4 Multiple lineare Regression Multikollinearität 4.9

Größe: px
Ab Seite anzeigen:

Download "4 Multiple lineare Regression Multikollinearität 4.9"

Transkript

1 Multikollinearität Erinnerung: Unter der (gemäß Modellannahmen ausgeschlossenen) perfekten Multikollinearität versteht man eine perfekte lineare Abhängigkeit unter den Regressoren (einschließlich des Absolutglieds ). Bei perfekter Multikollinearität ist eine Schätzung des Modells mit dem vorgestellten Verfahren nicht möglich. Im Unterschied zur perfekten Multikollinearität spricht man von imperfekter Multikollinearität, wenn die Regressoren (einschließlich des Absolutglieds ) beinahe (in einem noch genauer zu spezifizierenden Sinn!) lineare Abhängigkeiten aufweisen. Eine (konventionelle) Schätzung des Modells ist dann (abgesehen von numerischen Schwierigkeiten in sehr extremen Fällen) möglich, die Ergebnisse können aber (i.d.r. unerwünschte) Besonderheiten aufweisen. Ökonometrie (SS 2014) Folie 241

2 Perfekte Multikollinearität I Perfekte Multikollinearität tritt in linearen Modellen mit Absolutglied (wie hier betrachtet) zum Beispiel dann auf, wenn Modelle mit sog. Dummy-Variablen falsch spezifiziert werden. Unter Dummy-Variablen versteht man Regressoren, die nur die Werte 0 und 1 annehmen. Oft werden nominalskalierte Regressoren mit Hilfe von Dummy-Variablen in lineare Modelle einbezogen, indem den vorhandenen (!) Ausprägungen separate Dummy-Variablen zugeordnet werden, die jeweils den Wert 1 annehmen, wenn die entsprechende Ausprägung vorliegt, und 0 sonst. Wird zu jeder vorhandenen Ausprägung eine solche Dummy-Variable definiert, hat offensichtlich immer genau eine der Dummy-Variablen den Wert 1, alle anderen den Wert 0. Damit ist aber offensichtlich die Summe über alle Dummy-Variablen stets gleich 1 und damit identisch mit dem (und insbesondere linear abhängig zum) Absolutglied. Ökonometrie (SS 2014) Folie 242

3 Perfekte Multikollinearität II Lösung: (Genau) eine Dummy-Variable wird weggelassen. Damit nimmt die zu dieser Dummy-Variablen gehörende Ausprägung des Merkmals eine Art Benchmark oder Bezugsgröße ein. Die Koeffizienten vor den im Modell verbliebenen Dummy-Variablen zu den anderen Merkmalsausprägungen sind dann als Änderung gegenüber dieser Benchmark zu interpretieren, während der Effekt der Benchmark selbst im Absolutglied enthalten (und ohnehin nicht separat zu messen) ist. Beispiel: Einbeziehung des Merkmals Geschlecht mit den beiden (auch im Datensatz auftretenden!) Ausprägungen weiblich und männlich mit Hilfe einer Dummy-Variablen weiblich (oder alternativ männlich) ist korrekt, während Aufnahme der beiden Variablen weiblich und männlich zwangsläufig zu perfekter Multikollinearität führt. Lineare Abhängigkeiten zwischen Regressoren können auch ohne (fehlerhafte) Verwendung von Dummy-Variablen auftreten. Ökonometrie (SS 2014) Folie 243

4 Perfekte Multikollinearität III Beispiel 1: Sind in einem Modell die Regressoren durchschnittl. Monatseinkommen (Monat), Jahressonderzahlung (Sonderzahlung) und Jahreseinkommen (Jahr) enthalten, besteht wegen des Zusammenhangs Jahr = 12 Monat + Sonderzahlung offensichtlich perfekte Multikollinearität. Beispiel 2: Sind gleichzeitig die Regressoren Nettoeinnahmen mit reduz. MWSt. (NettoReduziert), Nettoeinnahmen mit regul. MWSt. (NettoRegulär) und Bruttoeinnahmen (Brutto) enthalten, besteht wegen des Zusammenhangs Brutto = 1.07 NettoReduziert NettoRegulär ebenfalls perfekte Multikollinearität. Lösung: Eine der Variablen im linearen Zusammenhang weglassen (wird von Statistik-Software meist automatisch erledigt). Ökonometrie (SS 2014) Folie 244

5 Beispiel: Imperfekte Multikollinearität I Imperfekte Multikollinearität kann im Beispiel 1 aus Folie 244 auch nach Elimination des Regressors Jahr auftreten: Oft ist die Jahressonderzahlung (mehr oder weniger) linear vom durchschnittlichen Monatseinkommen abhängig ( 13. Monatsgehalt ). Dies kann zu beinahe linearen Abhängigkeiten zwischen den Regressoren führen. In einem (fiktiven) linearen Modell werden die monalichen Ausgaben für Nahrungs- und Genussmittel in Haushalten (NuG) durch die Anzahl Personen im Haushalt (Personen), das durchschn. Monatseinkommen (Monat) und die jährliche Sonderzahlung (Sonderzahlung) erklärt. Im (ebenfalls fiktiven) Datensatz der Länge n = 25 beträgt die Korrelation zwischen den Regressoren Monat und Sonderzahlung 0.972, wie auch im folgenden Plot visualisiert ist. Ökonometrie (SS 2014) Folie 245

6 Beispiel: Imperfekte Multikollinearität II Darstellung der Regressoren Monat und Sonderzahlung Punktwolke der Regressoren Monat und Sonderzahlung Sonderzahlung x 3i Monat x 2i Ökonometrie (SS 2014) Folie 246

7 Beispiel: Imperfekte Multikollinearität III Schätzergebnisse des vollständigen Modells Call: lm(formula = NuG ~ Personen + Monat + Sonderzahlung) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) Personen e-05 *** Monat Sonderzahlung Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 21 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 3 and 21 DF, p-value: 4.097e-08 Ökonometrie (SS 2014) Folie 247

8 Beispiel: Imperfekte Multikollinearität IV In der Schätzung des vollständigen Modells ist nur der Koeffizient des Regressors Personen signifikant von Null verschieden (zu gängigen Signifikanzniveaus). Insbesondere die (geschätzten) Koeffizienten zu den Regressoren Monat und Sonderzahlung sind zwar (wie zu erwarten) positiv, durch die vergleichsweise großen Standardfehler jedoch insignifikant. Es liegt die Vermutung nahe, dass die Schätzung der Koeffizienten deshalb so ungenau ausfällt, weil die Effekte der beiden Regressoren wegen der hohen Korrelation im linearen Modellansatz kaum zu trennen sind. Die imperfekte, aber große (lineare) Abhängigkeit der beiden Regressoren Monat und Sonderzahlung überträgt sich auf einen stark ausgeprägten (negativen!) Zusammenhang der Koeffizientenschätzer zu diesen Regressoren, was sich auch in Konfidenzellipsen zu den entsprechenden Parametern widerspiegelt: Ökonometrie (SS 2014) Folie 248

9 Beispiel: Imperfekte Multikollinearität V Konfidenzellipse (1 α = 0.95) für β 2 und β 3 im vollständigen Modell Sonderzahlung β Monat β 2 Ökonometrie (SS 2014) Folie 249

10 Beispiel: Imperfekte Multikollinearität VI Bei Betrachtung der Konfidenzellipse fällt auf, dass die Ellipse sehr flach ist. Grund hierfür ist die bereits erwähnte starke negative (geschätzte) Korrelation der Schätzfunktionen β 2 und β 3, die sich aus der geschätzten Varianz-Kovarianzmatrix V( β) = als Korr( β 2, β 3 ) = = errechnen lässt. Fasst man die Regressoren Monat und Sonderzahlung in dem Regressor Jahr = 12 Monat + Sonderzahlung zusammen, erhält man folgende Ergebnisse: Ökonometrie (SS 2014) Folie 250

11 Beispiel: Imperfekte Multikollinearität VII Modell mit Regressor Jahr statt Regressoren Monat und Sonderzahlung Call: lm(formula = NuG ~ Personen + Jahr) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) Personen e-06 *** Jahr e-09 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 22 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 22 DF, p-value: 5.449e-09 Ökonometrie (SS 2014) Folie 251

12 Beispiel: Imperfekte Multikollinearität VIII Nun ist auch der Koeffizient zum (aggregierten) Regressor Jahr (hoch) signifikant von Null verschieden (und wie zu erwarten positiv). Trotz der Reduzierung der Zahl der Regressoren bleibt der Anteil der erklärten Varianz beinahe unverändert, das adjustierte Bestimmtheitsmaß vergrößert sich sogar. Nicht wesentlich andere Resultate sind zu beobachten, wenn man einen der Regressoren Monat oder Sonderzahlung aus dem ursprünglichen Modell entfernt. Ist das Weglassen von Regressoren oder eine Umspezifikation des Modells möglich und sinnvoll, kann man das Problem der (imperfekten) Multikollinearität also dadurch umgehen. Ansonsten kann man den bisher dargestellten Folgen von imperfekter Multikollinearität nur durch einen vergrößerten Stichprobenumfang entgegenwirken. Ökonometrie (SS 2014) Folie 252

13 Beispiel: Imperfekte Multikollinearität IX Modell ohne Regressor Sonderzahlung Call: lm(formula = NuG ~ Personen + Monat) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) Personen e-06 *** Monat e-09 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 151 on 22 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 22 DF, p-value: 5.901e-09 Ökonometrie (SS 2014) Folie 253

14 Beispiel: Imperfekte Multikollinearität X Modell ohne Regressor Monat Call: lm(formula = NuG ~ Personen + Sonderzahlung) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) Personen e-05 *** Sonderzahlung e-08 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 22 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 22 DF, p-value: 1.53e-08 Ökonometrie (SS 2014) Folie 254

15 Beispiel: Imperfekte Multikollinearität XI Das Vorliegen von imperfekter Multikollinearität bedeutet im Übrigen nicht, dass die Resultate der Schätzung nicht mehr nützlich oder gar falsch sind, insbesondere bleiben verwertbare Prognosen meist möglich. Im vollständigen Modell erhält man außerdem beispielsweise mit dem Konfidenzintervall zum Konfidenzniveau 1 α = 0.95 für die Summe β 2 + β 3, also für a β mit a = [ ], mit [0.1781, ] eine deutlich präzisere Schätzung als für die einzelnen Koeffizienten β 2 (Konfidenzintervall zum Niveau 1 α = 0.95: [ , 0.425]) und β 3 (Konfidenzintervall zum Niveau 1 α = 0.95: [ , ]). Werden die schlecht zu trennenden Effekte also (z.b. durch geeignete Linearkombination) zusammengefasst, sind wieder präzisere Schlüsse möglich. Auch die Frage, ob wenigstens einer der Koeffizienten β 2 bzw. β 3 signifikant (α = 0.05) von Null verschieden ist, kann mit einem Blick auf die Konfidenzellipse auf Folie 249 (oder mit einem passenden F -Test) klar positiv beantwortet werden. Ökonometrie (SS 2014) Folie 255

16 Messung von imperfekter Multikollinearität I Ausstehend ist noch die präzisere Festlegung einer Schwelle für die lineare Abhängigkeit zwischen den Regressoren, ab der man üblicherweise von imperfekter Multikollinearität spricht. Man benötigt zunächst ein Maß für die lineare Abhängigkeit der Regressoren. Dazu setzt man zunächst jeden der K (echten) Regressoren separat als abhängige Variable in jeweils ein neues Regressionsmodell ein und verwendet als unabhängige, erklärende Variablen jeweils alle übrigen Regressoren in der folgenden Gestalt: x 1i = γ 0 + γ 2 x 2i + γ 3 x 3i γ K 1 x (K 1)i + γ K x Ki + u i, x 2i = γ 0 + γ 1 x 1i + γ 3 x 3i γ K 1 x (K 1)i + γ K x Ki + u i,.. x (K 1)i = γ 0 + γ 1 x 1i + γ 2 x 2i + γ 3 x 3i γ K x Ki + u i, x Ki = γ 0 + γ 1 x 1i + γ 2 x 2i + γ 3 x 3i γ K 1 x (K 1)i + u i... Ökonometrie (SS 2014) Folie 256

17 Messung von imperfekter Multikollinearität II Die K resultierenden Bestimmtheitsmaße Rk 2 (k {1,..., K}) werden dann verwendet, um die sogenannten Varianz-Inflations-Faktoren (VIF) zu definieren. 1 VIF k := 1 Rk 2 Offensichtlich gilt VIF k 1, und VIF k wächst mit zunehmendem R 2 k (es gilt genauer VIF k = 1 R 2 k = 0 und VIF k R 2 k 1). Sind Regressoren mit einem Varianz-Inflations-Faktor von mehr als 10 im Modell enthalten, spricht man in der Regel vom Vorliegen von imperfekter Multikollinearität oder vom Multikollinearitätsproblem, es existieren aber auch einige andere Faustregeln. Ökonometrie (SS 2014) Folie 257

18 Messung von imperfekter Multikollinearität III In der Darstellung (mit den Abkürzung x k und s kk aus Folie 191) Var( β k ) = σ 2 n s kk VIF k = σ 2 n i=1 (x ki x k ) 2 VIF k der geschätzten Varianz der Parameterschätzer β k ist die Bezeichnung Varianz-Inflations-Faktor selbsterklärend. In der im Beispiel durchgeführten Schätzung des vollständigen Modells ergeben sich die folgenden Varianz-Inflations-Faktoren: Regressor Personen Monat Sonderzahlung VIF Nach der oben genannten Faustregel liegt also ein Multikollinearitätsproblem bei den Regressoren Monat und Sonderzahlung vor. Ökonometrie (SS 2014) Folie 258

19 4 Multiple lineare Regression Heteroskedastische Störgrößen 4.10 Heteroskedastie der Störgrößen I Die Annahme 2 an die Störgrößen u i auf Folie 186 lautet Var(u i ) = σ 2 für alle i {1,..., n}, es wird also die Gleichheit aller Störgrößenvarianzen gefordert. Die Gleichheit der Varianz mehrerer Zufallsvariablen wird auch als Homoskedastie oder Homoskedastizität dieser Zufallsvariablen bezeichnet. Man spricht bei Erfüllung der Annahme 2 an die Störgrößen damit auch von homoskedastischen Störgrößen. Das Gegenteil von Homoskedastie wird mit Heteroskedastie oder Heteroskedastizität bezeichnet. Ist Annahme 2 an die Störgrößen verletzt, gilt also (mit σ 2 i := Var(u i )) σ 2 i σ 2 j für mindestens eine Kombination i, j {1,..., n}, so spricht man von heteroskedastischen Störgrößen. Ökonometrie (SS 2014) Folie 259

20 4 Multiple lineare Regression Heteroskedastische Störgrößen 4.10 Heteroskedastie der Störgrößen II Im Folgenden untersuchen wir die Auswirkungen des Vorliegens heteroskedastischer, aber (nach wie vor) unkorrelierter Störgrößen. Es gelte also σ σ V(u) = diag(σ1, 2..., σn) 2 := σn σn 2, V(u) ist also eine Diagonalmatrix. Sind die Störgrößen gemeinsam normalverteilt (gilt also Annahme sind die u i noch unabhängig, aber nicht mehr identisch verteilt. 4 ), so Ökonometrie (SS 2014) Folie 260

21 4 Multiple lineare Regression Heteroskedastische Störgrößen 4.10 Heteroskedastie der Störgrößen III Auswirkungen von Heteroskedastie in den Störgrößen bei Schätzung des Modells mit der OLS-/KQ-Methode Der Vektor von Schätzfunktionen β bleibt unverzerrt für β. (Die Koeffizientenschätzer bleiben prinzipiell sinnvoll und gut einsetzbar.) β ist nicht mehr effizient (varianzminimal). (Je nach Situation, insbesondere bei bekannter Struktur der Heteroskedastie, sind präzisere Schätzfunktionen konstruierbar. Dies wird in dieser Veranstaltung aber nicht weiter besprochen.) Konfidenzintervalle und Tests werden in der bisherigen Ausgestaltung unbrauchbar! Ursächlich für den letzten (und folgenreichsten) Aspekt ist, dass bei der Herleitung bzw. Berechnung von V( β) bzw. V( β) regelmäßig die (bei Heteroskedastie falsche!) Spezifikation V(u) = σ 2 I n eingesetzt bzw. verwendet wurde. Ökonometrie (SS 2014) Folie 261

22 4 Multiple lineare Regression Heteroskedastische Störgrößen 4.10 Schätzung von V( β) bei Heteroskedastie I Bei Vorliegen von Heteroskedastie in den Störgrößen kann V( β) nicht mehr so stark wie auf Folie 198 vereinfacht werden, man erhält lediglich [ ( V( β) ) ( ) ] [ ((X = E β E( β) β E( β) = E X) 1 X u ) ( (X X) 1 X u ) ] = E [ (X X) 1 X uu X(X X) 1] = (X X) 1 X E(uu )X(X X) 1 = (X X) 1 X V(u)X(X X) 1. Bei unbekannter Form von Heteroskedastie wurde als (unter moderaten Bedingungen) konsistenter Schätzer für V(u) von White zunächst (Econometrica, 1980) die folgende Funktion vorgeschlagen: û û V hc0 (u) := diag(û1, 2..., ûn) 2 = ûn ûn 2 Ökonometrie (SS 2014) Folie 262

23 4 Multiple lineare Regression Heteroskedastische Störgrößen 4.10 Schätzung von V( β) bei Heteroskedastie II Auf dieser Basis wurden weitere heteroskedastie-konsistente Schätzer entwickelt, einer davon ist die (für bessere Eigenschaften in kleinen Stichproben um Freiheitsgrade korrigierte) Variante n V hc1 (u) := n (K + 1) diag(û2 1,..., ûn) 2 û n 0 û =. n (K + 1) ûn ûn 2 Einsetzen in die Darstellung von V( β) aus Folie 262 liefert dann z.b. V hc1 ( β) := (X X) 1 X Vhc1 (u)x(x X) 1 als (konsistenten) Schätzer für die Varianz-Kovarianz-Matrix V( β). Ökonometrie (SS 2014) Folie 263

24 4 Multiple lineare Regression Heteroskedastische Störgrößen 4.10 Konfidenz-, Prognoseintervalle und Hypothesentests I bei heteroskedastischen Störgrößen Konfidenz- und Prognoseintervalle sowie Hypothesentests müssen nun auf der Verteilungsaussage β N(β, (X X) 1 X V(u)X(X X) 1 ) bzw. β N(β, (X X) 1 X V(u)X(X X) 1 ) aufbauen, die durch eine geeignete Schätzung von V(u) nutzbar gemacht wird. Die Verwendung eines heteroskedastie-konsistenten Schätzers V hc (u) für V(u) bzw. V hc ( β) für V( β) führt dazu, dass viele bei Homoskedastie (zumindest bei gemeinsam normalverteilen Störgrößen) exakt gültigen Verteilungsaussagen nur noch asymptotisch und damit für endliche Stichprobenumfänge nur noch näherungsweise (approximativ) gelten (selbst bei gemeinsam normalverteilten Störgrößen). Ökonometrie (SS 2014) Folie 264

Perfekte Multikollinearität III. Multikollinearität

Perfekte Multikollinearität III. Multikollinearität Multikollinearität Perfekte Multikollinearität I Erinnerung: Unter der (gemäß Modellannahmen ausgeschlossenen) perfekten Multikollinearität versteht man eine perfekte lineare Abhängigkeit unter den Regressoren

Mehr

4 Multiple lineare Regression Multikollinearität 4.9

4 Multiple lineare Regression Multikollinearität 4.9 Multikollinearität Erinnerung: Unter der (gemäß Modellannahmen ausgeschlossenen) perfekten Multikollinearität versteht man eine perfekte lineare Abhängigkeit unter den Regressoren (einschließlich des Absolutglieds

Mehr

Perfekte Multikollinearität III. Multikollinearität

Perfekte Multikollinearität III. Multikollinearität Multikollinearität Perfekte Multikollinearität I Erinnerung: Unter der (gemäß Modellannahmen ausgeschlossenen) perfekten Multikollinearität versteht man eine perfekte lineare Abhängigkeit unter den Regressoren

Mehr

Beispiel: Multiples Modell/Omitted Variable Bias I

Beispiel: Multiples Modell/Omitted Variable Bias I 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias I Beispieldatensatz mit Daten zur Lohnhöhe (y i ), zu den Ausbildungsjahren über den Hauptschulabschluss

Mehr

Beispiel: Multiples Modell/Omitted Variable Bias I

Beispiel: Multiples Modell/Omitted Variable Bias I 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias I Beispieldatensatz mit Daten zur Lohnhöhe (y i ), zu den Ausbildungsjahren über den Hauptschulabschluss

Mehr

Konfidenz-, Prognoseintervalle und Hypothesentests II bei heteroskedastischen Störgrößen

Konfidenz-, Prognoseintervalle und Hypothesentests II bei heteroskedastischen Störgrößen Konfidenz-, Prognoseintervalle und Hypothesentests II bei heteroskedastischen Störgrößen Achtung! Bei der Verwendung von heteroskedastie-konsistenten Schätzern für V( β) muss unbedingt darauf geachtet

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 3.6 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula

Mehr

Konfidenz-, Prognoseintervalle und Hypothesentests IV im multiplen linearen Regressionsmodell mit heteroskedastischen Störgrößen

Konfidenz-, Prognoseintervalle und Hypothesentests IV im multiplen linearen Regressionsmodell mit heteroskedastischen Störgrößen 4 Multiple lineare Regression Heteroskedastische Störgrößen 4.10 Konfidenz-, Prognoseintervalle und Hypothesentests IV im multiplen linearen Regressionsmodell mit heteroskedastischen Störgrößen Ein approximatives

Mehr

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie WS 2014/15. ( = 57 Punkte)

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie WS 2014/15. ( = 57 Punkte) Aufgabe 3 (6 + 4 + 8 + 4 + 10 + 4 + 9 + 4 + 8 = 57 Punkte) Hinweis: Beachten Sie die Tabellen mit Quantilen am Ende der Aufgabenstellung! Mit Hilfe eines multiplen linearen Regressionsmodells soll auf

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Breusch-Pagan-Test I Ein weiterer Test ist der Breusch-Pagan-Test. Im Gegensatz zum Goldfeld-Quandt-Test ist es nicht erforderlich, eine (einzelne) Quelle der Heteroskedastizität anzugeben bzw. zu vermuten.

Mehr

Schätzung im multiplen linearen Modell VI

Schätzung im multiplen linearen Modell VI Schätzung im multiplen linearen Modell VI Wie im einfachen linearen Regressionsmodell definiert man zu den KQ/OLS-geschätzten Parametern β = ( β 0, β 1,..., β K ) mit ŷ i := β 0 + β 1 x 1i +... β K x Ki,

Mehr

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie SS ( = 57 Punkte)

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie SS ( = 57 Punkte) Aufgabe 3 (9 + 5 + 7 + 7 + 3 + 9 + 7 + 10 = 57 Punkte) Hinweis: Beachten Sie die Tabellen mit Quantilen am Ende der Aufgabenstellung! Zu Beginn der Studienjahre 2011 und 2012 wurden Studienanfänger an

Mehr

Prognoseintervalle für y 0 gegeben x 0

Prognoseintervalle für y 0 gegeben x 0 10 Lineare Regression Punkt- und Intervallprognosen 10.5 Prognoseintervalle für y 0 gegeben x 0 Intervallprognosen für y 0 zur Vertrauenswahrscheinlichkeit 1 α erhält man also analog zu den Intervallprognosen

Mehr

11. Übungsblatt zur Vorlesung Ökonometrie SS 2014

11. Übungsblatt zur Vorlesung Ökonometrie SS 2014 Universität des Saarlandes Lehrstab Statistik Dr. Martin Becker Dipl.-Kfm. Andreas Recktenwald 11. Übungsblatt zur Vorlesung Ökonometrie SS 2014 Aufgabe 45 Die in Aufgabe 43 getroffene Annahme heteroskedastischer

Mehr

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie SS 2018

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie SS 2018 Aufgabe 3 (15 + 1 + 7 + 7 + 7 + 5 = 42 Punkte) Hinweis: Beachten Sie die Tabellen mit Quantilen am Ende der Aufgabenstellung! Mit Hilfe der Statistiksoftware R soll der Datensatz HousePrices aus dem Paket

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie WS 2017/18. ( = 58 Punkte)

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie WS 2017/18. ( = 58 Punkte) Aufgabe 3 (14 + 2 + 7 + 7 + 3 + 5 + 9 + 11 = 58 Punkte) Hinweis: Beachten Sie die Tabellen mit Quantilen am Ende der Aufgabenstellung! Mit Hilfe der Statistiksoftware R soll der Datensatz HousePrices aus

Mehr

Tests einzelner linearer Hypothesen I

Tests einzelner linearer Hypothesen I 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen I Neben Tests für einzelne Regressionsparameter sind auch Tests (und Konfidenzintervalle) für Linearkombinationen

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen 4 Multiple lineare Regression Tests auf Heteroskedastie 4.11 Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Ein weiterer Test auf Heteroskedastie in den Störgrößen ist der Breusch-Pagan-Test.

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen 4 Multiple lineare Regression Tests auf Heteroskedastie 4.11 Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Ein weiterer Test auf Heteroskedastie in den Störgrößen ist der Breusch-Pagan-Test.

Mehr

7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien

7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Statistik 7.1 Korrelationsanalyse Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Sommersemester 2012 7 Regressions- und Korrelationsanalyse Kovarianz Pearson-Korrelation Der (lineare)

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Ein weiterer Test auf Heteroskedastie in den Störgrößen ist der Breusch-Pagan-Test. Im Gegensatz zum Goldfeld-Quandt-Test ist es nicht erforderlich,

Mehr

Zusammenfassung: Einfache lineare Regression I

Zusammenfassung: Einfache lineare Regression I 4 Multiple lineare Regression Multiples lineares Modell 41 Zusammenfassung: Einfache lineare Regression I Bisher: Annahme der Gültigkeit eines einfachen linearen Modells y i = β 0 + β 1 x i + u i, i {1,,

Mehr

Kapitel 10. Multikollinearität. Exakte Multikollinearität Beinahe Multikollinearität

Kapitel 10. Multikollinearität. Exakte Multikollinearität Beinahe Multikollinearität Kapitel 0 Multikollinearität Exakte Multikollinearität Beinahe Multikollinearität Exakte Multikollinearität Unser Modell lautet y = Xb + u, Dimension von X: n x k Annahme : rg(x) = k Wenn sich eine oder

Mehr

Wirtschaftswissenschaftliches Prüfungsamt

Wirtschaftswissenschaftliches Prüfungsamt Wirtschaftswissenschaftliches Prüfungsamt Master of Economics, Finance and Philosophy Diplomprüfung Econometric Methods and Applications Wintersemester 2011/12 22. Februar 2012 Prof. Dr. Ralph Friedmann

Mehr

Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS)

Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS) Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS) Es soll untersucht werden, ob und wie sich Rauchen während der Schwangerschaft auf den Gesundheitszustand des Neugeborenen auswirkt. Hierzu werden

Mehr

x t2 y t = 160, y = 8, y y = 3400 t=1

x t2 y t = 160, y = 8, y y = 3400 t=1 Aufgabe 1 (25 Punkte) 1. Eine Online Druckerei möchte die Abhängigkeit des Absatzes gedruckter Fotos vom Preis untersuchen. Dazu verwendet die Firma das folgende lineare Regressionsmodell: wobei y t =

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Teil XIII. Multiple lineare Regression. Woche 11: Multiple lineare Regression. Zusammenfassung Einfache lineare Regression.

Teil XIII. Multiple lineare Regression. Woche 11: Multiple lineare Regression. Zusammenfassung Einfache lineare Regression. Woche 11: Multiple lineare Regression Patric Müller Teil XIII Multiple lineare Regression ETHZ WBL 17/19, 10.07.017 Wahrscheinlichkeit und Statistik Patric Müller WBL

Mehr

Lineare Regression in R, Teil 1

Lineare Regression in R, Teil 1 Lineare Regression in R, Teil 1 Christian Kleiber Abt. Quantitative Methoden, WWZ, Universität Basel October 6, 2009 1 Vorbereitungen Zur Illustration betrachten wir wieder den Datensatz CASchools aus

Mehr

2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme)

2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme) 2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme) Annahme A1: Im multiplen Regressionsmodell fehlen keine relevanten exogenen Variablen und die benutzten exogenen Variablen x 1,

Mehr

Computerübung 10. Empirische Wirtschaftsforschung. Willi Mutschler. 27. Januar Ökonometrie und Wirtschaftsstatistik Uni Münster

Computerübung 10. Empirische Wirtschaftsforschung. Willi Mutschler. 27. Januar Ökonometrie und Wirtschaftsstatistik Uni Münster Computerübung 10 Empirische Wirtschaftsforschung Willi Mutschler Ökonometrie und Wirtschaftsstatistik Uni Münster 27. Januar 2011 Willi Mutschler (Uni Münster) Computerübung 10 27. Januar 2011 1 / 12 Inhaltsverzeichnis

Mehr

Biostatistik 101 Korrelation - Regressionsanalysen

Biostatistik 101 Korrelation - Regressionsanalysen Good Data don't need statistics Biostatistik 101 Korrelation - Regressionsanalysen Carl Herrmann IPMB Uni Heidelberg & DKFZ B080 carl.herrmann@uni-heidelberg.de Korrelation Sind Alter und Blutdruck miteinander

Mehr

Empirische Wirtschaftsforschung in R

Empirische Wirtschaftsforschung in R Empirische Wirtschaftsforschung in R Schätzung der keynesianischen Geldnachfragefunktion auf Basis von Daten der dänischen Volkswirtschaft Jonas Richter-Dumke Universität Rostock, Institut für Volkswirtschaftslehre

Mehr

Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016

Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016 ETH Zürich D-USYS Institut für Agrarwissenschaften Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016 Peter von Rohr Datum 30. Mai 2016 Beginn 08:00 Uhr Ende 08:45

Mehr

Lineare Modelle in R: Klassische lineare Regression

Lineare Modelle in R: Klassische lineare Regression Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)

Mehr

Deskriptive Beschreibung linearer Zusammenhänge

Deskriptive Beschreibung linearer Zusammenhänge 9 Mittelwert- und Varianzvergleiche Mittelwertvergleiche bei k > 2 unabhängigen Stichproben 9.4 Beispiel: p-wert bei Varianzanalyse (Grafik) Bedienungszeiten-Beispiel, realisierte Teststatistik F = 3.89,

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

Schweizer Statistiktage, Aarau, 18. Nov. 2004

Schweizer Statistiktage, Aarau, 18. Nov. 2004 Schweizer Statistiktage, Aarau, 18. Nov. 2004 Qualitative Überprüfung der Modellannahmen in der linearen Regressionsrechnung am Beispiel der Untersuchung der Alterssterblichkeit bei Hitzeperioden in der

Mehr

1 Kodierung kategorialer Einflussgrößen

1 Kodierung kategorialer Einflussgrößen Übung zur Vorlesung Generalisierte Regressionsmodelle Blatt 1 Christiane Fuchs, Moritz Berger, Micha Schneider WiSe 16/17 1 Kodierung kategorialer Einflussgrößen Lösung zu Aufgabe 3 Einlesen der Daten:

Mehr

6. Heteroskedastizität (Verletzung der B2-Annahme)

6. Heteroskedastizität (Verletzung der B2-Annahme) 6. Heteroskedastizität (Verletzung der B2-Annahme) Annahme B2: Die Störgröße u i hat für i = 1,..., N eine konstante Varianz, d.h. V ar(u i ) = σ 2 Bezeichnungen: Konstante u i -Varianzen: Homoskedastizität

Mehr

Lean Body Mass [kg] Estimate Std. Error t value Pr(> t ) (Intercept) ??? lbm <2e-16 ***

Lean Body Mass [kg] Estimate Std. Error t value Pr(> t ) (Intercept) ??? lbm <2e-16 *** Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

Auswertung und Lösung

Auswertung und Lösung Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

Multiple Regression III

Multiple Regression III Multiple Regression III Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Überprüfung der Modellannahmen Residuen-Plot Normal-Q-Q-Plot Cook s Distanz-Plot Maßnahmen bei Abweichungen von Modellannahmen

Mehr

Musterlösung. Kind Blume (beredet) Blume (nicht beredet)

Musterlösung. Kind Blume (beredet) Blume (nicht beredet) Prüfung Statistik Sommer 2012 Musterlösung 1. (9 Punkte) F. Lauer möchte das Gerücht überprüfen, dass Blumen schneller wachsen, wenn man mit ihnen redet. Daher kauft sie acht identische Blumenzwiebeln,

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Aufgabe 35 mit R (Ökonometrie SS 2014 an der UdS)

Aufgabe 35 mit R (Ökonometrie SS 2014 an der UdS) Vorbereitungen Aufgabe 35 mit R (Ökonometrie SS 2014 an der UdS) Falls das R - Paket car noch nicht installiert wurde, kann dies mit der Funktion install.packages() erledigt werden. install.packages("car")

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Prof. Dr. Marc Gürtler WS 2015/2016. Prof. Dr. Marc Gürtler. Klausur zur 10/12 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft

Prof. Dr. Marc Gürtler WS 2015/2016. Prof. Dr. Marc Gürtler. Klausur zur 10/12 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft Prof. Dr. Marc Gürtler WS 015/016 Prof. Dr. Marc Gürtler Klausur zur 10/1 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft Lösungsskizze Prof. Dr. Marc Gürtler WS 015/016 Aufgabe 1: (11+5+1+8=56

Mehr

V. Das lineare Regressionsmodell

V. Das lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Tino Conrad, M.Sc. Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2016 Übung zur

Mehr

Statistische Datenanalyse mit R, Korrelation und Regression. Dr. Andrea Denecke Leibniz Universität IT-Services

Statistische Datenanalyse mit R, Korrelation und Regression. Dr. Andrea Denecke Leibniz Universität IT-Services Statistische Datenanalyse mit R, Korrelation und Regression Dr. Andrea Denecke Leibniz Universität IT-Services Korrelationsanalyse Eine Korrelationsanalyse soll herausfinden Ob ein linearer Zusammenhang

Mehr

Statistik II für Betriebswirte Vorlesung 8

Statistik II für Betriebswirte Vorlesung 8 Statistik II für Betriebswirte Vorlesung 8 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 3. Dezember 2018 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 8 Version:

Mehr

Fragen. Einführung in die induktive Statistik. Übersicht. Lineare Einfachregression

Fragen. Einführung in die induktive Statistik. Übersicht. Lineare Einfachregression Fragen Welche Unsicherheitsfaktoren beeinflussen die Schätzung einer Regressionsgeraden? Einführung in die induktive Statistik Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Mehrfache und polynomiale Regression

Mehrfache und polynomiale Regression Mehrfache und polynomiale Regression Kriteria für die Durchführung einer Regression Jonathan Harrington Bitte datasets.zip (unter 5.5, Tabellarische Daten) neu herunterladen und in pfad auspacken Einfache

Mehr

Annahmen des linearen Modells

Annahmen des linearen Modells Annahmen des linearen Modells Annahmen des linearen Modells zusammengefasst A1: Linearer Zusammenhang: y = 0 + 1x 1 + 2x 2 + + kx k A2: Zufallsstichprobe, keine Korrelation zwischen Beobachtungen A3: Erwartungswert

Mehr

Diplomprüfung im Fach Ökonometrie im SS Aufgabenteil

Diplomprüfung im Fach Ökonometrie im SS Aufgabenteil Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Diplomprüfung im Fach Ökonometrie im SS 2009 - Aufgabenteil Name, Vorname Matrikelnr. Studiengang Semester Datum

Mehr

Teekonsum in den USA (in 1000 Tonnen), Nimmt den Wert 1 an für alle Perioden, Durchschnittlicher Preis des Tees in Periode t (in Tausend $/Tonne).

Teekonsum in den USA (in 1000 Tonnen), Nimmt den Wert 1 an für alle Perioden, Durchschnittlicher Preis des Tees in Periode t (in Tausend $/Tonne). Aufgabe 1 (5 Punkte) Gegeben sei ein lineares Regressionsmodell in der Form. Dabei ist y t = x t1 β 1 + x t β + e t, t = 1,..., 10 (1) y t : x t1 : x t : Teekonsum in den USA (in 1000 Tonnen), Nimmt den

Mehr

Datenanalyse mit Excel und Gretl

Datenanalyse mit Excel und Gretl Dozent: Christoph Hindermann christoph.hindermann@uni-erfurt.de Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 1 Teil 2: Gretl Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 2 Modellannahmen

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Sommersemester Namensschild. Dr.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Sommersemester Namensschild. Dr. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Sommersemester 2013 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer ˆ Kleben Sie bitte sofort Ihr Namensschild

Mehr

Lineare Regression (Ein bisschen) Theorie

Lineare Regression (Ein bisschen) Theorie Kap. 6: Lineare Regression (Ein bisschen) Theorie Lineare Regression in Matrixform Verteilung des KQ-Schätzers Standardfehler für OLS Der Satz von Gauss-Markov Das allgemeine lineare Regressionsmodell

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

Interpretation von Testergebnissen I

Interpretation von Testergebnissen I 2 Wiederholung statistischer Grundlagen Schließende Statistik 2.3 Interpretation von Testergebnissen I Durch die Asymmetrie in den Fehlerwahrscheinlichkeiten 1. und 2. Art ist Vorsicht bei der Interpretation

Mehr

Bachelorprüfung: Statistik (1 Stunde)

Bachelorprüfung: Statistik (1 Stunde) Prof. H.R. Künsch D-BIOL, D-CHAB Winter 2010 Bachelorprüfung: Statistik (1 Stunde) Bemerkungen: Es sind alle mitgebrachten schriftlichen Hilfsmittel und der Taschenrechner erlaubt. Natels sind auszuschalten!

Mehr

Dr. M. Kalisch. Statistik (für Biol./Pharm. Wiss.) Winter Musterlösung

Dr. M. Kalisch. Statistik (für Biol./Pharm. Wiss.) Winter Musterlösung Dr. M. Kalisch. Statistik (für Biol./Pharm. Wiss.) Winter 2014 Musterlösung 1. (11 Punkte) a) Für welchen Parameter ist X ein geeigneter Schätzer? X ist ein geeigneter Schätzer für den Erwartungswert µ

Mehr

Stochastik Praktikum Lineare Modelle

Stochastik Praktikum Lineare Modelle Stochastik Praktikum Lineare Modelle Thorsten Dickhaus Humboldt-Universität zu Berlin 06.10.2010 Übersicht 1 Einfache lineare Regression 2 Multiple lineare Regression 3 Varianzanalyse 4 Verallgemeinerte

Mehr

Züchtungslehre - Lösung 3

Züchtungslehre - Lösung 3 Züchtungslehre - Lösung 3 Peter von Rohr October 20, 2015 Aufgabe 1 (8) Der in dieser Aufgabe verwendete Datensatz unter http://charlotte-ngs.github.io/livestockbreedingandgenomics/w5/simgenphen.csv umfasst

Mehr

Allgemein zu Hypothesentests: Teststatistik. OLS-Inferenz (Small Sample) Allgemein zu Hypothesentests

Allgemein zu Hypothesentests: Teststatistik. OLS-Inferenz (Small Sample) Allgemein zu Hypothesentests OLS-Inferenz (Small Sample) K.H. Schild 3. Mai 017 Allgemein zu Hypothesentests: Teststatistik Konstruktion eines Hypothesentests erfolgt meistens über eine Teststatistik Eine Teststatistik T ist eine

Mehr

4. Das multiple lineare Regressionsmodell

4. Das multiple lineare Regressionsmodell 4. Das multiple lineare Regressionsmodell Bisher: 1 endogene Variable y wurde zurückgeführt auf 1 exogene Variable x (einfaches lineares Regressionsmodell) Jetzt: Endogenes y wird regressiert auf mehrere

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Wintersemester 2012/13. Namensschild. Dr.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Wintersemester 2012/13. Namensschild. Dr. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Wintersemester 2012/13 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer ˆ Kleben Sie bitte sofort Ihr Namensschild

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Wiederholung Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

Multiple lineare Regression

Multiple lineare Regression Multiple lineare Regression Bisher eine Einflußgröße X 1 (und der Achsenabschnitt). Dagegen das Modell der multiplen Regression Y = β 0 X 0 + β 1 X 1 +... + β p X p + ε mit p Einflußgrößen und dem Achsenabschnitt.

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Regression Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 39 Einfache lineare Regression Bestimmung der Regressionsgerade

Mehr

> r.lm < lm(log10(ersch) log10(dist), > summary(r.lm) > r.lms < summary(r.lm) R-Funktionen zur linearen Regression. data = d.

> r.lm < lm(log10(ersch) log10(dist), > summary(r.lm) > r.lms < summary(r.lm) R-Funktionen zur linearen Regression. data = d. 3.4 S-Funktionen 75 R-Funktionen zur linearen Regression a Im package stat (immer vorhanden): lm > r.lm < lm(log10(ersch) log10(dist), data = d.spreng) b Funktion summary produziert Resultate, die man

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch. Statistik (für Biol./Pharm. Wiss.) Winter 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte : Schätzung Statistik

Mehr

Einführung in die Induktive Statistik: Regressionsanalyse

Einführung in die Induktive Statistik: Regressionsanalyse Einführung in die Induktive Statistik: Regressionsanalyse Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Regressionsanalyse Ziel: Analyse

Mehr

Schriftliche Prüfung (2 Stunden)

Schriftliche Prüfung (2 Stunden) Prof. Peter Bühlmann Mathematik IV: Statistik Sommer 2013 Schriftliche Prüfung (2 Stunden) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Tutorial: Regression Output von R

Tutorial: Regression Output von R Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen

Mehr

EGRESSIONSANALYSE AVID BUCHATZ NIVERSITÄT ZU KÖLN

EGRESSIONSANALYSE AVID BUCHATZ NIVERSITÄT ZU KÖLN 1 EGRESSIONSANALYSE AVID BUCHATZ NIVERSITÄT ZU KÖLN UFBAU 1 Historie 2 Anwendungen / Ziele 3 Lineare Regression/ Beispiel KQ 4 Nichtlineare Regression 5 Eigenschaften der Schätzer istorie früheste Form

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Proxies, Endogenität, Instrumentvariablenschätzung

Proxies, Endogenität, Instrumentvariablenschätzung 1 4.2 Multivariate lineare Regression: Fehler in den Variablen, Proxies, Endogenität, Instrumentvariablenschätzung Literatur: Wooldridge, Kapitel 15, Appendix C.3 und Kapitel 9.4 Wahrscheinlichkeitslimes

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Biostatistik 101 Korrelation - Regressionsanalysen

Biostatistik 101 Korrelation - Regressionsanalysen Good Data don't need statistics Biostatistik 101 Korrelation - Regressionsanalysen Carl Herrmann IPMB Uni Heidelberg & DKFZ B080 carl.herrmann@uni-heidelberg.de Korrelation Sind Alter und Blutdruck miteinander

Mehr

1 Einführung Ökonometrie... 1

1 Einführung Ökonometrie... 1 Inhalt 1 Einführung... 1 1.1 Ökonometrie... 1 2 Vorüberlegungen und Grundbegriffe... 7 2.1 Statistik als Grundlage der Empirischen Ökonomie... 7 2.2 Abgrenzung und Parallelen zu den Naturwissenschaften...

Mehr

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Diplomvorprüfung Statistik II Einf. Ökonometrie im WS 06/07

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. Regina T. Riphahn, Ph.D. Diplomvorprüfung Statistik II Einf. Ökonometrie im WS 06/07 Aufgabe 1: [21 Punkte] Ein Forschungsinstitut hat den Auftrag bekommen, die individuellen monatlichen Ausgaben für Bioprodukte zu erklären. Es wird eine Kleinstquadrate Regression der Höhe der Ausgaben

Mehr

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60

Mehr