Introduction FEM, 1D-Example

Ähnliche Dokumente
Introduction FEM, 1D-Example

Finite Difference Method (FDM)

1D-Example - Finite Difference Method (FDM)

Finite Difference Method (FDM) Integral Finite Difference Method (IFDM)

FEM Isoparametric Concept

FEM Isoparametric Concept

Magic Figures. We note that in the example magic square the numbers 1 9 are used. All three rows (columns) have equal sum, called the magic number.

Unit 4. The Extension Principle. Fuzzy Logic I 123

Interpolation Functions for the Finite Elements

Einführung in die Finite Element Methode Projekt 2

2. Basic concepts of computations in engineering sciences

Allgemeine Mechanik Musterlösung 11.

Number of Maximal Partial Clones

Einführung FEM, 1D - Beispiel

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

A Classification of Partial Boolean Clones

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference

Einführung FEM 1D - Beispiel

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) #3

Seeking for n! Derivatives

Tube Analyzer LogViewer 2.3

Übungsblatt 6. Analysis 1, HS14

Inverse Problems In Medical Imaging

Priorities (time independent and time dependent) Different service times of different classes at Type-1 nodes -

Application Note. Import Jinx! Scenes into the DMX-Configurator

Hydroinformatik II: Grundlagen der Kontinuumsmechanik V3

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Geometrie und Bedeutung: Kap 5

a) Name and draw three typical input signals used in control technique.

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ].

Field-Circuit Coupling for Mechatronic Systems: Some Trends and Techniques

KTdCW Artificial Intelligence 2016/17 Practical Exercises - PART A

Transport Equation. Institut für Wasserbau, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung. . p.1/21. home/lehre/vl-mhs-1-e/cover_sheet.

Word-CRM-Upload-Button. User manual

Statistics, Data Analysis, and Simulation SS 2015

Harry gefangen in der Zeit Begleitmaterialien

LS Kopplung. = a ij l i l j. W li l j. = b ij s i s j. = c ii l i s i. W li s j J = L + S. L = l i L = L(L + 1) J = J(J + 1) S = s i S = S(S + 1)

Transport Equation. Institut für Wasserbau, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung

Unit 1. Motivation and Basics of Classical Logic. Fuzzy Logic I 6

Einführung in die Computerlinguistik

Logik für Informatiker Logic for computer scientists

Unit 6. Fuzzy Inference. Fuzzy Logic I 159

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL USER GUIDE June 2016

High Performance Computing Blatt 6

Wie man heute die Liebe fürs Leben findet

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL - USER GUIDE June 2016

prorm Budget Planning promx GmbH Nordring Nuremberg

Ewald s Sphere/Problem 3.7

Data Structures and Algorithm Design

Open queueing network model of a computer system: completed jobs

Monotony based imaging in EIT

Willkommen zur Vorlesung Komplexitätstheorie

[[ [ [ [[ Natur, Technik, Systeme. Test, Dezember Erstes Semester WI10. PV Panel und Kondensator

Higher order lower bounds on eigenvalues of symmetric elliptic operators

NEWSLETTER. FileDirector Version 2.5 Novelties. Filing system designer. Filing system in WinClient

Weather forecast in Accra

Algebra. 1. Geben Sie alle abelschen Gruppen mit 8 und 12 Elementen an. (Ohne Nachweis).

Was heißt Denken?: Vorlesung Wintersemester 1951/52. [Was bedeutet das alles?] (Reclams Universal-Bibliothek) (German Edition)

Musterlösung 3. D-MATH Algebra I HS 2015 Prof. Richard Pink. Faktorielle Ringe, Grösster gemeinsamer Teiler, Ideale, Faktorringe

Handbuch der therapeutischen Seelsorge: Die Seelsorge-Praxis / Gesprächsführung in der Seelsorge (German Edition)

25 teams will compete in the ECSG Ghent 2017 Senior Class Badminton.

Aufgabe 1 (12 Punkte)

Teil 2.2: Lernen formaler Sprachen: Hypothesenräume

Computational Models

Research Collection. Backward stochastic differential equations with super-quadratic growth. Doctoral Thesis. ETH Library. Author(s): Bao, Xiaobo

!! Um!in!ADITION!ein!HTML51Werbemittel!anzulegen,!erstellen!Sie!zunächst!ein!neues! Werbemittel!des!Typs!RichMedia.!!!!!!

p^db=`oj===pìééçêíáåñçêã~íáçå=

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Hör auf zu ziehen! Erziehungsleine Training Leash

Machine Learning and Data Mining Summer 2015 Exercise Sheet 11

v+s Output Quelle: Schotter, Microeconomics, , S. 412f

Algorithm Theory 3 Fast Fourier Transformation Christian Schindelhauer

Josh Engwer (TTU) Line Integrals 11 November / 25

Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik

Cycling and (or?) Trams

Copyright by Hildegard Heilmann IAG Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung.

Level 2 German, 2015

Flow - der Weg zum Glück: Der Entdecker des Flow-Prinzips erklärt seine Lebensphilosophie (HERDER spektrum) (German Edition)

Where are we now? The administration building M 3. Voransicht

Allgemeine Mechanik Musterlösung 5.

Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten

Sie finden auf den folgenden Seiten die Bewertungsrichtlinien für alle freigegebenen TIMSS 2007 Aufgaben mit offenem Antwortformat.

DICO Dimension Coupling

Informatik - Übungsstunde

Combined financial statements as of December 31, 2017

Konkret - der Ratgeber: Die besten Tipps zu Internet, Handy und Co. (German Edition)

Übungen zur Analysis 2

1. General information Login Home Current applications... 3

Evidence of Performance

Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten. Click here if your download doesn"t start automatically

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n

Zu + Infinitiv Constructions

Automatentheorie und formale Sprachen reguläre Ausdrücke

Titelmasterformat Object Generator durch Klicken bearbeiten

Ressourcenmanagement in Netzwerken SS06 Vorl. 12,

Informatik II, SS 2018

Geometry Of Algebraic Curves: Volume II With A Contribution By Joseph Daniel Harris (Grundlehren Der Mathematischen Wissenschaften) By Maurizio

Customer-specific software for autonomous driving and driver assistance (ADAS)

device is moved within brightness is

Transkript:

Introduction FEM, D-Example /home/lehre/vl-mhs-/inhalt/cover_sheet.tex. p./22

Table of contents D Example - Finite Element Method. D Setup Geometry 2. Governing equation 3. General Derivation of Finite Element Method 4. Shape functions 5. Assembling the matrix 6. Calculation of the matrix entries 7. Solving the set of equations /home/lehre/vl-mhs-/inhalt/toc_fem_intro.tex. p.2/22

D-Example: Finite Element Method Given : H left. Geometry x = m cements 4 m 2 3 4 5 Q x 2. 3. 4. Permeability k f = 0 5 m/s Boundary conditions Q = 0 4 m 3 /s H left = 50 m Notation denotes node denotes element 2 3 4 x x x x /home/lehre/vl-mhs-/inhalt/d_setup_fem.tex. p.3/22

Governing Equations (FEM D) Continuity equation v q = 0 Momentum equation (Darcy equation) v = k f h ( k f h) q = 0 D ( k f Assumption: No sinks or sources h ) q = 0 k f 2 h 2 = 0 (Laplace-Equation) /home/lehre/vl-mhs-/inhalt/gov_eqn_fem.tex. p.4/22

Introducing shape functions (FEM D) We now introduce an approximate function h(x) where ĥj is the piezometric head at the nodes and N j (x) is called shape function n h(x) = ĥ j N j (x). j= Inserting this approximation into the Laplace equation yields a residuum (error) ε: (k f h) q = ε We introduce a weighting function W. The differentiation is transformed making use of the product rule and the integral rule of Gauss. Then we make use of the boundary condition [v o = (k f h) n] and get the weak formulation: /home/lehre/vl-mhs-/inhalt/starting_equ.tex. p.5/22

Starting equation II (FEM D) [ W ] k f [ h]dx = W v o dx W qdx D G G W k f h dx = Γ Γ W v o dx G G W qdx The standard Galerkin method uses the shape functions N as weighting functions W. W i = N i ; h(x) = n j= ĥ j N j (x) /home/lehre/vl-mhs-/inhalt/starting_equ2.tex. p.6/22

Equation in matrix from (FEM D) Ni k f ( n ) j= ĥj N j (x) dx = N i v o dx }{{} F lux over boundary N i qdx }{{} Sources/Sinks ĥ j does not depend on x. ĥj Ni k f N j(x) dx }{{} A ij = N i v o dx N i qdx } {{ } b i /home/lehre/vl-mhs-/inhalt/stiffnessmat.tex n ĥ j A ij = b i A ĥ = b j=. p.7/22

Shape functions (FEM D) ements Construction of the local shape functions N and N 2. We can use linear functions, as we have only first order derivatives in the weak approximation. x Element : ĥ ĥ 2 N 2 x=0 x= x = m x () N () 2 y= y= 2 x=0 x= x = m x N () = x N () 2 = x : Element,2 : nodes /home/lehre/vl-mhs-/inhalt/shape_funct.tex. p.8/22

Shape functions II (FEM D) Construction of the local shape functions N and N 2, which are also called trial functions, interpolation functions or basis functions. We can use linear functions, as we have only first order derivatives in the weak approximation. These shape functions need to be adjusted for the other elements. The slope remains the same but the y-intercept changes. Element 2 for example has the following shape functions N (2) = 2 x N (2) 2 = x. /home/lehre/vl-mhs-/inhalt/shape_funct2.tex. p.9/22

Shape functions III (FEM D) By adding the products of piezometric head at the nodes ĥj and the local ansatz functions N j one gets an approximate solution h(x) between the nodes Element : h i (x) = n PSfrag ĥ j Nj(x) i replacements j= ĥ h () ĥ2 h () (x) = h ( x) + h 2 x h () (x) = h + (h 2 h )x 2 x=0 x= x In this case we have a linear interpolation. x x = m /home/lehre/vl-mhs-/inhalt/shape_funct3.tex. p.0/22

K () K () K () 2 K () System of equations (FEM D) 2 0 0 0 22 + K (2) 22 K (2) 23 0 0 0 K (2) 32 K (2) 33 + K (3) 33 K (3) 34 0 0 0 K (3) 34 K (3) 44 + K (4) 44 K (4) 45 0 0 0 K (4) 54 K (4) 55 h is known (Dirichlet boundary conditions). Delete the corresponding row and column. K () 22 + K (2) 22 K (2) 23 0 0 K (2) 32 K (2) 33 + K (3) 33 K (3) 34 0 0 K (3) 34 K (3) 44 + K (4) 44 K (4) 45 0 0 K (4) 54 K (4) 55 h 2 h 3 h 4 h 5 = h h 2 h 3 h 4 h 5 = Q Q 2 Q 3 Q 4 Q 5 Q 2 h K () 2 Q 3 Q 4 Q 5 /home/lehre/vl-mhs-/inhalt/set_of_eqn.tex. p./22

Calculating matrix entries (FEM D) Example : Calculation of the matrix entry A 23 (weighting function of node 2, shape function of node 3). The stiffness integral can be divided into different parts. At each element of A 23, except for element 2, the shape function or the weighting function equals zero. A 23 = K () 23 + K (2) 23 + K (3) 23 K () 23 = K (3) 23 = 0 = A 23 = K (2) 23 A 23 = K (2) 23 = /home/lehre/vl-mhs-/inhalt/matr_entr_23a.tex.tex 2 N (2) k f N (2) 2 dx. p.2/22

Calculating matrix entries II (FEM D) A 23 = K (2) 23 = 2 (2 x) k f (x ) dx A 23 = K (2) 23 = 2 k f dx = k f [ x] 2 A 23 = K (2) 23 = k f [ (2 )] = k f /home/lehre/vl-mhs-/inhalt/matr_entr_23b.tex. p.3/22

Calculating matrix entries III (FEM D) Example 2: Calculation of the matrix entry A 55. The stiffness integral can be divided into different parts. A 55 = K () 55 + K (2) 55 + K (3) 55 + K (4) 55 K () 55 = K (2) 55 + K (3) 55 = 0 = A 55 = K (4) 55 A 55 = K (4) 55 = 4 3 N (4) 2 k f N (4) 2 dx /home/lehre/vl-mhs-/inhalt/matr_entr_55a.tex. p.4/22

Calculating matrix entries IV (FEM D) A 55 = K (4) 55 = 4 3 (x 3) k f (x 3) dx A 55 = K (4) 55 = 4 3 k f dx = k f [x] 4 3 A 55 = K (4) 55 = k f [(4 3)] = k f /home/lehre/vl-mhs-/inhalt/matr_entr_55b.tex. p.5/22

Calculating matrix entries V (FEM D) Example 3: Calculation of the matrix entry A 22. The stiffness integral can be divided into different parts. In this case, only the weighting function and the shape function in element 3 and 4 equal zero. A 22 = K () 22 + K (2) 22 + K (3) 22 + K (4) 22 K (3) 22 = K (4) 22 = 0 = A 22 = K () 22 + K (2) 22 K () 22 = 0 K () 22 = N () k f 0 N () k f dx dx /home/lehre/vl-mhs-/inhalt/matr_entr_22a.tex. p.6/22

Calculating matrix entries VI (FEM D) K () 22 = 0 k f dx = k f [x] 0 K () 22 = k f [ 0] = k f K (2) 22 = K (2) 22 = 2 2 N (2) k f (2 x) k f N (2) dx (2 x) dx /home/lehre/vl-mhs-/inhalt/matr_entr_22b.tex. p.7/22

Calculating matrix entries VII (FEM D) K (2) 22 = 2 k f dx = k f [x] 2 K (2) 22 = k f [(2 )] = k f A 22 = K () 22 + K (2) 22 = 2k f All other matrix entries can be calculated analogously. A 32 = A 34 = A 43 = A 45 = A 54 = k f A 33 = A 44 = 2k f A 2 = A 2 = k f ; A = k f /home/lehre/vl-mhs-/inhalt/matr_entr_22c.tex. p.8/22

Inserting values in matrix (FEM D) Inserting these values one obtains the following system of equations: k f 2 0 0 2 0 0 2 0 0 h 2 h 3 h 4 h 5 = Q 2 + h k f Q 3 Q 4 Q 5 Q 2 = Q 3 = Q 4 equal zero, as there are no sinks and sources in the domain. Q 5 is the known Neumann boundary condition. /home/lehre/vl-mhs-/inhalt/values_matrix.tex. p.9/22

Solving the set of equations (FEM D) By transforming the vector representation one obtains a linear system of equations. Inserting the boundary conditions we have four equations for four unknowns. 2h 2 h 3 = 50 h 2 + 2h 3 h 4 = 0 h 3 + 2h 4 h 5 = 0 h 4 + h 5 = 04 k f /home/lehre/vl-mhs-/inhalt/lgse.tex. p.20/22

Solving the set of equations (FEM D) With k f = 0 5 and using the Thomas algorithm, we express our unknown in terms of one other unknown and the left boundary condition. h 2 = 50 2 + 2 h 3 h 3 = 50 3 + 2 3 h 4 h 5 = 4 h 4 = 25 2 + 3 4 h 5 [ 0 4 0 5 + 25 2 ]. Substituting back yields the following result h = 50m ; h 2 = 40m ; h 3 = 30m ; h 4 = 20m ; h 5 = 0m. /home/lehre/vl-mhs-/inhalt/lgse2.tex. p.2/22

Test of the solution (FEM D) Test: Q + Q 5 = 0 has to be fulfilled. h A () + h 2 A () 2 = Q 50 k f + 40 k f = Q = Q = 0 4 m/s = Q + Q 5 = 0 /home/lehre/vl-mhs-/inhalt/lgse2a.tex. p.22/22