Einführung in Heuristische Suche

Größe: px
Ab Seite anzeigen:

Download "Einführung in Heuristische Suche"

Transkript

1 Einführung in Heuristische Suche

2 Beispiele 2

3 Überblick Intelligente Suche Rundenbasierte Spiele 3

4 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen? Beispiele: TSP SAT 8er Puzzle 8 Damen Problem, Labyrinth 4

5 Erster Schritt: Analyse des Problems Beispiel: 8er Puzzle Spielfeld 3x3-Felder mit jeweils einem Teil (1,,8,0) Eine Startkonfiguration (zufällig) Eine Zielkonfiguration Übergänge zwischen den Konfigurationen: leeres Feld nach oben, unten, links oder rechts Gesucht: Folge von Transformation von Start- zu Zielkonfiguration

6 Problem Ein Problem besteht aus 6

7 Beispiel: (8er Puzzle) Suchraum: S = alle Permutationen aus {1,,8,0}, die sich durch Transformationen aus (1,2,,8,0) erreichen lassen Transformationen, z.b.: t( (1, 2, 3, 4, 0, 6, 7, 5, 8) ) = { (1, 2, 3, 0, 4, 6, 7, 5, 8), (1, 2, 3, 4, 6, 0, 7, 5, 8), (1, 0, 3, 4, 2, 6, 7, 5, 8), (1, 2, 3, 4, 5, 6, 7, 0, 8) } Beispiel für eine Bewertungsfunktion: f(x) = (x 0-1) 2 + (x 1-2) 2 + (x 2-3) 2 + (x 3-4) 2 + (x 4-5) 2 f(x) + (x 5-6) 2 + (x 6-7) 2 + (x 7-8) 2 + (x 8-0) 2 Constraint: keins 7

8 Suchräume Beinhalten alle möglichen Einzelzustände bzw. Teillösungen eines Problems Unterschiedliche Modellierungen Iterativ: enthält nur Elemente mit vollständigen Lösungskandidaten Transformationen verändern die Lösungskandidaten Inkrementell: Enthält Elemente mit unvollständigen Teillösungen (0 m n Komponenten) Es existiert ein Startelement mit 0 oder 1 Komponent(en) Jede Transformation fügt eine Komponente hinzu 8

9 Greedy Algorithmen Greedy = gierig Naiver Lösungsansatz: Wähle ein/das Startelement Führe eine Transformation aus, die den meisten momentanen Gewinn (einfache Bewertungsfunktion) bringt Terminiere wenn die Maximale Komponentenanzahl erreicht ist. (inkrementell) eine weitere Transformation keinen Gewinn bringt. (iterativ) Gute Lösungen für einfache Probleme Lösung ist meist nicht optimal 9

10 Greedy: Beispiel TSP Traveling Salesman Problem Suche die kürzeste Rundtour durch mehrere Städte. NP-vollständig 20 Städte: (19* *2*1)/2 Möglichkeiten Routen Greedy-Algorithmus: Starte in einer beliebigen Stadt Gehe immer zur nächstgelegenen, noch nicht besuchten Stadt. 10

11 Greedy: Beispiel TSP (II) 11

12 Lokale Suche Meist iterativer Lösungsraum Durchsucht den Suchraum, indem immer von einem Element zu einem Nachbarn weitergegangen wird. Verfahren: Zufallssuche Hill-Climbing Simulated Annealing Evolutioniäre Algorithmen "parallele, gesteuerte Zufallssuche" Nachbarschaft definiert durch Mutation Steuerung durch Selektion 12

13 Graphsearch Suchräume als Graphen Lösungskandidaten = Knoten Transformationen = Kanten Der so entstanden Graph heißt Zustandsgraph. Suchbaum Wähle einen Startzustand = Wurzel Füge alle neuen Folgezustände des aktuellen Zustands als Nachfolger an generieren = Knoten das erste Mal erzeugen explorieren = Knoten bewerten expandieren = Nachfolger des Knotens anlegen Es gibt verschieden Arten einen solchen Baum anzulegen. 13

14 Tiefensuche Betrachte zuerst immer alle Nachfolger, bevor ein Nachbarknoten betrachtet wird. 14

15 Beispiel: Labyrinth 15

16 Beispiel: Labyrinth (II) "Immer an der rechten Wand entlang" = Tiefensuche 16

17 Breitensuche Betrachte zuerst alle Nachfolger eines Knotens, bevor deren Nachfolger betrachtet werden. 17

18 Probleme Tiefensuche Es werden erst viele Zweige des Baumes expandiert, bis die Lösung gefunden wird. Häufig zu aufwendig Breitensuche Es werden viele unnötige Zweige parallel mitbetrachtet. Häufig zu aufwendig 18

19 Heuristische Suchverfahren heuristiko, (alt-)griechisch: "ich finde" Allgemein: Intelligentes Schätzen Gute Daumenregel Präziser: Strategie zu Verwendung verfügbaren Wissens zur Kontrolle des Problemlösungsprozesses. 2 Varianten: Benutzung vom problembedingtem Wissen und Erfahrung, zur Beschleunigung der Problemlösung. Beschleunigung der Problemlösung, indem auf Optimalität verzichtet wird. 19

20 Graphsearch-Algorithmen Gebräuchliche Implementation 2 Listen OPEN Liste aller generierten, aber noch nicht expandierten Knoten CLOSED Liste alle bereits expandierten Knoten Bewertungsfunktion f CLOSED OPEN 20

21 Best First 21

22 Best First (II) Verzögerte Terminierung bei BF* Gefundene Lösung muss sich mit den Bewertungen aller Teillösungen auf OPEN messen. Ein eventuell besserer Lösungspfad kann noch weiterverfolgt werden. Findet IMMER die bzgl. f optimale Lösung Die Bewertungsfunktion f bestimmt die Performance des Algorithmus. f stellt häufig die Kosten dar, um zu einem Zielzustand zu gelangen Minimierung der Kosten f = Tiefe im Baum Breitensuche 22

23 A*-Verfahren Spezielles BF*-Verfahren Betrachtet nicht nur bisherige Kosten, sondern schätzt auch zukünftige Kosten ab. Bisherige Kosten für Knoten n: g(n) Zukünftige Kosten für Knoten n Genaue Kosten: h*(n) Abgeschätzte Kosten: h(n) Bewertung des Knotens n f(n) = g(n) + h(n) 23

24 Heuristik des A*-Verfahrens h(n) heißt Heuristik des A*-Verfahrens Für ein zulässiges A*-Verfahren muss gelten: Es gilt außerdem: h(n) h*(n) h(n) = 0 für Lösungen h(n) = für Dead-End-Knoten h(n) h(n') wenn n' Nachfolger von n ist Einfachste Heuristik: h(n) = 0 Beste Heuristik: h(n) = h*(n) 24

25 Beispiel: 8er Puzzle Iterativer Lösungsraum Knoten = Eine Belegung des Spiels Kanten führen zu Belegungen, die durch Verschieben des leeren Feldes (oben, unten, links, rechts) entstehen Start mit zufälliger (lösbarer) Belegung Bisherige Kosten g = Anzahl an Zügen = Tiefe im Entscheidungsbaum Heuristik h: "Manhattan-Distanz"

26 Beispiel: 8er-Puzzle Manhattan-Distanz, Beispiel: Distanz: = 3 Distanz: 1 Distanz: = 2 Das leere Feld wird nicht betrachtet! Die Manhattan-Distanz ist immer kleiner als die tatsächlich noch gebrauchte Anzahl an Zügen. Also: f(n) = Tiefe von n + Manhattan-Distanz 26

27 Beispiel: 8er Puzzle

28 Überblick Intelligente Suche Rundenbasierte Spiele 28

29 Grundlagen Wir betrachten rundenbasierte Spiele für 2 Spieler. Zum Beispiel: Tic Tac Toe Vier Gewinnt Dame Mühle Schach Es gibt auch Graphsearch-Verfahren, für solche Probleme. (z.b. General Best First) 29

30 Und-Oder-Graphen Gerichtet 2 Kantensorten Oder-Kanten (normale Kanten) Und-Kanten (werden alle gleichzeitig benutzt) 30

31 MINIMAX-Spiele 2 Spieler: MIN und MAX Es ist eine Anfangsstellung des Spiels definiert Die Spieler verändern abwechselnd die Spielstellung (Zug) MAX hat immer den ersten Zug Nach endlich vielen Zügen wird stets eine Spielstellung ohne Fortsetzungsmöglichkeiten erreicht Bewertung der Endstellung: WIN (-1) - MAX hat gewonnen DRAW (-0) - unentschieden LOSS (-1) - MIN hat gewonnen 31

32 Spielbäume MINIMAX-Spiele werden als Und-Oder-Graph modelliert Spielbaum = Entscheidungsbaum eines Spiels MAX MIN MAX 32

33 MINIMAX-Kontenbewertung MAX-Knoten (MAX ist dran) WIN - falls ein Nachfolger die Markierung WIN hat DRAW - kein Nachfolger hat WIN und min. Einer DRAW LOSS - falls alle Nachfolger die Markierung LOSS haben Entspricht dem Maximum der Nachfolger MIN-Knoten (MIN ist dran) WIN - falls alle Nachfolger die Markierung WIN haben DRAW - kein Nachfolger hat LOSS und min. Einer DRAW LOSS - falls ein Nachfolger die Markierung LOSS hat Entspricht dem Minimum der Nachfolger 33

34 Spielstrategie Eine Spielstrategie für MAX ist ein Spielbaum, der die folgenden Eigenschaften erfüllt: Der Startknoten gehört dazu. Für jeden MAX-Knoten gehört ein Nachfolger dazu. Für jeden MIN-Knoten gehören alle Nachfolger dazu. Eine Spielstrategie für MIN wird analog definiert. Bei einer Gewinnstrategie für MAX sind alle Blätter mit WIN markiert. 34

35 Beispiel: Tic Tac Toe - MAX (erster Zug) - MIN 35

36 MINIMAX-Heuristiken Problem: Bei den meisten Spielen ist der Zustandsraum zu groß um ihn vollständig zu erkunden. Dame: ca Knoten Schach: ca Knoten Lösung: Berechne die möglichen Nachfolgezustände bis zu einer bestimmten Tiefe und verwende eine Heuristik zur Bewertung der Blätter. 36

37 MINIMAX-Heuristiken (II) Bewertung mit geordneten Werten (z.b. aus,, ) MAX will die Bewertung maximieren. Bewertung der Blätter durch die Heuristik Innere Knoten MAX-Knoten: Maximum der Nachfolger MIN-Knoten: Minimum der Nachfolger 37

38 Beispiel MAX-Knoten - MIN-Knoten 38

39 MINIMAX-Algorithmus (Depth First Variante) MINIMAX(n): if is_leaf(n) then return h(n); else foreach n' in successors(n) do v(n') = MINIMAX(n'); h(n) - Heuristik v(n) - Bewertung if nodetype(n) = MAX then return max{ v(n') n' successors(n) } else return min{ v(n') n' successors(n) } 39

40 - -Suche Die Suche kann beschleunigt werden, indem unnötige Knoten nicht betrachtet werden. -Schranke Untere Schranke für MIN-Knoten Die Nachfolger eines MIN-Knotens n brauchen nicht betrachtet werden, wenn v(n) -Schranke Obere Schranke für MAX-Knoten Die Nachfolger eines MAX-Knotens n brauchen nicht betrachtet werden, wenn v(n) 40

41 Beispiel: - -Suche MAX-Knoten - MIN-Knoten 41

42 Ausblick Viele Strategien setzen auf MINIMAX auf unterstützt durch Datenbanken unterstützt durch bessere Schätzfunktionen unterstützt durch risikoreichere Strategieauswahl Weiterführend: Spieltheorie Suche nach Nash-Equilibrien Gleichgewicht aller Spieler Für keine Spieler ist es von Vorteil seine Strategie zu ändern Probleme Equilibrien sind schwer zu bestimmen Mehrere Equlibrien (nicht alle Pareto-optimal) Nur bei relativ einfachen Spielen handhabbar 42

Uninformierte Suche in Java Informierte Suchverfahren

Uninformierte Suche in Java Informierte Suchverfahren Uninformierte Suche in Java Informierte Suchverfahren Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Suchprobleme bestehen aus Zuständen

Mehr

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20 Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:

Mehr

2. Spielbäume und Intelligente Spiele

2. Spielbäume und Intelligente Spiele 2. Spielbäume und Intelligente Spiele Arten von Spielen 2. Spielbäume und Intelligente Spiele Kombinatorische Spiele als Suchproblem Wie berechnet man eine gute Entscheidung? Effizienzverbesserung durch

Mehr

2. Spiele. Arten von Spielen. Kombinatorik. Spieler haben festgelegte Handlungsmöglichkeiten, die durch die Spielregeln definiert werden.

2. Spiele. Arten von Spielen. Kombinatorik. Spieler haben festgelegte Handlungsmöglichkeiten, die durch die Spielregeln definiert werden. . Spiele Arten von Spielen. Spiele. Spiele Arten von Spielen Kombinatorik Spieler haben festgelegte Handlungsmöglichkeiten, die durch die Spielregeln definiert werden. Kombinatorische Spiele als Suchproblem

Mehr

Smart Graphics: Methoden 2 Suche

Smart Graphics: Methoden 2 Suche Smart Graphics: Methoden 2 Suche Vorlesung Smart Graphics LMU München Medieninformatik Butz/Boring Smart Graphics SS2007 Methoden: Suche Folie 1 Themen heute Smart Graphics Probleme als Suchprobleme Suchverfahren

Mehr

9. Heuristische Suche

9. Heuristische Suche 9. Heuristische Suche Prof. Dr. Rudolf Kruse University of Magdeburg Faculty of Computer Science Magdeburg, Germany rudolf.kruse@cs.uni-magdeburg.de S Heuristische Suche Idee: Wir nutzen eine (heuristische)

Mehr

Einführung in Suchverfahren

Einführung in Suchverfahren Einführung in Suchverfahren Alfred Kranstedt 0.0.0 Seminar Intelligente Algorithmen Was ist heute Thema?. Was ist ein Suchproblem? Definitionen, Darstellungen etc.. Suchstrategien Blinde Suche Heuristische

Mehr

KI und Sprachanalyse (KISA)

KI und Sprachanalyse (KISA) Folie 1 KI und Sprachanalyse (KISA) Studiengänge DMM, MI (B. Sc.) Sommer Semester 15 Prof. Adrian Müller, PMP, PSM1, CSM HS Kaiserslautern e: adrian.mueller@ hs-kl.de Folie 2 ADVERSIALE SUCHE Spiele: Multi-Agenten

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 9. Klassische Suche: Baumsuche und Graphensuche Malte Helmert Universität Basel 13. März 2015 Klassische Suche: Überblick Kapitelüberblick klassische Suche: 5. 7.

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS3 Slide 1 Wissensbasierte Systeme Sebastian Iwanowski FH Wedel Kap. 3: Algorithmische Grundlagen der KI WBS3 Slide 2 Suchstrategien Warum sind Suchstrategien so wichtig in Wissensbasierten Systemen?

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik)

Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik) Vortrag Suchverfahren der Künstlichen Intelligenz Sven Schmidt (Technische Informatik) Suchverfahren der Künstlichen Intelligenz Grundlagen Zustandsraumrepräsentation Generische Suche Bewertung von Suchstrategien

Mehr

Spieltheorie. Sebastian Wankerl. 16. Juli 2010

Spieltheorie. Sebastian Wankerl. 16. Juli 2010 Spieltheorie Sebastian Wankerl 16. Juli 2010 Inhalt 1 Einleitung 2 Grundlagen Extensive Form choice functions Strategien Nash-Gleichgewicht Beispiel: Gefangenendillema 3 Algorithmen Minimax Theorem Minimax

Mehr

Smart Graphics: Methoden 2 Suche

Smart Graphics: Methoden 2 Suche LMU München Medieninformatik Butz/Hilliges Smart Graphics WS2005 23.11.2005 Folie 1 Smart Graphics: Methoden 2 Suche Vorlesung Smart Graphics Andreas Butz, Otmar Hilliges Mittwoch, 23. November 2005 LMU

Mehr

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri Informatik II PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri KAUM JAVA Kaum Java Viel Zeit wird für Java-spezifisches Wissen benützt Wenig wichtig für Prüfung Letztjähriger Assistent

Mehr

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume

Mehr

Kombinatorische Spiele mit Zufallselementen

Kombinatorische Spiele mit Zufallselementen Kombinatorische Spiele mit Zufallselementen Die Realität ist nicht so streng determiniert wie rein kombinatorische Spiele. In vielen Situationen spielt der Zufall (Risko) eine nicht zu vernachlässigende

Mehr

Verbesserungsheuristiken

Verbesserungsheuristiken Verbesserungsheuristiken Bestandteile der Lokalen Suche Für schwierige Optimierungsaufgaben haben Verbesserungsheuristiken eine große praktische Bedeutung. Sie starten mit Ausgangslösungen, die von z.b.

Mehr

Spiele (antagonistische Suche) Übersicht. Typen von Spielen. Spielbaum. Spiele mit vollständiger Information

Spiele (antagonistische Suche) Übersicht. Typen von Spielen. Spielbaum. Spiele mit vollständiger Information Übersicht I Künstliche Intelligenz II Problemlösen 3. Problemlösen durch Suche 4. Informierte Suchmethoden 5. Constraint-Probleme 6. Spiele III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

Übersicht. 5. Spiele. I Künstliche Intelligenz II Problemlösen 3. Problemlösen durch Suche 4. Informierte Suchmethoden

Übersicht. 5. Spiele. I Künstliche Intelligenz II Problemlösen 3. Problemlösen durch Suche 4. Informierte Suchmethoden Übersicht I Künstliche Intelligenz II Problemlösen 3. Problemlösen durch Suche 4. Informierte Suchmethoden 5. Spiele III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Datenstrukturen: Anordnung von Daten, z.b. als Liste (d.h. in bestimmter Reihenfolge) Beispiel: alphabetisch sortiertes Wörterbuch... Ei - Eibe - Eidotter... als Baum (d.h.

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Rechnerische Komplexität

Rechnerische Komplexität Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Heuristische Suche. Uninformierte (blinde) Suchverfahren. erzeugen systematisch neue Knoten im Suchbaum und führen jeweils den Zieltest durch;

Heuristische Suche. Uninformierte (blinde) Suchverfahren. erzeugen systematisch neue Knoten im Suchbaum und führen jeweils den Zieltest durch; Heuristische Suche Uninformierte (blinde) Suchverfahren erzeugen systematisch neue Knoten im Suchbaum und führen jeweils den Zieltest durch; verwenden keine problemspezifische Zusatzinformation. Informierte

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus

5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus 5. Lokale Suchverfahren Lokale Suche 5. Lokale Suchverfahren Beispiel TSP: k-change Nachbarschaft Optimale Lösungen können oft nicht effizient ermittelt werden. Heuristiken liefern zwar zulässige Lösungen,

Mehr

5. Spiele. offensichtlich eine Form von Intelligenz. Realisierung des Spielens als Suchproblem

5. Spiele. offensichtlich eine Form von Intelligenz. Realisierung des Spielens als Suchproblem 5. Spiele Spiele, insbesondere Brettspiele, stellen eines der ältesten Teil- und Anwendungsgebiete der KI dar (Shannon und Turing: 1950 erstes Schachprogramm). Brettspiele stellen eine sehr abstrakte und

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

5 Zwei spieltheoretische Aspekte

5 Zwei spieltheoretische Aspekte 5 Zwei spieltheoretische Aspekte In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen,

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie

Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie Präsentation Agenda I. Einführung 1. Motivation 2. Das Spiel Vier Gewinnt

Mehr

Survival of the Fittest Optimierung mittels Genetischer Algorithmen

Survival of the Fittest Optimierung mittels Genetischer Algorithmen Übung zu Organic Computing Survival of the Fittest Optimierung mittels Genetischer Algorithmen Sabine Helwig Lehrstuhl für Informatik 12 (Hardware-Software-Co-Design) Universität Erlangen-Nürnberg sabine.helwig@informatik.uni-erlangen.de

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Kapitel 2: Suche. Teil 2. (Dieser Foliensatz basiert auf Material von Mirjam Minor, Humboldt- Universität Berlin, WS 2000/01)

Kapitel 2: Suche. Teil 2. (Dieser Foliensatz basiert auf Material von Mirjam Minor, Humboldt- Universität Berlin, WS 2000/01) Kapitel 2: Suche Teil 2 (Dieser Foliensatz basiert auf Material von Mirjam Minor, Humboldt- Universität Berlin, WS 2000/01) Künstliche Intelligenz, Kapitel 2 Suche 1 Eigenschaften und Verbesserungen von

Mehr

Inhaltliche Planung für die Vorlesung

Inhaltliche Planung für die Vorlesung Vorlesung Fachbereich Mathematik/Informatik AG Vorlesung: - Suche und Spieltheorie - P LS ES S ST Miao Wang 1 Vorlesung Fachbereich Mathematik/Informatik AG Inhaltliche Planung für die Vorlesung 1) Definition

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Binary Decision Diagrams (Einführung)

Binary Decision Diagrams (Einführung) Binary Decision Diagrams (Einführung) Binary Decision Diagrams (BDDs) sind bestimmte Graphen, die als Datenstruktur für die kompakte Darstellung von booleschen Funktionen benutzt werden. BDDs wurden von

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung

Mehr

Grundlagen der KI + Reasoning Agents

Grundlagen der KI + Reasoning Agents Grundlagen der KI + Reasoning Agents Prof. Thielscher Welche heuristischen Suchverfahren gibt es? Erläutern Sie A* am Beispiel. Aufbau und Schlussfolgerungen von Bayesschen Netzen. Thielscher drängt auf

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Kapitel 3: Problemformulierungen in der KI. oder das Problem ist die halbe Lösung

Kapitel 3: Problemformulierungen in der KI. oder das Problem ist die halbe Lösung Kapitel 3: Problemformulierungen in der KI oder das Problem ist die halbe Lösung Lernziele: eine Struktur für die Definition eines problemlösenden Agenten kennen die wichtige Rolle von Abstraktionen in

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Bericht vom 1. Leipziger Seminar am 25. November 2006

Bericht vom 1. Leipziger Seminar am 25. November 2006 Bericht vom 1. Leipziger Seminar am 25. November 2006 Das Wythoff-Nim-Spiel Wir wollen uns ein Spiel für zwei Personen ansehen, welches sich W.A.Wythoff 1907 ausgedacht hat: Vor den Spielern liegen zwei

Mehr

Programmieren, Algorithmen und Datenstrukturen II 8. Allgemeine Lösungsverfahren

Programmieren, Algorithmen und Datenstrukturen II 8. Allgemeine Lösungsverfahren Programmieren, Algorithmen und Datenstrukturen II 8. Allgemeine Lösungsverfahren 1 Übersicht 1. Ziele des Kapitels 2. Bereits behandelte Lösungsstrategien 3. Backtracking 4. Branch-and-Bound 5. Weiterführende

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Spieltheorien und Theoreme

Spieltheorien und Theoreme Spieltheorien und Theoreme Seminar: Randomisierte Algorithmen Prof. Dr. R. Klein Alexander Hombach Eine bilinguale Ausarbeitung von Alexander Hombach, Daniel Herrmann und Ibraguim Kouliev (Teil 1) Rheinische

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Klausur Grundlagen der Künstlichen Intelligenz

Klausur Grundlagen der Künstlichen Intelligenz Klausur Grundlagen der Künstlichen Intelligenz 19.04.2007 Name, Vorname: Studiengang: Hinweise: Überprüfen Sie bitte, ob Sie alle 16 Seiten der Klausur erhalten haben. Bitte versehen Sie vor Bearbeitung

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Zug Bart Borg Bart Borg Bart Borg Bart. Bart 2 1 1 1 Borg 1 1 2 verloren. Stand 8 7 6 5 4 2 1. Zug Bart Borg Bart Borg Bart Borg

Zug Bart Borg Bart Borg Bart Borg Bart. Bart 2 1 1 1 Borg 1 1 2 verloren. Stand 8 7 6 5 4 2 1. Zug Bart Borg Bart Borg Bart Borg . Das. Einführung Deep Blue Kasparow, Philadelphia 996 Deep Blue, der Supercomputer schlägt Garry Kasparow. So oder ähnlich lauteten die Schlagzeilen 996. Die 6 Partien waren insgesamt ausgeglichen, zum

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS5 Slide 1 Wissensbasierte Systeme Vorlesung 5 vom 17.11.2004 Sebastian Iwanowski FH Wedel WBS5 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Spieltheorie. Fabian Schmidt Fabian Schmidt Spieltheorie / 46

Spieltheorie. Fabian Schmidt Fabian Schmidt Spieltheorie / 46 Spieltheorie Fabian Schmidt 09.07.2014 Fabian Schmidt Spieltheorie 09.07.2014 1 / 46 Übersicht Einführung Gefangenendilemma Tit-for-tat Minimax und Alpha-Beta-Pruning Nim-Spiel und Misère-Variante Josephus-Problem

Mehr

Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch

Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch verschiedene Datenstrukturen: lineare Datenstrukturen: Array,

Mehr

Maximizing the Spread of Influence through a Social Network

Maximizing the Spread of Influence through a Social Network 1 / 26 Maximizing the Spread of Influence through a Social Network 19.06.2007 / Thomas Wener TU-Darmstadt Seminar aus Data und Web Mining bei Prof. Fürnkranz 2 / 26 Gliederung Einleitung 1 Einleitung 2

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Wissensbasierte Systeme 5. Constraint Satisfaction Probleme

Wissensbasierte Systeme 5. Constraint Satisfaction Probleme Wissensbasierte Systeme 5. Constraint Satisfaction Probleme Michael Beetz Vorlesung Wissensbasierte Systeme 1 Inhalt 5.1 Begriffe 5.2 Constraint Satisfaction in Linienbildern 5.3 Beispielanwendungen 5.4

Mehr

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen Kapitel Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Toleranzbasierte Algorithmen für das Travelling Salesman Problem. Gerold Jäger

Toleranzbasierte Algorithmen für das Travelling Salesman Problem. Gerold Jäger Toleranzbasierte Algorithmen für das Travelling Salesman Problem Gerold Jäger (Zusammenarbeit mit Jop Sibeyn, Boris Goldengorin) Institut für Informatik Martin-Luther-Universität Halle-Wittenberg gerold.jaeger@informatik.uni-halle.de

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Teil XII. Datenstrukturen: Bäume, Stacks und Queues. Scientific Computing in Computer Science, Technische Universität München

Teil XII. Datenstrukturen: Bäume, Stacks und Queues. Scientific Computing in Computer Science, Technische Universität München Teil XII Datenstrukturen: Bäume, Stacks und Queues IN8008, Wintersemester 2011/2012 251 Stacks (Kellerspeicher/Stapel) Funktioniert wie ein natürlicher Stapel (z.b. Papierstapel auf dem Schreibtisch) Elemente

Mehr

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965).

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965). 5. Graphenprobleme Im folgenden bezeichnen G = (E, K) einen endlichen Graphen mit der Eckenmenge E und der Kantenmenge K. G kann ungerichtet, gerichtet, schlicht oder nicht schlicht sein. 5.1 Spannende

Mehr

Klausur Informatik B April Teil I: Informatik 3

Klausur Informatik B April Teil I: Informatik 3 Informatik 3 Seite 1 von 8 Klausur Informatik B April 1998 Teil I: Informatik 3 Informatik 3 Seite 2 von 8 Aufgabe 1: Fragekatalog (gesamt 5 ) Beantworten Sie folgende Fragen kurz in ein oder zwei Sätzen.

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Verkettete Datenstrukturen: Bäume

Verkettete Datenstrukturen: Bäume Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller

Mehr

4. Kreis- und Wegeprobleme Abstände in Graphen

4. Kreis- und Wegeprobleme Abstände in Graphen 4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

5.4 Das Rucksackproblem

5.4 Das Rucksackproblem Problemstellung: 5.4 Das Rucksackproblem Eingabe: Ganzzahlige Volumina a 1,..., a n > 0, Nutzenwerte c 1,..., c n > 0, ganzzahlige Volumenschranke b. Aufgabe: Packe die Objekte in einen Rucksack von Volumen

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen . Graphen viele praktische (Optimierungs-)Probleme sind als graphentheoretische Probleme formulierbar z.b. in Produktionsplanung, Personaleinsatzplanung,.... Grundlagen gerichteter, ungerichteter und gewichteter

Mehr

Herzlich Willkommen. Spielstrategien. gehalten von Nils Böckmann

Herzlich Willkommen. Spielstrategien. gehalten von Nils Böckmann Herzlich Willkommen Spielstrategien gehalten von Nils Böckmann Agenda 1. Einführung 2. Problemstellung 3. Abgrenzung 4. Zielstellung / grober Überblick 5. Vorstellen der Konzepte 1. Umgebungslogik 2. Spielbäume

Mehr

Hackenbusch und Spieltheorie

Hackenbusch und Spieltheorie Hackenbusch und Spieltheorie Was sind Spiele? Definition. Ein Spiel besteht für uns aus zwei Spielern, Positionen oder Stellungen, in welchen sich das Spiel befinden kann (insbesondere eine besondere Startposition)

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

MafI I: Logik & Diskrete Mathematik (F. Hoffmann)

MafI I: Logik & Diskrete Mathematik (F. Hoffmann) Lösungen zum 14. und letzten Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (F. Hoffmann) 1. Ungerichtete Graphen (a) Beschreiben Sie einen Algorithmus, der algorithmisch feststellt, ob

Mehr

Customization (Zuschneiden)

Customization (Zuschneiden) Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 27.10.2011 stefan.klampfl@tugraz.at 1 Wiederholung Wir vergleichen Algorithmen anhand des ordnungsmäßigen Wachstums von T(n), S(n), Asymptotische Schranken: O-Notation:

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Praktikum Planare Graphen

Praktikum Planare Graphen 1 Praktikum Planare Graphen Michael Baur, Martin Holzer, Steffen Mecke 10. November 2006 Einleitung Gliederung 2 Grundlagenwissen zu planaren Graphen Themenvorstellung Gruppeneinteilung Planare Graphen

Mehr

Statistische Untersuchungen zu endlichen Funktionsgraphen

Statistische Untersuchungen zu endlichen Funktionsgraphen C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr