Was ist ein Laser? Ein Laser ist grob gesagt ein "Energieumwandler für elektromagnetische Schwingungen im Bereich der Lichtwellen".

Größe: px
Ab Seite anzeigen:

Download "Was ist ein Laser? Ein Laser ist grob gesagt ein "Energieumwandler für elektromagnetische Schwingungen im Bereich der Lichtwellen"."

Transkript

1 Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position! Das Wort LASER ist die Abkürzung für Light amplification by stimulated emission of radiation. Zu deutsch bedeutet das Lichtverstärkung durch stimulierte Emission von Strahlung. Was ist ein Laser? Ein Laser ist grob gesagt ein "Energieumwandler für elektromagnetische Schwingungen im Bereich der Lichtwellen". In Grundzügen kann man die Funktionsweise eines Lasers mit der einer Glühlampe vergleichen. Dem Glühfaden der Glühlampe wird elektrische Energie zugeführt. Die Metallatome des Glühfadens laden sich mit dieser Energie auf, d.h. sie treten in einen höheren Energiezustand und geben diese Energie in Form von Lichtteilchen wieder ab. Jedes Atom sendet bei dieser Energieänderung seine Photonen unabhängig von den anderen Atomen aus. Ergebnis: Es entstehen Lichtwellen mit ganz unterschiedlichen Wellenlängen. Diese Frequenzen nehmen das gesamte Spektrum des sichtbaren Lichtes ein. Das Gemisch aller Farben im Bereich des sichtbaren Lichtes empfindet unser Auge als weiß. Die Glühlampe erzeugt durch die Energiezufuhr Lichtwellen, die sich nach allen Seiten ausbreiten, ganz im Gegensatz zum Laser. Der erste Unterschied zwischen Glühlampe und Laser besteht darin, dass der Laser ein (nahezu) paralleles Lichtbündel erzeugt (d.h. alle Lichtstrahlen werden in die gleiche Richtung ausgesendet), das nur aus einer einzigen Farbe besteht (es ist "monochromatisch"). Die Wellenlänge dieses vom Laser ausgesandten Lichtbündels variiert von infrarot bis ultraviolett. Die einzelnen Wellen dieses parallelen Lichtbündels schwingen zusammenhängend (sie sind "kohärent"). Die Intensität der Strahlung ist zudem viel höher als bei normalem Mischlicht Aufbau und Funktionsprinzip: Ein Laser besteht aus dem Laserkopf und dem Laserversorgungsteil. Der Laserkopf umfasst das Lasermaterial (gegebenenfalls mit der Anordnung, die dieses Material zusammenhält, z.b. für den Fall, dass das Lasermedium nicht stabil ist) und den Resonator, der auf die Wellenlänge des Lasers abgestimmt ist. Der Resonator besteht aus mindestens zwei Spiegeln, die das Licht durch das Lasermaterial (=Lasermedium) senden und somit den Laserstrahl produzieren. Außerdem enthält der Laserkopf noch eine Vorrichtung, die die zugeführte Energie in das Lasermedium lenkt und dieses damit anregt. Das Laserversorgungsteil ist bei den meisten kleineren Lasern ein einfaches Netzteil für die Steckdose. file:///c /Dokumente%20und%20Einstellungen/Michael/Desktop/REFS/Ready%20to%20do/10_10_05/Laser.html (1 of 6) :35:27

2 Wie entsteht nun aber der Laserstrahl? Als erstes wird die über das Netzteil zugeführte Energie dazu verwendet, das Lasermedium anzuregen (das Fachwort für diesen Prozess lautet "pumpen"). Dieses kann auf vielerlei Art geschehen, zwei Beispiele sind eine Gasentladung (bei Gaslasern) oder durch einen anderen Laser (z.b.: Farbstofflaser). Genau betrachtet, bedeutet das Pumpen nichts anderes, als dass ein oder mehrere Elektronen in eine höhere Umlaufbahn um das Atom gebracht werden. Nun wird das von einer Bogen- oder Blitzlampe eingestrahlte Licht mittels des Resonatorapparates durch das Lasermedium gelenkt. Sobald das Licht auf die Atome, Ionen oder Moleküle des Mediums trifft, werden dies zum Aussenden von Strahlung gezwungen. Durch die vorher zugeführte Energie ist der austretende Strahl energiereich: Laserstrahlung tritt aus! Laserstrahlen erzeugt man also durch erzwungene (= induzierte) Lichtemission. Deren Kennzeichen sind: ein sehr hoher Grad der Gleichphasigkeit des Austritts der Laserstrahlwellen aus der Austrittsfläche. eine nahezu konstante, für jeden Lasertyp charakteristische, Frequenz und Wellenlänge. Wie erzeugt ein Laser ein"lichtbündel"? Ein bestimmter Stoff, z.b. ein Rubinkristall, wird durch Bestrahlung von außen dazu angeregt, seinerseits besonders starke Lichtwellen auszusenden. Durch diese Eigenschaft hat das Verfahren auch seinen Namen: LASER ist die Abkürzung für "Light Amplification by Stimulated Emission of Radiation", was übersetzt "Lichtverstärkung durch künstlich angeregte Aussendung von Strahlung" bedeutet. In einem Rubinlaser ist eine sehr helle Quecksilberdampflampe installiert. Der Rubinkristall wird von dieser Lampe "umschlossen". Mit der Quecksilberdampflampe werden sehr helle Lichtblitze erzeugt. Durch dieses Blitzlicht werden die im Rubinkristall enthaltenen Chromatome mit Energie aufgeladen. Diese aufgeladenen Chromatome geben nun Photonen ab, die sich in Richtung auf die beiden Enden des Rubinkristalls in Bewegung setzen. Die eine Seite des Rubinkristalls ist vollverspiegelt, die andere Seite ist teilverspiegelt. Die "abgeschossenen" Photonen prallen nun auf die Verspiegelungen am Ende des Kristalls und werden "zurückgeschleudert". Dieses Verfahren wird "optisches Pumpen" genannt. Es entsteht eine Art Kettenreaktion: Immer mehr Chromatome werden angeregt, ihre Photonen (Lichtquanten) abzugeben. Dadurch fliegen weitere Lichtteilchen durch den Rubinkristall. Der Lichtstrahl wird immer mehr verstärkt. Wenn der Strahl eine bestimmte Kraft (Intensität) erreicht hat, "schießt" er durch die teilverspiegelte Stirnfläche als dunkelroter (beim Rubinlaser), gleichschwingender Lichtstrahl nach außen. file:///c /Dokumente%20und%20Einstellungen/Michael/Desktop/REFS/Ready%20to%20do/10_10_05/Laser.html (2 of 6) :35:27

3 Die Entwicklung des Laser :Vom Maser zum Laser Bereits im Jahre 1917 erklärte der Physiker Albert Einstein, daß ein "Aufladevorgang" (Physiker nennen das eine "Induzierte Emission"), wie er beim später entwickelten Laser stattfindet, möglich sein müsse. Die Wissenschaftler R. Ladenberg und H. Kopfermann verwendeten bei ihren "Aufladeversuchen" im Jahre 1927 verschiedene Gase. Die erste Lichtverstärkung gelang dem sowjetischen Physiker W.A. Fabrikant im Jahre Der nächste Schritt in der Laserentwicklung gelang dem deutsch-französischen Physiker Alfred Kastler Er entwickelte das System des "optischen Pumpens": Kastler bestrahlte Atome mit Licht solcher Frequenz, das von den Atomen absorbiert ) werden konnte. Die Atome gerieten in einen höheren Energiezustand und gaben das "aufgesaugte" Licht dann verstärkt ab. Kastler machte einen Teil seiner Versuche mit sichtbarem Licht, experimentierte zusätzlich aber auch mit Radiowellen. Die durch die Bestrahlung mit Radiowellen erfolgte Mikrowellenverstärkung wurde später unter der Bezeichnung MASER bekannt. MASER ist die Abkürzung für "Microwave Amplification by Stimulated Emission of Radiation", was übersetzt "Mikrowellenverstärkung durch künstlich angeregte Aussendung von Strahlung" bedeutet Verantwortlich für die Entwicklung des Masers waren u.a. die amerikanischen Physiker Charles Hard Townes, Arthur Leonard Schawlow und H.J. Zeiger. Sie beschäftigten sich, von der Radartechnik ausgehend, mit dem Bau von Mikrowellenlasern. Das Maser-Prinzip wurde 1951 von Townes formuliert. Townes verwendete Ammoniakmoleküle. Er bestrahlte diese Moleküle mit einer Mikrowelle, deren Frequenz mit der Eigenfrequenz der Ammoniakmoleküle übereinstimmte. Durch diese Bestrahlung wurden die Moleküle in einen höheren Energiezustand versetzt, die ihre Strahlung dann wieder verstärkt abgaben. Es entstand also eine Mikrowelle mit sehr hoher Intensität. Im Jahre 1953 war dann auch der erste in den USA entwickelte Gasmaser fertig. Der erste Laser Seit 1957 hatte Townes die Idee, im Maser statt Mikrowellenbestrahlung eine Lichtbestrahlung zu verwenden. Diese erste Theorie des Lasers, die 1958 erschien, wollte Townes sich nun patentieren lassen. Dabei gab es allerdings ein Problem für ihn: Der Atomphysiker Gordon Gould hatte sich ebenfalls mit der Theorie eines Lasers beschäftigt und bereits 1957 Aufzeichnungen über seine Versuche beim Notar hinterlegt. Es kam zu einem endlosen Rechtsstreit, der erst 1977 mit einem Teilerfolg für Gould endete. Doch war es eben nur ein Teilerfolg, denn bereits 1960 wurde der Laser für Townes und Schawlow patentiert - oder besser gesagt: die Laseridee. Denn bis jetzt war es eben eine file:///c /Dokumente%20und%20Einstellungen/Michael/Desktop/REFS/Ready%20to%20do/10_10_05/Laser.html (3 of 6) :35:27

4 bloße Theorie, gebaut wurde der Laser bis zu diesem Zeitpunkt noch nicht. Zahlreiche Forscher "stürzten" sich auf das Laser-Projekt. Der erste funktionierende Rubinlaser wurde jedoch nicht von einer großen Universität entwickelt sondern vom amerikanischen Physiker Theodore Harold Maiman in einem kleinen Nebenlabor der Hughes Aircraft Company. Dieser Rubinlaser wurde 1960 präsentiert, im gleichen Jahr also, in dem das Patent an Townes und Schawlow vergeben wurde. Arten von Lasern Gibt vier Gruppen in die Laser unterteil werden: Feststofflaser 1. Neodymlaser. 2. Rubinlaser: 3. Vibronische Festkörperlaser Gaslaser 1. Atomare Laser Der Helium-Neon-Laser 1. Infrarot-Moleküllaser 2. Der Kohlendioxid-Laser 3. Ionenlaser 4. Metalldampfionenlasern 5. Edelgasionenlaser Argonlaser He-Cd- und He-Se-Laser: 1. Ulraviolettmoleküllaser 2. N 2 -Laser file:///c /Dokumente%20und%20Einstellungen/Michael/Desktop/REFS/Ready%20to%20do/10_10_05/Laser.html (4 of 6) :35:27

5 Flüssigkeitslaser Halbleiterlaser Anwendungen von Lasern Medizin: Augen Hals, Nasen, Ohren Harnsystem Magen und Darm Haut (Tätowierungsentfernung) Gefäße Zähne Gehirn Schneiden ohne Blutung: Hauptsächlich wird der CO 2 -Laser verwendet Laserdrucker, CD- Laufwerke Kommunikation durch Laserstrahlung (Telefonleitungen, Telekabel, Photonik, Glasfasern) Materialbearbeitung Mit gebündelter, intensiver Laserstrahlung lassen sich beliebige Materialien bohren, schneiden, schweißen oder anders bearbeiten Das einzige wirkliche Problem besteht in den Kosten für die aufwendigen Anwendungen von Höchstleistungslasern Laser mit hoher Kilowattzahl werden vor allem in der Materialbearbeitung eingesetzt Höchstleistungslaser werden auch zur Militärbekämpfung verwendet file:///c /Dokumente%20und%20Einstellungen/Michael/Desktop/REFS/Ready%20to%20do/10_10_05/Laser.html (5 of 6) :35:27

6 Lasersicherheit: Als oberstes Sicherheitsgebot ist zu beachten, dass Laserlicht Augenschäden anrichten kann. Daher ist es zu empfehlen, nie direkt in den Laserstrahl zu sehen. Als direkter Blick sind alle Sehbedingungen unter denen das Auge der Laserstrahlung ausgesetzt ist (ausgenommen Betrachtung ausgedehnter Quellen) zu interpretieren. Unter Sicherheit versteht man in diesem Belang alle notwendigen Maßnahmen, um Unfälle mit Lasern zu vermeiden: Beschilderung: Jede Lasereinrichtung muss Schilder tragen, die entsprechend den Anforderungen der folgenden Abschnitte beschriftet sind: Die Schilder müssen ihrem Zweck entsprechend dauerhaft angebracht, lesbar und während des Betriebs und der Service- und Wartungsarbeiten deutlich sichtbar sein. Jede Lasereinrichtung muss ein Hinweisschild, das die entsprechende Laserklasse bezeichnet, tragen, außerdem müssen laserspezifische Hinweise angebracht sein (z.b. Streustrahlung vermeiden ). Weiters müssen an allen entfernbaren Schutzgehäusen und Abdeckplatten Gefahrenhinweise befestigt sein. Als Informationen für den Benutzer müssen Anweisungen für den richtigen Zusammenbau, die Wartung und den sicheren Betrieb, Warnungen, Angaben über Strahldivergenz, Impulsdauer, maximale Ausgangswerte der Laserstrahlung, Hinweise auf alle Laserstrahlaustrittsöffnungen, Justiereinrichtungen und Energieversorgung mitgeliefert werden. file:///c /Dokumente%20und%20Einstellungen/Michael/Desktop/REFS/Ready%20to%20do/10_10_05/Laser.html (6 of 6) :35:27

Light Amplification by Stimulated Emission of Radiation

Light Amplification by Stimulated Emission of Radiation Light Amplification by Stimulated Emission of Radiation Licht: a) Elektromagnetische Welle E = E 0 sin(-kx) k = 2 p/l E = E 0 sin(t) = 2 p n = 2 p/t c = l n c = Lichtgeschwindigkeit = 2,99792458 10 8 m/s

Mehr

Der Laser. 1.: Begriff, Geschichte des Lasers. 2.: Aufbau siehe Folie. 3.: Wirkungsweise

Der Laser. 1.: Begriff, Geschichte des Lasers. 2.: Aufbau siehe Folie. 3.: Wirkungsweise Der Laser 1. Begriff 2. Aufbau 3. Wirkungsweise 4. Eigenschaften 5. Anwendung 6. Quellen 1.: Begriff, Geschichte des Lasers Abkürzung für englisch Light Amplification by Stimulated Emission of Radiation

Mehr

Sterne 17 Sternspektroskopie und Spektralanalyse (Teil 5)

Sterne 17 Sternspektroskopie und Spektralanalyse (Teil 5) Sterne 17 Sternspektroskopie und Spektralanalyse (Teil 5) Exkurs: MASER und LASER MASER = Mikrowellenverstärkung durch stimulierte Emission von Strahlung LASER = Lichtverstärkung durch stimulierte Emission

Mehr

Laserlicht Laser. Video: Kohärenz. Taschenlampe. Dieter Suter Physik B Grundlagen

Laserlicht Laser. Video: Kohärenz. Taschenlampe. Dieter Suter Physik B Grundlagen Dieter Suter - 423 - Physik B2 6.7. Laser 6.7.1. Grundlagen Das Licht eines gewöhnlichen Lasers unterscheidet sich vom Licht einer Glühlampe zunächst dadurch dass es nur eine bestimmte Wellenlänge, resp.

Mehr

Durch Beleuchtung mit einer ebenen Welle erhält man ein Beugungsmuster, das beim Betrachter das ursprüngliche Objekt rekonstruiert.

Durch Beleuchtung mit einer ebenen Welle erhält man ein Beugungsmuster, das beim Betrachter das ursprüngliche Objekt rekonstruiert. Dieter Suter - 361 - Physik B3 Durch Beleuchtung mit einer ebenen Welle erhält man ein Beugungsmuster, das beim Betrachter das ursprüngliche Objekt rekonstruiert. Exp. 74a: Hologramm-Projektion Holographie

Mehr

Vorlesung 19: Roter Faden: Röntgenstrahlung Laserprinzip. Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag

Vorlesung 19: Roter Faden: Röntgenstrahlung Laserprinzip. Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag Vorlesung 19: Roter Faden: Röntgenstrahlung Laserprinzip Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag Juni 21, 2005 Atomphysik

Mehr

32. Lektion. Laser. 40. Röntgenstrahlen und Laser

32. Lektion. Laser. 40. Röntgenstrahlen und Laser 32. Lektion Laser 40. Röntgenstrahlen und Laser Lernziel: Kohärentes und monochromatisches Licht kann durch stimulierte Emission erzeugt werden Begriffe Begriffe: Kohärente und inkohärente Strahlung Thermische

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Telefonieren mit Licht. Jürg Leuthold

Telefonieren mit Licht. Jürg Leuthold Telefonieren mit Licht Jürg Leuthold Feuerzeichen im alten Rom Das römische Heer setzte akustische wie optische Signale zur Informationsübermittlung ein. Mit Feuerzeichen konnten die Wachposten schnell

Mehr

Festkörperlaser. Benedikt Konermann Kevin Thiele. Festkörperlaser Benedikt Konermann, Kevin Thiele

Festkörperlaser. Benedikt Konermann Kevin Thiele. Festkörperlaser Benedikt Konermann, Kevin Thiele Festkörperlaser Benedikt Konermann Festkörperlaser Gliederung Was heißt Laser? Was versteht man unter? t Was bedeutet stimulierte Emission? Entstehung des Laserlichtes Pumplichtquellen Welche gibt es?

Mehr

Vorlesung 25: Roter Faden: Magnetische Effekte im H-Atom Periodensystem Röntgenstrahlung Laser

Vorlesung 25: Roter Faden: Magnetische Effekte im H-Atom Periodensystem Röntgenstrahlung Laser Vorlesung 25: Roter Faden: Magnetische Effekte im H-Atom Periodensystem Röntgenstrahlung Laser Juli 19, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Magnetfelder im H-Atom Interne B-Felder:

Mehr

3. Der Laser - das besondere Licht

3. Der Laser - das besondere Licht DER LASER - DAS BESONDERE LICHT 3. Der Laser - das besondere Licht DAS WICHTIGSTE IST, BEGEISTERUNG ZU ERZEUGEN 29 DER LASER - DAS BESONDERE LICHT DAS WICHTIGSTE IST, BEGEISTERUNG ZU ERZEUGEN 30 DER LASER

Mehr

14. Atomphysik Physik für E-Techniker. 14. Atomphysik

14. Atomphysik Physik für E-Techniker. 14. Atomphysik 14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

14. Atomphysik Aufbau der Materie

14. Atomphysik Aufbau der Materie 14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

Optische Spektroskopie und Laserphysik

Optische Spektroskopie und Laserphysik Optische Spektroskopie und Laserphysik Dr. Cedrik Meier Institut für Experimentalphysik Was Euch in der nächste Stunde erwartet... Der Laser Was ist ein Laser? Geschichte des Lasers Eigenschaften von Laserlicht

Mehr

Medical Laser Technology

Medical Laser Technology Medical Laser Technology 2 SWS 447.188 Schröttner J. E-Mail: schroettner@tugraz.at Tel.: 873/7395 Institut für Health Care Engineering mit Europaprüfstelle für Medizinprodukte www.hce.tugraz.at Kopernikusgasse

Mehr

Der Laser Der Laser im CD-Rom Laufwerk

Der Laser Der Laser im CD-Rom Laufwerk Der Laser Der Laser im CD-Rom Laufwerk 1 Vorläufer des Lasers Der Überlieferung nach benutzte Archimedes bereits vor mehr als 2000 Jahren einen gewölbten Spiegel, um mit gebündeltem Licht feindliche Schiffe

Mehr

Eichler. Jürgen. Hans Joachim Eichler. Laser. Bauformen, Strahlführung, Anwendungen. 8., aktualisierte und überarbeitete Auflage. 4^ Springer Vieweq

Eichler. Jürgen. Hans Joachim Eichler. Laser. Bauformen, Strahlführung, Anwendungen. 8., aktualisierte und überarbeitete Auflage. 4^ Springer Vieweq Hans Joachim Eichler Jürgen Eichler Laser Bauformen, Strahlführung, Anwendungen 8., aktualisierte und überarbeitete Auflage 4^ Springer Vieweq 1 Licht, Atome, Moleküle, Festkörper 1 1.1 Eigenschaften von

Mehr

Inhaltsverzeichnis. Laserübergänge in neutralen Atomen Helium-Neon-Laser Metalldampf-Laser (Cu, Au) Jodlaser, COIL 80 Aufgaben 81

Inhaltsverzeichnis. Laserübergänge in neutralen Atomen Helium-Neon-Laser Metalldampf-Laser (Cu, Au) Jodlaser, COIL 80 Aufgaben 81 Licht, Atome, Moleküle, Festkörper 1 1.1 Eigenschaften von Licht 1 1.2 Atome: Elektronenbahnen, Energieniveaus 7 1.3 Atome mit mehreren Elektronen 9 1.4 Moleküle 12 1.5 Energieniveaus in Festkörpern 16

Mehr

Praktikumsbericht Laserwerkstoffbearbeitung für die Mikrofertigungstechnik

Praktikumsbericht Laserwerkstoffbearbeitung für die Mikrofertigungstechnik Praktikumsbericht Laserwerkstoffbearbeitung für die Mikrofertigungstechnik Betreuer Namen www.bhp.isdrin.de Datum.. :-: Uhr Gruppe Einleitung In diesem Praktikum geht es um die Präzisionsbearbeitung von

Mehr

VL 18. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie VL 18

VL 18. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie VL 18 VL 18 VL16. Hyperfeinstruktur VL 17 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz 17.1. Elektronenspinresonanz 17.2. Kernspintomographie VL 18 18.1. Laser (Light Amplification by Stimulated Emission of

Mehr

Einführung Grundlagen Die Theorie der Ratengleichungen Verfeinerte Theorien. Der Laser. Florentin Reiter. 23. Mai 2007

Einführung Grundlagen Die Theorie der Ratengleichungen Verfeinerte Theorien. Der Laser. Florentin Reiter. 23. Mai 2007 Der Laser Florentin Reiter 23. Mai 2007 Die Idee des Lasers A. Einstein (1916): Formulierung der stimulierten Emission von Licht als Umkehrprozess der Absorption Vorschlag zur Nutzung dieses Effektes zur

Mehr

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves 1. Einleitung 2. Optische Grundbegriffe 3. Optische Meßverfahren 3.1 Grundlagen dρ 3.2 Interferometrie, ρ(x,y), dx (x,y) 3.3 Laser-Doppler-Velozimetrie

Mehr

14. Atomphysik. Inhalt. 14. Atomphysik

14. Atomphysik. Inhalt. 14. Atomphysik Inhalt 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

Optik Licht als elektromagnetische Welle

Optik Licht als elektromagnetische Welle Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor

Mehr

Lehrbuchaufgaben Strahlung aus der Atomhülle

Lehrbuchaufgaben Strahlung aus der Atomhülle LB S. 89, Aufgabe 1 Die Masse lässt sich mithilfe eines Massenspektrografen bestimmen. Der Radius von Atomen kann z.b. aus einmolekularen Schichten (Ölfleckversuch) oder aus Strukturmodellen (dichtgepackte

Mehr

Von der Kerze zum Laser: Die Physik der Lichtquanten

Von der Kerze zum Laser: Die Physik der Lichtquanten Von der Kerze zum Laser: Die Physik der Lichtquanten Jörg Weber Institut für Angewandte Physik/Halbleiterphysik Technische Universität Dresden Was ist Licht? Wie entsteht Licht? Anwendungen und offene

Mehr

Laser MEDIZINISCHE LASERANWENDUNGEN. 4. Unterrichtseinheit. Akronym: LASER = Light Amplification by Stimulated Emission of Radiation.

Laser MEDIZINISCHE LASERANWENDUNGEN. 4. Unterrichtseinheit. Akronym: LASER = Light Amplification by Stimulated Emission of Radiation. # 96 MEDIZINISCHE LASERANWENDUNGEN 4. Unterrichtseinheit Laser Akronym: LASER = Light Amplification by Stimulated Emission of Radiation vorher: nachher: E 1 E 1 E 0 E 0 E 1 E 1 E 0 E 0 E 1 E 1 E 0 E 0

Mehr

9. Theodore H. Maiman und der Laser

9. Theodore H. Maiman und der Laser 9. Theodore H. Maiman und der Laser Neben der Entdeckung der Spaltung des Atomkerns haben von allen physikalischen Entdeckungen und Erfindungen des 20. Jahrhunderts mit Sicherheit der Transistor und der

Mehr

Miguel Ángel Palacios Lázaro (Autor) Theorie und Simulation des Doppelstreifen-Lasers

Miguel Ángel Palacios Lázaro (Autor) Theorie und Simulation des Doppelstreifen-Lasers Miguel Ángel Palacios Lázaro (Autor) Theorie und Simulation des Doppelstreifen-Lasers https://cuvillier.de/de/shop/publications/499 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg

Mehr

Inhaltsverzeichnis. Natürlich darf der folgende Hinweis nicht fehlen :-) Was ist ein Laser? Wie erzeugt ein Laser ein "Lichtbündel?

Inhaltsverzeichnis. Natürlich darf der folgende Hinweis nicht fehlen :-) Was ist ein Laser? Wie erzeugt ein Laser ein Lichtbündel? "Laser" ist der erste Teil einer schriftlichen Ausarbeitung, die ich im Dezember 1996 für den Physikunterricht erstellen mußte. Das Thema war frei wählbar (mußte im weitesten Sinne etwas mit Physik zu

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

Heutige Seminarthema: MASER Microwave Amplification by Stimulated Emission of Radiation Deutsch: Verstärkung von Mikrowellen durch stimulierte

Heutige Seminarthema: MASER Microwave Amplification by Stimulated Emission of Radiation Deutsch: Verstärkung von Mikrowellen durch stimulierte Heutige Seminarthema: MASER Microwave Amplification by Stimulated Emission of Radiation Deutsch: Verstärkung von Mikrowellen durch stimulierte Emission von Strahlung 1 2 MASER steht für: (Verstärkung von

Mehr

LASERPHYSIK LASERINTRO.TEX KB

LASERPHYSIK LASERINTRO.TEX KB 1 LASERPHYSIK LASERINTRO.TEX KB 20070325 KLAUS BETZLER 1 FACHBEREICH PHYSIK, UNIVERSITÄT OSNABRÜCK A: EINLEITENDES Am Anfang ihrer Entwicklung waren Laser ein interessantes und spektakuläres Forschungsfeld

Mehr

dp E [W m -2 ] da 1 von 9

dp E [W m -2 ] da 1 von 9 1 von 9 ANHANG B zur Verordnung optische Strahlung Kohärente optische Strahlung (LASER) Definitionen, Expositionsgrenzwerte, Ermittlung und Beurteilung nach Klassen für Laser Definitionen Kohärente Strahlung

Mehr

Heinrich Hertz Geburtstag. Martin Wegener & Ulrich Lemmer

Heinrich Hertz Geburtstag. Martin Wegener & Ulrich Lemmer Heinrich Hertz 150. Geburtstag Martin Wegener & Ulrich Lemmer Heinrich Rudolf Hertz * 22.02. 1857 in Hamburg 01.01. 1894 in Bonn 1885-1889 Professor für Physik 1885-1889 in Karlsruhe 1887 Elektromagnetische

Mehr

Funktionsweise des RUBIN - LASER. Light Amplification by Stimulated Emission of Radiation. von Katja Wollny und Nicole Hüser

Funktionsweise des RUBIN - LASER. Light Amplification by Stimulated Emission of Radiation. von Katja Wollny und Nicole Hüser Funktionsweise des RUBIN - LASER Light Amplification by Stimulated Emission of Radiation von Katja Wollny und Nicole Hüser Inhaltsverzeichnis - Entstehung - Das Experiment - Laser - Übersicht - Festkörper

Mehr

VL 17. VL16. Hyperfeinstruktur. 16.1. Elektronspinresonanz 16.2. Kernspinresonanz VL 17

VL 17. VL16. Hyperfeinstruktur. 16.1. Elektronspinresonanz 16.2. Kernspinresonanz VL 17 VL16. Hyperfeinstruktur VL 17 VL 18 VL 17 16.1. Elektronspinresonanz 16.2. Kernspinresonanz 17.1. Laser (Light Amplification by Stimulated t Emission i of Radiation) Maser = Laser im Mikrowellenbereich,

Mehr

Laserresonator. Versuch Nr. 6 Vorbereitung Januar Ausgearbeitet von Martin Günther und Nils Braun

Laserresonator. Versuch Nr. 6 Vorbereitung Januar Ausgearbeitet von Martin Günther und Nils Braun Laserresonator Versuch Nr. 6 Vorbereitung - 21. Januar 2013 Ausgearbeitet von Martin Günther und Nils Braun 1 Vorwort Im Folgenden Versuch wird ein vormontierter Titan-Saphir-Laser justiert und in den

Mehr

Strahlungslose Übergänge. Pumpen Laser

Strahlungslose Übergänge. Pumpen Laser Prof Ch Berger, Physik f Maschinenbauer, WS 02/03 15 Vorlesung 44 Strahlungsprozesse 441 Das Zerfallsgesetz Elektronen aus energetisch hoher liegenden Zustanden gehen in die tieferen Zustande uber, falls

Mehr

Kontrollaufgaben zur Optik

Kontrollaufgaben zur Optik Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,

Mehr

Versuch P3: Laserresonator. Protokoll. Von Jan Oertlin und Ingo Medebach Gruppe 242

Versuch P3: Laserresonator. Protokoll. Von Jan Oertlin und Ingo Medebach Gruppe 242 Versuch : Laserresonator Protokoll Von Jan Oertlin und Ingo Medebach Gruppe 242 8. Dezember 2010 Inhaltsverzeichnis 1 Theoretische Grundlagen 5 1.1 Funktionsweise eines Laser..................................

Mehr

Moderne Themen der Physik. Photonik. Dr. Axel Heuer. Exp. Quantenphysik, Universität Potsdam, Germany

Moderne Themen der Physik. Photonik. Dr. Axel Heuer. Exp. Quantenphysik, Universität Potsdam, Germany Moderne Themen der Physik Photonik Dr. Axel Heuer Exp. Quantenphysik, Universität Potsdam, Germany Übersicht 1. Historisches und Grundlagen 2. Hochleistungslaser 3. Diodenlaser 4. Einzelne Photonen 2 LASER

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Veranstalter Andreas Branding - 1 - Theorie Während

Mehr

Laser in der Medizin. Historie

Laser in der Medizin. Historie Sonne ist Licht. Licht ist Energie. Energie ist Leben. Durch Licht werden viele Funktionen in unserem Körper angeregt. Dieses Wissen wird seit jeher genutzt vom Schamanentum bis in die moderne Medizin.

Mehr

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 26. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 28. Atomphysik, Röntgenstrahlung, Bohrsches Atommodell Versuche: Elektronenbeugung Linienspektrum

Mehr

10 FASZINIERENDES LICHT 32 STRAHLQUELLEN FÜR DIE MATERIALBEARBEITUNG 72 WERKZEUG AUS LICHT 104 WAS LASER KÖNNEN 220 LASER IN ALLEN LEBENSLAGEN

10 FASZINIERENDES LICHT 32 STRAHLQUELLEN FÜR DIE MATERIALBEARBEITUNG 72 WERKZEUG AUS LICHT 104 WAS LASER KÖNNEN 220 LASER IN ALLEN LEBENSLAGEN INHALTSVERZEICHNIS 10 FASZINIERENDES LICHT 32 STRAHLQUELLEN FÜR DIE MATERIALBEARBEITUNG 72 WERKZEUG AUS LICHT 104 WAS LASER KÖNNEN 220 LASER IN ALLEN LEBENSLAGEN 244 LEUCHTENDE ZUKUNFT 262 GLOSSAR 268

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Die Elektronenzustände eines Atoms Quantenzahl Symbol Erlaubte Werte Hat zu tun mit Hauptquantenzahl n 1,2,3,... Abstand vom

Mehr

Quantenelektronik V» ' Eine Einführung in die Physik des Lasers. von W. Brunner / W. Radioff / K. Junge

Quantenelektronik V» ' Eine Einführung in die Physik des Lasers. von W. Brunner / W. Radioff / K. Junge . Quantenelektronik Eine Einführung in die Physik des Lasers von W. Brunner / W. Radioff / K. Junge % - V» ' m VEB Deutscher Verlag der Wissenschaften Berlin 1975 Inhaltsverzeichnis Einleitung 11 1. Grundlagen

Mehr

LASER - Kristalle und Keramiken. Karin Schulze Tertilt Christine Rex Antje Grill

LASER - Kristalle und Keramiken. Karin Schulze Tertilt Christine Rex Antje Grill LASER - Kristalle und Keramiken Karin Schulze Tertilt Christine Rex Antje Grill 1 Inhalt Was ist ein Laser?» Definition» Aufbau» Vergleich mit anderen Lichtquellen Theorie des Lasers Festkörperlaser» Nd:YAG»

Mehr

Sachwortverzeichnis. D DGUV-Regeln, 59 DGUV-Vorschrift, 58 DIN EN , 61, 66, 67, 79 Diodenlaser, 14, 15

Sachwortverzeichnis. D DGUV-Regeln, 59 DGUV-Vorschrift, 58 DIN EN , 61, 66, 67, 79 Diodenlaser, 14, 15 Sachwortverzeichnis A Abschirmung, 117 Absorption, 27, 28 Absorptionsfilter, 139 Absorptionskoeffizient, 27 Alexandritlaser, 9, 13 ALV (automatische Leistungsverriegelung), 116 Abwendungsreaktion, 73 Apertur,

Mehr

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht)

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht) Aufnahme und Abgabe von Energie (Licht) 1. Was versteht man unter einem Elektronenvolt (ev)? 2. Welche physikalische Größe wird in Elektronenvolt gemessen? Definiere diese Größe und gib weitere Einheiten

Mehr

LASER. Funktionsweise und Anwendungen

LASER. Funktionsweise und Anwendungen DV-Seminarvortrag für mathematisch-technische Assistenten LASER Funktionsweise und Anwendungen Autoren : Timur Kurnaz und Benno Willemsen Termin : 19.11.04 Betreuer : Dipl.-Math. Polivios Mayiopoulos Unterschrift

Mehr

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung. Übersicht

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung. Übersicht Übersicht Allgemeine Übersicht, Licht, Wellen- vs. Teilchenmodell, thermische Strahler, strahlungsoptische (radiometrische) vs. lichttechnische (fotometrische) Größen Beschreibung radiometrische, fotometrische

Mehr

Stickstoff-Laser im Eigenbau

Stickstoff-Laser im Eigenbau Stickstoff-Laser im Eigenbau Versuch Nr.047 Bewertung / Schwierigkeitsgrad: Zeitaufwand: Vorführung incl. Versuchsaufbau 15 min Ziel: Laser kennt man nur als technisch aufwendige und komplizierte Apparaturen.

Mehr

Laser: Was bedeutet das? Light Amplification by Stimulated Emission of. Radiation. Inversion der Besetzung

Laser: Was bedeutet das? Light Amplification by Stimulated Emission of. Radiation. Inversion der Besetzung Laser: Was bedeutet das? Light Amplification by Stimulated Emission of Bezeichnung für einen Prozeß Heute: Apparat zur Erzeugung von Licht Radiation Hochwertige Form von Licht: Laserlicht - 3 - Inversion

Mehr

Unterweisung für den sicheren Umgang mit Lasereinrichtungen für Bediener

Unterweisung für den sicheren Umgang mit Lasereinrichtungen für Bediener Unterweisung für den sicheren Umgang mit einrichtungen für Bediener Unterweisung für den sicheren Umgang mit einrichtungen F 1 Light Amplification by Stimulated Emission of Radiation Licht-Verstärkung

Mehr

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe Hallwachs-Experiment Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe 20.09.2012 Skizziere das Experiment Notiere und Interpretiere die Beobachtungen Photoeffekt Bestrahlt

Mehr

Markieren, Gravieren und Beschriften mit Gravograph YAG Laser Technik

Markieren, Gravieren und Beschriften mit Gravograph YAG Laser Technik Markieren, Gravieren und Beschriften mit Gravograph YAG Laser Technik Dauerhaft Markieren, Gravieren und Beschriften sind Aufgaben, die in sämtlichen Bereichen der Produktion heute zu finden sind. Selbst

Mehr

Laser. Jürgen Eichler Hans Joachim Eichler. Bauformen, Strahlführung, Anwendungen. Springer. Sechste, aktualisierte Auflage

Laser. Jürgen Eichler Hans Joachim Eichler. Bauformen, Strahlführung, Anwendungen. Springer. Sechste, aktualisierte Auflage Jürgen Eichler Hans Joachim Eichler Laser Bauformen, Strahlführung, Anwendungen Sechste, aktualisierte Auflage Mit 266 Abbildungen und 57 Tabellen, 164 Aufgaben und vollständigen Lösungswegen Springer

Mehr

Hans Joachim Eichler JürgenEichler. Laser. Bauformen, Strahlführung, Anwendungen. 8., aktualisierte und überarbeitete Auflage

Hans Joachim Eichler JürgenEichler. Laser. Bauformen, Strahlführung, Anwendungen. 8., aktualisierte und überarbeitete Auflage Laser Hans Joachim Eichler JürgenEichler Laser Bauformen, Strahlführung, Anwendungen 8., aktualisierte und überarbeitete Auflage Hans Joachim Eichler Institut für Optik und Atomare Physik TU Berlin Berlin,

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch

Mehr

5 Ionenlaser... 83 5.1 Laser für kurze Wellenlängen... 83 5.2 Edelgasionenlaser... 85 5.3 Metalldampfionenlaser (Cd,Se,Cu)... 90 Aufgaben...

5 Ionenlaser... 83 5.1 Laser für kurze Wellenlängen... 83 5.2 Edelgasionenlaser... 85 5.3 Metalldampfionenlaser (Cd,Se,Cu)... 90 Aufgaben... 1 Licht, Atome, Moleküle, Festkörper...................... 1 1.1 Eigenschaften von Licht................................. 1 1.2 Atome: Elektronenbahnen, Energieniveaus................ 7 1.3 Atome mit mehreren

Mehr

Wechselwirkung zwischen Licht und chemischen Verbindungen

Wechselwirkung zwischen Licht und chemischen Verbindungen Photometer Zielbegriffe Photometrie. Gesetz v. Lambert-Beer, Metallkomplexe, Elektronenanregung, Flammenfärbung, Farbe Erläuterungen Die beiden Versuche des 4. Praktikumstages sollen Sie mit der Photometrie

Mehr

Physik für Naturwissenschaften. Dr. Andreas Reichert

Physik für Naturwissenschaften. Dr. Andreas Reichert Physik für Naturwissenschaften Dr. Andreas Reichert Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Termine Klausur: 5. Februar?, 12-14 Uhr,

Mehr

Die Revolution des Lichtes

Die Revolution des Lichtes Jakob WALOWSKI Universität Göttingen Tōhoku Universität, Sendai Einleitung Der Laser wird zusammen mit dem Transistor zu den grundlegenden technischen Erfindungen der zweiten Hälfte des 20. Jahrhunderts

Mehr

Anwendungen: Licht und Elektronenhülle

Anwendungen: Licht und Elektronenhülle Fachdidaktik Chemie ETH Grundlagenfach: Atombau S. 11 Anwendungen: Licht und Elektronenhülle Was man über Licht wissen muss Demonstration: Weisses Licht besteht aus allen Farben Hellraumprojektor abdecken

Mehr

Regenbogen und Seifenblase Licht und Farbe in der physikalischen Optik. Martin Lieberherr 18. April 2007 Senioren-Akademie Berlingen

Regenbogen und Seifenblase Licht und Farbe in der physikalischen Optik. Martin Lieberherr 18. April 2007 Senioren-Akademie Berlingen Regenbogen und Seifenblase Licht und Farbe in der physikalischen Optik Martin Lieberherr 18. April 2007 Senioren-Akademie Berlingen Inhalt 1. Was ist Licht? 2. Was ist Farbe? 3. Prisma und Regenbogen 4.

Mehr

WLT Short Course Das Grundprinzip des Lasers

WLT Short Course Das Grundprinzip des Lasers WLT Short Course Das Grundprinzip des Lasers Prof. Dr. phil. nat. Thomas Graf Institut für Strahlwerkzeuge (IFSW), Universität Stuttgart Pfaffenwaldring 43, 70569 Stuttgart www.ifsw.uni-stuttgart.de Diskrete

Mehr

Laser und Maser. Wir wollen als Zusammenfassung der bisher diskutierten Atomphysik den Laser, bzw. den Maser diskutieren. Beides sind Kunstworte:

Laser und Maser. Wir wollen als Zusammenfassung der bisher diskutierten Atomphysik den Laser, bzw. den Maser diskutieren. Beides sind Kunstworte: Laser und Maser Wir wollen als Zusammenfassung der bisher diskutierten Atomphysik den Laser, bzw. den Maser diskutieren. Beides sind Kunstworte: Light Amplification by Stimulated Emission of Radiation

Mehr

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min Thema: Experimente mit Interferometern Im Mittelpunkt der in den Aufgaben 1 und 2 angesprochenen Fragestellungen steht das Michelson-Interferometer. Es werden verschiedene Interferenzversuche mit Mikrowellen

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atomphysik Dr. Holger Hauptmann Europa-Gymnasium Wörth holger.hauptmann@gmx.de Quantenphysik in der Sek I, Folie 1 Inhalt 1. Der Aufbau der Atome 2. Größe und Dichte

Mehr

Medizinische Werkzeuge und Implantate gelaserte Präzision

Medizinische Werkzeuge und Implantate gelaserte Präzision Medizinische Werkzeuge und Implantate gelaserte Präzision Eine kurze Einführung in die fertigungstechnischen Möglichkeiten der Lasertechnik Jan Hoffmann Berlin, 24. Januar 2008 Inhalt Grundlagen der Lasertechnik

Mehr

Einfaches Spektroskop aus alltäglichen Gegenständen

Einfaches Spektroskop aus alltäglichen Gegenständen Illumina-Chemie.de - Artikel Physik aus alltäglichen Gegenständen Im Folgenden wird der Bau eines sehr einfachen Spektroskops aus alltäglichen Dingen erläutert. Es dient zur Untersuchung von Licht im sichtbaren

Mehr

Versuch P2-18: Laser und Wellenoptik Teil A

Versuch P2-18: Laser und Wellenoptik Teil A Versuch P2-18: Laser und Wellenoptik Teil A Sommersemester 2005 Gruppe Mi-25: Bastian Feigl Oliver Burghard Inhalt Vorbereitung 1 Physikalische Grundlagen... 2 1.1 Funktionsweise eines Lasers... 2 2 Versuchsbeschreibungen...

Mehr

Dieter Bäuerle. Laser. Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Dieter Bäuerle. Laser. Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Dieter Bäuerle Laser Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA VII Inhaltsverzeichnis Vorwort V I Grundlagen 1 1 Die Natur des Lichts

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

1. Physikalische Grundlagen 15

1. Physikalische Grundlagen 15 1. Physikalische Grundlagen 15 1.1. Licht als elektromagnetische Welle 15.1. Einführung 15.2. Erzeugung elektromagnetischer Strahlung 17.2.1. Grundlagen 17.2.2. Konventionelle Lichtquellen 21.2.3. Der

Mehr

Motivation Historisches Dopplerkühlen Probleme Quellen. Laserkühlung. Sören Riechers. 28. April 2010

Motivation Historisches Dopplerkühlen Probleme Quellen. Laserkühlung. Sören Riechers. 28. April 2010 Motivation Historisches Dopplerkühlen Probleme Quellen 28. April 2010 Motivation Historisches Dopplerkühlen Probleme Quellen Inhaltsverzeichnis 1 Motivation Warum? Anwendungen 2 Historisches Beschleunigung

Mehr

Gitterspektrometer mit He-Lampe

Gitterspektrometer mit He-Lampe O32 Name: Gitterspektrometer mit He-Lampe Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine

Mehr

Atomphysik für Studierende des Lehramtes

Atomphysik für Studierende des Lehramtes Atomphysik für Studierende des Lehramtes Teil 5 Elektronenladung und Elektronenmasse elektrische Ladungen in magnetischen Feldern aus der Lorentz-Kraft (v x B) folgt eine Kreisbewegung der elektrischen

Mehr

Weber/Herziger LASER. Grundlagen und Anwendungen. Fachbereich S Hochschule Darmstad«Hochschulstraßa 2. 1J2QOI Physik Verlag

Weber/Herziger LASER. Grundlagen und Anwendungen. Fachbereich S Hochschule Darmstad«Hochschulstraßa 2. 1J2QOI Physik Verlag Weber/Herziger LASER Grundlagen und Anwendungen Fachbereich S Hochschule Darmstad«Hochschulstraßa 2 1J2QOI Physik Verlag Inhaltsverzeichnis 1. licht und Atome 1 1.1. Welleneigenschaften des Lichtes 1 1.1.1.

Mehr

Laser in Wissenschaft und Technik

Laser in Wissenschaft und Technik Laser in Wissenschaft und Technik Bearbeitet von Wolfgang Radloff 1. Auflage 2010. Taschenbuch. XIV, 154 S. Paperback ISBN 978 3 8274 2427 3 Format (B x L): 0 x 0 cm Weitere Fachgebiete > Physik, Astronomie

Mehr

Die Natriumlinie. und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz

Die Natriumlinie. und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz Die Natriumlinie und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz Absorption & Emissionsarten Absorption (Aufnahme von Energie) Atome absorbieren Energien, z.b. Wellenlängen,

Mehr

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306 Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 Dieter.Suter@uni-dortmund.de

Mehr

PSI. Physik Schülerlabor-Initiative

PSI. Physik Schülerlabor-Initiative PSI die Physik Schülerlabor-Initiative Der Superstrahler Version ohne eingebettete Animationen Die Physik-Schülerlabor-Initiative c Sven Röhrauer LASER sind heute für Schüler Gegenstände des Alltags, teils

Mehr

Grundlagen. Erzeugung ultrakurzer Lichtpulse Bedeutung der spektralen Bandbreite Lasermoden und Modenkopplung. Optische Ultrakurzpuls Technologie

Grundlagen. Erzeugung ultrakurzer Lichtpulse Bedeutung der spektralen Bandbreite Lasermoden und Modenkopplung. Optische Ultrakurzpuls Technologie Grundlagen Vorlesung basiert auf Material von Prof. Rick Trebino (Georgia Institute of Technology, School of Physics) http://www.physics.gatech.edu/gcuo/lectures/index.html Interaktive Plattform Femto-Welt

Mehr

1 Physikalische Eigenschaften von Laserstrahlung... 1 > K

1 Physikalische Eigenschaften von Laserstrahlung... 1 > K Inhaltsverzeichnis 1 Physikalische Eigenschaften von Laserstrahlung...1 1.1 Eigenschaften von optischer Strahlung...2 1.1.1 Wellenoptik... 1.1.2 Inkohärente Strahlung (normale Lichtquellen) 1.1.3 Kohärente

Mehr

Resonator. Helium-Neon-Laser

Resonator. Helium-Neon-Laser 1 Der Laser Das Wort Laser besteht aus den Anfangsbuchstaben der englischen Bezeichnung Light Amplification by Stimulated Emission of Radiation, zu deutsch: Lichtverstärkung durch stimulierte Emission

Mehr

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung! Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten

Mehr

4. Klausur ( )

4. Klausur ( ) EI PH J2 2011-12 PHYSIK 4. Klausur (10.05.2012) Telle oder Weilchen? Eure letzte Physik-Klausur in der Schule! Du kannst deinen GTR verwenden. Achte auf eine übersichtliche Darstellung! (Bearbeitungszeit:

Mehr

Grundwissen Physik 9. Jahrgangsstufe

Grundwissen Physik 9. Jahrgangsstufe Grundwissen Physik 9. Jahrgangsstufe I. Elektrizitätslehre und Magnetismus 1. a) Geladene Teilchen, die sich in einem Magnetfeld senkrecht zu den Magnetfeldlinien bewegen, erfahren eine Kraft (= Lorentzkraft),

Mehr

2. Kapitel Der Photoeffekt

2. Kapitel Der Photoeffekt 2. Kapitel Der Photoeffekt 2.1 Lernziele Sie wissen, was allgemein unter dem Begriff Photoeffekt zu verstehen ist. Sie können den inneren Photoeffekt vom äusseren unterscheiden. Sie können das Experiment

Mehr

Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt)

Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Experiment 1: Bestrahlung einer elektrisch geladene Zinkplatte mit Licht Rotlichtlampe; positive Ladung Quecksilberdampflampe; positive

Mehr