werden vom Schalldruckpegelmesser als nur sehr wenig laut gemessen.

Ähnliche Dokumente
Luftschallmessung - messen, was man hört

Physiologie des Hörens (I) (Lernziel: 102)

Psychoakustische Phänomene. Proseminar Musikalische Datenbanken Matthias Voh

K3.1 Phonetik und Phonologie II. 6. Sitzung Das menschliche Ohr. Anatomie und Funktion

Subjektive Wirkung von Schall

Schallmessung (Geräuschmessung)

Physiologie des Hörens (I)

äußeres Ohr Mittelohr Innenohr äußerer Gehörgang Amboss Steigbügel Hammer Trommelfell

Lauter Lärm. Lärm - eine Einführung! mil. Luftraumüberwachungsflugzeug

Digital Signal Processing Audio Measurements Custom Designed Tools

Analyse von Geräuschen, die beim Auftreffen eines Golfschlägers auf den Ball entstehen

EXKURS GERÄUSCHWAHRNEHMUNG. Vortrag von Sibylle Blümke

Biologische Übungen III Donnerstag, Kurs 5 Hören. Susanne Duncker Anja Hartmann Kristin Hofmann

Was ist Lärm? Schall. Ton, Klang und Geräusch

Fluglärm und psychoakustische Bewertungen

Herzlich Willkommen. zum Fachvortrag. von Harald Bonsel. ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik

Allgemeine Psychologie: Auditive Wahrnehmung. Sommersemester Thomas Schmidt

Gehör. Ein Referat von Steffen Wiedemann

2. Schalldruckpegel. Definition: Nach dem Gesetz von Weber und Fechner besteht zwischen der Empfindungsänderung de p. de p.

3. Leistungsdichtespektren

2. Berechnen Sie anhand der beigefügten Korrektur-Tabelle den gesamten linearen Schallleistungs-Pegel!

Lautheits- und Schärfe-Berechnung in der ArtemiS SUITE

Digitale Audiokodierung mit MP3, Varianten und Anwendungsgebiete

Pegelrechnung. Version Holger Stolzenburg. SAE-Hamburg

Infraschall und tieffrequente Geräusche an Windenergieanlagen (WEA) Dipl.-Geophys. Bernd Dörries

3. Der Aufbau und das Arbeiten des Ohres, die Voraussetzungen für unser Hören -I

Klatschen vs. Pfeifen

Neugeborenen- Hörscreening Elterninformation zur Früherkennungsuntersuchung. von Hörstörungen bei Neugeborenen

Baden-Württemberg. Freizeitlärm im Innenraum. Information

Wie funktioniert Hören?

Facharbeit zum Thema Lärm und Lärmmessung. von Annika Schäfer

Hören WS 2009/2010. Hören. (und andere Sinne)

Lösungsblatt Richtungshören

Frequenzbewertung von Luftschallsignalen

ASK_H - Fotolia.com. So hot! Das Ohr. OOZ - Fotolia.com. Overheadfolie 1/1 8

Formelsammlung Formelsammlung Formelsammlung. Formelsammlung Formelsammlung Formelsammlung

Kurzbericht (Aktenzeichen: II 3-F / SWD ) Titel (Langfassung): Trittschalldämmung von austauschbaren Bodenbelägen

Das Gehirn. Chemie Mechanik. Optik

Erläutere die Entstehung von Geräuschen. Wie gelangen sie in das Ohr?

DIN Messung und Bewertung tieffrequenter Geräuschimmissionen in der Nachbarschaft - Stand der Überarbeitung

Akustische Phonetik Lautklassifikation Übungen. Phonetik II. Gerrit Kentner. 13. Juni / 36

Lärm und psychoakustische Bewertungen. Prof. Dr.-Ing. Klaus Genuit HEAD acoustics GmbH

DER SCHALL ALS MECHANISCHE WELLE

Akustik in Räumen. Akustikelemente USM Haller. USM Haller - Akustik. USM U. Schärer Söhne GmbH

Allgemeine Psychologie I. Vorlesung 5. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Beschreibung des Verkehrslärms durch den Lästigkeitsindex TNA R

Messbericht. HiFi Raum XX. Erstellt von XX. Datum der Messung: Februar 2015

Verwendung der neuen psychoakustischen Tonhaltigkeits- Analysen: Tonhaltigkeit (Gehörmodell) 1

Heruntergeladen von: Thieme E-Books & E-Journals. Urheberrechtlich geschützt. Auditorisches System, Stimme und Sprache

Einführung in die Perzeptive Phonetik: Übungsaufgaben

Diagnose auch bei modernen Windenergieanlagen: Tonhaltigkeit

Tontechnik 1. Schalldruck. Akustische Grundbegriffe. Schallwechseldruck Sprecher in 1 m Entfernung etwa 10-6 des atmosphärischen Luftdrucks

7. Akustische Grundlagen

Analyzer. Version: Hardware: Preis (Stand ):

Tieffrequente Geräusche und Infraschall - Physikalische Aspekte -

Versuchsreihe zur Signalvereinheitlichung

Dämmkurven von Gehörschutz- Otoplastiken

Die akustische Analyse von Sprachlauten 1. Zeitsignal, Periodizität, Spektrum. Jonathan Harrington

Hören Was ist Schall? Schalldruck. Hören Was ist Schall? Lautstärke. e = 329,63 Hz. Frequenz

Das menschliche Gehör

Akulap Modul Bauakustik

Masterarbeit. Bestimmung der Frequenzgruppenbreite. Name: Yin, Xiaoyan Matrikel: Ausgabe: Determination of the Critical Bandwith

MESSBERICHT AUGARTENFEST Umweltamt Referat für Lärmschutz Bearbeiter: Ing. Thomas Peheim

Inhaltsverzeichnis 1 Vorbemerkungen zur Sprachkommunikation Wahrnehmung und Messung von Schall... 9

Raumschallverhalten von Laminatböden. Die neue Raumschallprüfmethode des EPLF und andere wichtige anwendungsbezogene Eigenschaften

Hörphysiologie: Cochlea und Hörnerv

Hörphysiologie: Cochlea und Hörnerv

Schall ist: durch die Lu0 (oder ein anderes Medium) übertragene Schwingungsenergie.

WIE SIE EINE HÖRMINDERUNG ERKENNEN KÖNNEN

Das menschliche Gehör

Unsere Ohren sind fantastisch

Schallpegelmessungen an Elektrofahrzeugen. Univ-Doz DI Dr Wolfgang Wachter Abteilung Maschinenbau und Elektrotechnik

Tieffrequenter Lärm - nicht nur physikalisch ein besonderes Problem

Wissenswertes über Lärm

Ausnutzung von Wahrnehmungseigenschaften in der Audiocodierung

Messstation Hamminkeln

Lauter Sport in leisen Hallen Moritz Späh

Schindler 3300 / Schindler 5300 Informationen zu Schall und Schwingungen

Analyse von Audio Dateien

Gesundheitliche Auswirkungen von Infraschall "Mittwochs im MULEWF" am Bernhard Brenner, Caroline Herr

MPEG Audio Layer 1. Fachbereich Medieninformatik. Hochschule Harz. Referat. Kolja Schoon. Thema: MPEG Audio Layer 1

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

unmittelbare Wahrnehmung auf emotionaler Ebene

Schallwellen. Klassizifierung. Audioschall. hörbar für das menschliche Ohr. Frequenzen geringer als 16 Hz. Frequenzen höher als 20 khz

Windenergie und Infraschall CLEMENS MEHNERT KOMPETENZZENTRUM WINDENERGIE

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Einführung und Überblick

Grundlagen der Allgemeinen Psychologie: Wahrnehmungspsychologie

Für den erfolgsorientierten Zimmerer- und Holzbaubetrieb HERZLICH WILLKOMMEN am Wissens-Standort Überlingen

Kapitel 4: Meßergebnisse Vergleiche der aerodynamischen und akustischen Meßgrößen des Originalstaubsaugers und des modifizierten Staubsaugers

Das Hörsystem. Physik der Schallreize Anatomie des Hörsystems Verarbeitung im Innenohr Tonotopie im Hörsystem Lokalisation von Reizen

2. Geschlecht: männlich weiblich. 3. Händigkeit rechts links beidseitig. JA wenn JA: Eltern Geschwister Kinder NEIN

Herausforderung Infraschall

Technische Beschreibung der akustischen Signalkette

Messung & Darstellung von Schallwellen

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X

Akustischer Dopplereffekt

ANHANG MASSE UND GEWICHTSKRAFT

Transkript:

Der Wohnbiologe Schallanalyse 04.2012 Umweltanalytik+Baubiologie Luftschallmessung - messen, was man hört Diskrepanz, Höreindruck, Messergebnis Schalldruckmessungen am Schlafplatz oder Analysen von störenden Umweltgeräuschen führen oft zu unbefriedigenden Ergebnissen. So kommt es vor, dass ein Geräusch, das man misst, lauter empfunden wird, als der Messwert vorgibt. Diese Erkenntnis verstärkt sich, je mehr Messungen bei leisen Schallereignissen man durchführt. Oder auch Geräusche, die Menschen stören, ja fast zum Wahnsinn treiben, werden vom Schalldruckpegelmesser als nur sehr wenig laut gemessen. Hier besteht eine ausgeprägte Diskrepanz zwischen Gehörtem und Gemessenem! Das menschliche Hörverhalten Das Hörverhalten des Menschen und die "Auswertung eines Schalles" durch das Gehirn hat kaum etwas mit der Messung eines Schalldruckpegelmessers gemein. Für leise Umweltgeräusche, unter ca. 60 db ohne tonale Anteile (einzelne auffällige Frequenzen), kann die A-Pegelmessung mit dem Schalldruckpegelmesser ein Maß für menschliches Empfinden sein. Dieser Fall kommt aber sehr selten vor. Wenn ein Geräusch stört, sind meist dominante hervorstechende Frequenzanteile enthalten. Es ist oft auch der Fall, dass der niederfrequente Bereich (Frequenzen zwischen 20 und 100 Hz) im Umweltgeräusch sehr stark ausgeprägt ist. Dieser Bereich wird aber durch die A-Bewertung massiv unterbewertet (durch den A-Filter stark reduziert). Ohrphysiologie Ein Geräusch wird über Trommelfell, Gehörknöchelchen und ovales Fenster in das Innenohr, die Hörschnecke übertragen. Auf der Basilarmembran breitet sich vom Anfang bis zu deren Ende, je nach Anregung, eine Wanderwelle aus. Bild 1: Computersimulation der Auslenkung einer Basilarmembran Quelle: Tondorf Die Basilarmembran wird so an verschiedenen Stellen unterschiedlich nach oben und unten ausgelenkt. An jeder Stelle besteht eine eindeutige Zuordnung von Ort zur Frequenz. So ist die Basilarmembran an jeder Stelle für eine andere Frequenz empfindlich und leitet, je nach Größe der Auslenkung, diese in Form von elektrischen Strömen über den Hörnerv an den auditorischen Cortex im Gehirn weiter. Dort wird eine sehr komplexe Analyse des Geräusches durchgeführt und auch körperliche Reaktionen ausgelöst.

- 2 - Der Frequenzanalysator im Ohr, seine Funktionsweise Die Basilarmembran ist quasi ein Frequenzanalysator, der aber nicht jede einzelne Frequenz erkennen kann. Die Lautstärke eines Schalles wird in sogenannte Frequenzgruppen zusammengefasst. Über den Hörbereich von 20-15.500 Hz gibt es 24 Frequenzgruppen, die im Frequenzumfang unterschiedlich breit sind. Frequenzgruppe Frequenzbereich Frequenzgruppe Frequenzbereich 1-100 Hz 13 1.720-2.000 Hz 2 100-200 Hz 14 2.000-2.320 Hz 3 200-300 Hz 15 2.320-2.700 Hz 4 300-400 Hz 16 2.700-3.150 Hz 5 400-510 Hz 17 3.150-3.700 Hz 6 510-630 Hz 18 3.700-4.400 Hz 7 630-770 Hz 19 4.400-5.300 Hz 8 770-920 Hz 20 5.300-6.400 Hz 9 920-1.080 Hz 21 6.400-7.700 Hz 10 1.080-1.270 Hz 22 7.700-9.500 Hz 11 1.270-1.480 Hz 23 9.500-12.000 Hz 12 1.480-1.720 Hz 24 12.000-15.500 Hz Tabelle 1: Frequenzgruppen und der dazugehörige Frequenzbereich nach Prof. Zwicker Im tiefen Frequenzbereich sind die Frequenzgruppen sehr schmal, zu hohen Frequenzen hin werden diese immer breiter. Durch diese Funktionsweise können Frequenzanteile in einem Geräusch verdeckt werden, das heißt sie sind für uns nicht hörbar, obwohl sie physikalisch vorhanden sind. Ebenso gibt es auch eine zeitliche Verdeckung. Die Basilarmembran, wenn sie denn ausgelenkt wurde, kann nicht x-beliebig schnell in ihre Ruhelage zurück schwingen, das dauert je nach Auslenkung 10-100 ms. Wenn in dieser Zeit z.b. leise Geräusche auftreten, könne diese ebenfalls nicht oder nur gering in der Lautstärke wahrgenommen werden. Der "wirkungsangepasste Schalldruckpegel"; die A-Bewertung Anfang/Mitte der 60er Jahre wurde der A-bewertete Schalldruckpegel international eingeführt. Dabei war man sich bewusst, dass dieser das Hörempfinden von Menschen nur unzureichend berücksichtigt. Er dient als Indikator. Ein Lösungsansatz um diese Schwäche zu minimieren, und der ist heute noch gültig, ist das sogenannte "Äquivalenzverfahren": man misst Schalldruckpegel über bestimmte Zeitabschnitte und addiert diese energetisch auf. Dies kommt dem Lautstärkeempfinden näher, hat aber immer noch große Schwächen, vor allem fehlt die Zeitstruktur des Geräusches. Die Zwicker'sche Lautheitsberechnung Von diesem Problem war ich in den letzten Jahren oft berührt, wenn es darum ging, menschliche Lärmempfindung und Messergebnisse zusammen zu führen. Einen Teil des Problems löst die "Zwicker' sche Lautheitsberechnung". Professor Zwicker war Physiker und Akustiker, der das menschliche Hörverhalten sehr detailliert untersucht hat. Es gibt dazu noch viele Mitarbeiter und Schüler von ihm, die das Verfahren vervollkommnet und verbessert haben. Entstanden ist daraus eine Schallanalysesoftware, die das menschliche Gehör modelliert. Der Mensch beurteilt Schallereignisse nach - Einwirkungsdauer - spektrale Zusammensetzung - zeitliche Struktur - Pegel - Informationsgehalt - subjektive Einstellung

- 3 - Die Vielfalt der Parameter zeigt, dass der Pegel alleine nur sehr unvollkommen eine Beurteilung eines Schallereignisses zulässt. Viele weitere Parameter sind notwendig. Das macht dieses Verfahren auch komplizierter und erfordert sehr schnelle Computer zur Berechnung. Wichtig dabei ist die Tatsache, dass die Zwicker'sche Lautheitsberechnung die niederfrequenten Anteile in einem Geräusch erheblich mehr gewichtet, als es die A-Schallpegelmessung tut. Um ein Schallereignis hinsichtlich seiner Lästigkeit und auch der Wirkung auf den Menschen zu charakterisieren, benutzt die Lautheitsberechnung nach Zwicker 5 Parameter. Diese sind: - die Lautheit N, zur Beschreibung des Lautstärkeeindruckes; - die Schärfe S, zur Beschreibung des Hochtonanteiles am Schallereignis; - die Schwankungsstärke F, zur Beschreibung langsamer Lautstärkeschwankungen; - die Rauhigkeit R, zur Beschreibung schneller Lautstärkeschwankungen; - die Tonhaltigkeit, zur Beschreibung von auffälligen tonalen Anteilen in einem Geräusch. Lautheit und Schärfe sind dabei die wichtigsten Größen. Ein großer Vorteil der Methode ist, dass der Lautheitsmaßstab linear ist; ein Geräusch mit 8 sone ist doppelt so laut, wie eines mit 4 sone. Sone ist die Einheit, mit der die Lautheit angegeben wird. Die Lautheitsmethode am praktischen Beispiel Ein sehr schönes Beispiel aus dem alltäglichen Leben ist das von zwei vorbei fahrenden Mopeds. Das Beispiel stammt von der TU München. Der berechnete, A-bewertete Schalldruckpegel, die offizielle Bewertungsmethode, errechnet beide mit einem Schalldruckpegel von 75 db(a). Die errechnete Lautheit gibt ein Moped mit 39 sone und das zweite mit ca. 52 sone an, siehe dazu Bild 3. Der obere Kurvenverlauf zeigt den A-bewerteten Schalldruckpegel, der untere Kurvenverlauf die Lautheit über der Zeit. Bild 3: A-Pegel und Lautheit abhängig von der Zeit. Quelle: TU München Wer das Beispiel hören kann, wird dieses Ergebnis der Lautheitsberechnung bestätigen! Das Spektrogramm der spezifischen Lautheit (engl. specific loudness) zeigt dann auch den Grund für den Lautstärkeunterschied, siehe dazu Bild 4.

- 4 - Bild 4: Spektrogramm der spezifischen Lautheit - links Moped 1, rechts Moped 2 Quelle: TU München Das Moped 1, links, ist am lautesten im Frequenzbereich von 500-1.300 Hz. Dagegen ist Moped 2 am lautesten im Frequenzbereich von 200-400 Hz und im Bereich von 1.300 bis 7.700 Hz. Die Frequenzzusammensetzung der zwei Mopedgeräusche ist also völlig unterschiedlich. Welchen Einfluss die Frequenzzusammensetzung eines Geräusches hat, zeigt das folgende theoretische Beispiel: Ein terzbreites, also relativ schmalbandiges, Rauschsignal, das mit 74 db(a) vom Pegelmesser ermittelt wird (siehe Bild 4a), zeigt nach der Lautheitsberechnung eine spezifische Lautheit von 9,1 sone (siehe Bild 4b). Bild 4a: Schalldruckpegel von schmalbandigem Terzrauschen, Mittenfrequenz 1.000 Hz

- 5 - Bild 4b: Spezifische Lautheit vom Terzrauschen Ein Rauschsignal über den ganzen Hörbereich, also von 20-20.000 Hz (siehe Bild 5a), mit unterschiedlichen Terzpegeln führt ebenfalls zu einem Summenschalldruckpegel von 74 db(a), wogegen die aus diesem Geräusch ermittelte Lautheit bei 41,1 sone liegt (siehe Bild 5b). Bild 5a: Breitbandiges Rauschen über den ganzen Hörbereich Bild 5b: Spezifische Lautheit vom Breitbandrauschen, siehe Bild 5a

- 6 - Es ist also bei einem Schalldruckpegel von 74 db(a) ein Lautheitsunterschied von 41,1 zu 9,1 son, also dem 4,5-fachen möglich. Das bedeutet, ein Geräusch, das 4,5-mal lauter ist, wird mit dem selben Schalldruckpegel ermittelt, wie das leisere. Dieses Beispiel zeigt eklatant den Mangel, der in der Schalldruckmessung verborgen ist, nämlich dass die Frequenzzusammensetzung unberücksichtigt bleibt. Menschen analysieren ein Geräusch aber nach der Frequenzzusammensetzung und nach dem Inhalt. Sie erleben darüber Wirkungen, wie Lästigkeit, Wohlklang, Störung oder Einbuße von Wohlbefinden und ähnlichem. Resümee Wenn wir Umweltanalytiker die Wirkung von Schallereignissen auf Menschen analysieren wollen, müssen wir uns zumindest der Lautheitsbestimmung bedienen. Weitere Größen wie die Tonhaltigkeit und die Modulationen sind ebenfalls nötig um Lästigkeit zu beschreiben. Messgeräte, wie der Acoustilizer AL1 und XL2 von der Firma NTI, handgehaltene Schallpegelmesser und Schallanalysatoren, lassen solche Bewertungen zu. Es wird damit möglich, aus einem Terzschalldruckspektrum die sogenannte stationäre Lautheit eines Schalles zu berechnen. Das ist bereits eine ansprechende Lösung für den Messtechniker/-in. Die vorgestellten Analysenbeispiele der Mopeds sind mit einer Schallanalysesoftware der Firma Cortex mit dem Namen VIPER (visual perception of auditory signals) erstellt worden. Das ist eine sehr umfangreiche Analysesoftware mit weitaus mehr Analysemöglichkeiten als hier vorgestellt. Glossar: Der auditorische Cortex ist der Bereich im Gehirn, in dem die Höreindrücke verarbeitet werden. Ein Frequenzanalysator ist ein Messgerät, welches ein breitbandiges Geräusch, das aus vielen Einzelfrequenzen zusammengesetzt ist, in die Einzelfrequenzen mathematisch zerlegt. Die Lautheit, eine Größe für das menschliche Lautstärkeempfinden, und andere psychoakustische Größen wurden mit der Software VIPER berechnet. Diese Software erlaubt es das menschliche Hörverhalten zu simulieren. Der Wohnbiologe Umweltanalytik+Baubiologie Dipl.-Ing.(FH) Jürgen Muck 97225 Zellingen