Signieren mit symmetrischen Schlüsseln

Größe: px
Ab Seite anzeigen:

Download "Signieren mit symmetrischen Schlüsseln"

Transkript

1 Signieren mit symmetrischen Schlüsseln Gegeben sei ein symmetrisches Verschlüsselungsverfahren wie AES256, und Sender A und Empfänger B haben beiden den Schlüssel. Die einfachste Idee für eine Absicherung einer Nachricht N gegen Manipulation ist die folgende: 1. Die abzusicherende N wird vom Sender mit dem Schlüssel zu S verschlüsselt und an den Empfänger geschict. Weil es hier nicht auf die Geheimhaltung anommt, ann man auch gleich <N,S> zusammen schicen. A <N,S> B B prüft beim Empfang die mitgeschicte Signatur S, ob sie die Verschlüsselung der Nachricht N ist. Nur wenn das der Fall, azeptiert er N als Nachricht von A. S ist eine Signatur für die Nachricht N, in dem Sinne, dass ein Dritter M die Nachricht <N,S> nicht in eine <N',S'> umwandeln ann, die von B azeptiert werden wird, denn M wird nicht in der Lage sein, die orrete Verschlüsselung S' von seiner abgewandelten Nachricht N' zu produzieren, selbst wenn N und N' sich nur ein bit unterscheiden. Eine von ihm geschicte Nachricht <N',S''> mit einem geratenen S'' wird also nicht azeptiert werden.

2 Kürzere Signaturen Wir bleiben vorerst bei dem symmetrischen Verschlüsselungsverfahren. Eine offensichliche Verbesserung bei einer langen Nachricht N besteht darin, dass nicht die gesamte Verschlüsselung S mitgeschict wird, sondern dass mit feedbac Modus (CBC) verschlüsselt wird und nur der letzte verschlüsselte Bloc b mit der Nachricht verschict wird. Die Verbesserung besteht darin, dass die Gesamtnachricht ürzer ist. A <N,b> B B prüft beim Empfang die mitgeschicte Signatur b dahingehend, ob b der letzte Bloc der Verschlüsselung der Nachricht N ist. Tatsächlich handelt es sich auch hier um eine Signatur, d.h. eine effetive Absicherung der Nachricht N gegenüber Manipulation durch einen Dritten M, denn der letzte Bloc der CBC Verschlüsselung ist von jedem bit in N abhängig: wenn M auch nur ein bit an N ändert, wird sich ein ganz anderer letzter Bloc ergeben und dieser ann von M auch nicht errechnet werden, denn er hat den Schlüssel nicht. Das Beispiel macht lar, dass es unwichtig ist, dass es sich um eine Verschlüsselung handelt, denn es soll ja gar nicht entschlüsselt werden, sondern es soll nur die Nachricht abgesichert werden. Was wir also eigentlich brauchen ist ein Funtion, die Wörter auf urze Wörter abbildet, und dabei nur schwer zurücrechenbar ist, d.h. insbesondere äußerst sensibel auf leine Änderungen in der Eingabe reagiert. Solche Funtionen nennt man Hashfuntionen. Die AES-Verschlüsselung mit feedbac Modus (und den Schlüssel als Teil der Eingabe gesehen) ist ein solches Beispiel, allerdings önnte AES mehr Rechenressourcen verbrauchen als nötig ist deshalb gibt es speziell entwicelte Hashfuntionen.

3 Hashfuntionen Eine ryptologische Hashfuntion bildet beliebig lange Wörter auf Wörter einer bestimmten Länge ab. Dabei vermischt sie möglichst gut die Eingabe, d.h. Wörter, die sich nur wenig oder nur ein bit unterscheiden, werden auf ganz verschiedene Wörter abgebildet. Auch soll die Hashfuntion nur schwer rücrechenbar sein, d.h. idealerweise ann man einen Urwert u eines Hashwerts h(u) nur so errechnen, indem man systematisch alle existierenden Wörter w daraufhin testet, ob h(w) = h(u). Eine Hashfuntion hatten wir schon ennengelernt: AES im CBC Modus mit dem letzten Bloc als Hashwert (Schlüssel fest). Die Länge der Hashwerte ist also 128. Es wurden schon viele Hashfuntionen entwicelt, nicht nur für ryptologische Zwece. Kryptologische Hashfuntionen sind beispielsweise MD5, SHA, Tiger, und viele andere.

4 Kollisionsresistenz Hashfuntion h Einwegfuntions-Eigenschaft: Es ist pratisch unmöglich, zu einem gegebenen Ausgabewert einen Eingabewert zu finden, der auf diesen Ausgabewert abgebildet wird. Schwache Kollisionsresistenz: es ist pratisch unmöglich, für einen gegebenen Eingabewert einen davon verschiedenen zu finden, der denselben Hashwert ergibt. Stare Kollisionsresistenz: es ist pratisch unmöglich, zwei verschiedene Eingabewerte und zu finden, die denselben Hashwert ergeben. star ollisionsresistent star ollisionsresistent

5 SHA1 Hashfuntion SHA1 bildet jeden bitstring (bis Länge 2 64 ) auf einen 160 bit langen bitstring ab. Rechts der Pseudocode (Quelle Wiipedia) Motto: wildes iteriertes Shiften, XORen und Addieren (genau das sollte man von einem Hash- Algorithmus erwarten) // Initialisiere die Variablen: var int h0 := 0x var int h1 := 0xEFCDAB89 var int h2 := 0x98BADCFE var int h3 := 0x var int h4 := 0xC3D2E1F0 // Vorbereitung der Nachricht 'message': var int message_laenge := bit_length(message) erweitere message um bit "1" erweitere message um bits "0" bis Länge von message in bits 448 (mod 512) erweitere message um message_laenge als 64-Bit big-endian Integer // Verarbeite die Nachricht in aufeinander folgenden 512-Bit-Blöcen: für alle 512-Bit Bloc von message unterteile Bloc in bit big-endian Worte w(i), 0 i 15 // Erweitere die Bit-Worte auf Bit-Worte: für alle i von 16 bis 79 w(i) := (w(i-3) xor w(i-8) xor w(i-14) xor w(i-16)) leftrotate 1 // Initialisiere den Hash-Wert für diesen Bloc: var int a := h0 var int b := h1 var int c := h2 var int d := h3 var int e := h4 // Hauptschleife: für alle i von 0 bis 79 wenn 0 i 19 dann f := (b and c) or ((not b) and d) := 0x5A sonst wenn 20 i 39 dann f := b xor c xor d := 0x6ED9EBA1 sonst wenn 40 i 59 dann f := (b and c) or (b and d) or (c and d) := 0x8F1BBCDC sonst wenn 60 i 79 dann f := b xor c xor d := 0xCA62C1D6 wenn_ende temp := (a leftrotate 5) + f + e + + w(i) e := d d := c c := b leftrotate 30 b := a a := temp // Addiere den Hash-Wert des Blocs zur Summe der vorherigen Hashes: h0 := h0 + a h1 := h1 + b h2 := h2 + c h3 := h3 + d h4 := h4 + e digest = hash = h0 append h1 append h2 append h3 append h4 //(Darstellung als big-endian)

6 Signieren via Hashfuntion Sei h eine Hashfuntion. Gegeben sei ein Sender A und Empfänger B, die eine gemeinsames geheimes Wort ausgetauscht haben. wird auch hier oft Schlüssel genannt, auch wenn mit gar verschlüsselt werden wird. 1. Der Sender berechnet den Hashwert h = h(n) der Konatention von und der Nachricht N, und schict <N,h> an B. A <N,h> B B prüft beim Empfang die mitgeschicten Hashwert h dahingehend, ob h = h(n). Die Nachricht ann von Dritten pratisch nicht gefälscht werden. Etwas problematisch wird es, wenn der Hashwert von Menschen getippt werden muss und deshalb sowenige Stellen hat, dass er geraten werden önnte. Siehe das folgende Online Baning Beispiel.

7 Beispiel Online Baning mit Flacercode Die Ban hat dem Kunden eine Banarte geschict, die nicht nur die Software für die Hashfuntion h, sondern auch einen individuellen Schlüssel enthält. als Schlüssel für diesen Kunden ist bei der Ban gepeichert worden. N N N H H H Der Kunde füllt das Überweisungsformular am Bildschirm aus und drüct OK. Der Banserver beommt die Überweisungsdaten < ; ;50,00>. Die Transation soll jetzt bestätigt (=signiert) werden. Um Wiederholung zu verhindern fügt die Ban noch eine nonce n (Zufallswort) hinzu, so dass die zu signierende Nachricht lautet N = < ; ;50,00;n>. N wird über die Stationen Internet, Browser, Flacercode zum Flacercodegerät übertragen. Das Gerät zeigt die nichtnonce Teile der Nachricht nochmal an - zur Sicherheit, dass der Banunde genau diese Überweisung bestätigt. Anschließend wird N per Kontat zur Karte geschict. Dort wird N signiert, d.h. der Hashwert H = h(n) der Konatenation von und N wird berechnet und anschließend an das Flaccodegerät übertragen und dort angezeigt. Der Benutzer gibt den Hashwert in den PC ein, und der PC schict den Hashwert an den Banserver. Der Banserver überprüft den Hashwert, indem er ebenfalls h(n) berechnet. Nur wenn der gleiche Wert herausommt, wird die Überweisung zur Ausführung übergeben, ansonsten abgelehnt. Ein Trojaner auf dem PC ann zwar die zur Ban geschicten Überweisungsdaten, also die Nachricht N fälschen (beispielsweise 5000,00 Euro an ein anderes Konto bei einer anderen Ban), aber er ann nicht den Hashwert H' für die manipulierte Überweisung berechnen. Der Hashwert = Signatur wird beim Online Baning übrigens TAN genannt.

8 Nichtabstreitbare Signatur Bei dem, was bislang Signatur genannt wurde, fehlt eine wichtige Eigenschaft dessen, was man außerhalb der Kryptologie unter einer Unterschrift versteht: Der Empfänger B der Nachricht ann nachweisen, dass der Sender A die Nachricht gelesen und unterschrieben hat. Das ist bei den Verfahren, die bislang Signaturverfahren genannt wurden, also die Hashfuntion-basierten, nicht der Fall: der Empfänger B önnte eine Nachricht N generieren, selber den Hashwert h berechnen und dann behaupten, er hätte <N,h> vom Sender A beommen. Eine signierte Nachricht von A an B soll nicht-abstreitbar heißen, wenn B dem Sender A nachweisen ann, dass er A die Nachricht signiert und verschict hat. Interessant ist diese Eigenschaft weniger beim Online Baning, aber z.b. bei Nachrichten/ Verfahren, und bei Online Veräufen, und allgemeiner, bei online abgeschlossenen Verträgen. Kann es nicht-abstreitbare Signaturen geben? Wie soll das gehen? Bemerung. Manche nennen das, was hier Signatur genannt wurde, gar nicht Signatur, wegen der fehlenden Nichtabstreitbareit-Eigenschaft, sondern nennen es nur MAC (message authentication code), oder schwache Signatur.

9 Public-Key Signierung A hat ein public-ey Schlüsselpaar erzeugt. A schict eine Nachricht N an B, indem er sie mit seinem private-ey zu e(n) verschlüsselt und an B schict, ggfs. mit N zusammen. pri A <N,e(N)> B pub B beommt die Nachricht und entschlüsselt e(n) mit dem public-ey von A. Wenn das N ergibt, azeptiert er. Erstens ist das eine Signatur von N, denn für eine abgeänderte Nachricht N' bräuchte M den private-ey von A, um sie so zu verschlüsseln, dass die Entschlüsselung mit dem publicey N' ergibt. Zweitens ist die Signatur nicht-abstreitbar, denn niemand anders als A ann eine sinnvolle Nachricht N so verschlüsseln, dass der public-ey von A es zu N entschlüsselt. Das auf RSA basierende Signierungs-Verfahren heisst RSA-PSS, das auf Diffie/Hellman/ElGamal aufbauende DSA (Digital Signature Algorithm), und das auf Elliptischen Kurven aufbauende ECDSA.

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 16. Anwendungen Hashing

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 16. Anwendungen Hashing Kryptologie ernd orchert Univ. Tübingen SS 2017 Vorlesung Teil 16 nwendungen Hashing nwendung Hashing: Gehashte Passwörter Das enutzername/passwort Verfahren (Fator Wissen) ist mit weitem bstand das gängigste

Mehr

Bernd Borchert. Univ. Tübingen WS 13/14. Vorlesung. Kryptographie. Teil 10. Diffie-Hellmann, Authentisierung, Signaturen 31.1.14

Bernd Borchert. Univ. Tübingen WS 13/14. Vorlesung. Kryptographie. Teil 10. Diffie-Hellmann, Authentisierung, Signaturen 31.1.14 Bernd Borchert Univ. Tübingen WS 13/14 Vorlesung Kryptographie Teil 10 Diffie-Hellmann, Authentisierung, Signaturen 31.1.14 Diffie-Hellmann Schlüsselaustausch - Verfahren, mit dem sich zwei Parteien einen

Mehr

2.4 Hash-Prüfsummen Hash-Funktion message digest Fingerprint kollisionsfrei Einweg-Funktion

2.4 Hash-Prüfsummen Hash-Funktion message digest Fingerprint kollisionsfrei Einweg-Funktion 2.4 Hash-Prüfsummen Mit einer Hash-Funktion wird von einer Nachricht eine Prüfsumme (Hash-Wert oder message digest) erstellt. Diese Prüfsumme besitzt immer die gleiche Länge unabhängig von der Länge der

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 10 Signaturen, Diffie-Hellman Signatur Signatur s(m) einer Nachricht m Alice m, s(m) Bob K priv K pub K pub Signatur Signatur (Thema Integrity

Mehr

6.3 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen. die Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde

6.3 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen. die Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde 6.3 Authentizität Zur Erinnerung: Geheimhaltung: nur der Empfänger kann die Nachricht lesen Integrität: die Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde Authentizität: es ist sichergestellt,

Mehr

Kryptographie - eine mathematische Einführung

Kryptographie - eine mathematische Einführung Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen

Mehr

Denn es geh t um ihr Geld: Kryptographie

Denn es geh t um ihr Geld: Kryptographie Denn es geht um ihr Geld: Kryptographie Ilja Donhauser Inhalt Allgemeines Symmetrisch Asymmetrisch Hybridverfahren Brute Force Primzahlen Hashing Zertifikate Seite 2 Allgemeines Allgemeines Wissenschaft

Mehr

Kryptographie. Nachricht

Kryptographie. Nachricht Kryptographie Kryptographie Sender Nachricht Angreifer Empfänger Ziele: Vertraulichkeit Angreifer kann die Nachricht nicht lesen (Flüstern). Integrität Angreifer kann die Nachricht nicht ändern ohne dass

Mehr

Was ist eine Cipher Suite?

Was ist eine Cipher Suite? Eine Cipher-Suite ist im Grunde ein vollständiger Satz von Methoden (technisch als Algorithmen bekannt), die benötigt werden, um eine Netzwerkverbindung durch SSL/TLS ab zu sichern. Jedes Satz ist repräsentativ

Mehr

Kryptographie. Vorlesung 10: Kryptographische Hash-Funktionen. Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca

Kryptographie. Vorlesung 10: Kryptographische Hash-Funktionen. Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca Kryptographie Vorlesung 10: Kryptographische Hash-Funktionen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 1/55 HASH-FUNKTIONEN Hash-Funktionen werden für die

Mehr

Hashfunktionen und MACs

Hashfunktionen und MACs 3. Mai 2006 Message Authentication Code MAC: Message Authentication Code Was ist ein MAC? Der CBC-MAC Der XOR-MAC Kryptographische Hashfunktionen Iterierte Hashfunktionen Message Authentication Code Nachrichten

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs

Mehr

Wiederholung: Informationssicherheit Ziele

Wiederholung: Informationssicherheit Ziele Wiederholung: Informationssicherheit Ziele Vertraulichkeit : Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Methode: Verschüsselung symmetrische Verfahren

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Klausur 21.07.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Algorithmische Anwendungen WS 2005/2006

Algorithmische Anwendungen WS 2005/2006 03.02.2005 Algorithmische Anwendungen WS 2005/2006 Jens Haag & Suna Atug Gruppe: D Grün Projektarbeit: Message Digest Algorithm 5 Schwachstellen der MD5-Verschlüsselung, Beispiele, Anwendungen 1 Message

Mehr

Nachrichtenintegrität

Nachrichtenintegrität Nachrichtenintegrität!!Erlaubt den Komunikationspartnern die Korrektheit Folien und Inhalte aus II und Authentizität der Nachricht zu überprüfen Networking: A - Inhalt ist unverändert Top Down Approach

Mehr

CodeMeter. Ihr Führerschein zum Kryptographie-Experten. Rüdiger Kügler Professional Services

CodeMeter. Ihr Führerschein zum Kryptographie-Experten. Rüdiger Kügler Professional Services CodeMeter Ihr Führerschein zum Kryptographie-Experten Rüdiger Kügler Professional Services ruediger.kuegler@wibu.com Alvaro Forero Security Expert Alvaro.Forero@wibu.com 04.09.2014 Ihr Führerschein zum

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 17. Quantencomputer, Postquantum Kryptographie

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 17. Quantencomputer, Postquantum Kryptographie Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 17 Quantencomputer, Postquantum Kryptographie Shor's Algorithmus (klassischer Teil) Shor's Algorithmus zur Faktorisierung - Teilalgorithmus

Mehr

Kryptografische Hashfunktionen

Kryptografische Hashfunktionen Kryptografische Hashfunktionen Andreas Spillner Kryptografie, SS 2018 Wo verwenden wir kryptografische Hashfunktionen? Der Hashwert H(x) einer Nachricht x wird oft wie ein Fingerabdruck von x vewendet.

Mehr

10.6 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen

10.6 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen 10.6 Authentizität Zur Erinnerung: Geheimhaltung: nur der Empfänger kann die Nachricht lesen Integrität: Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde Authentizität: es ist sichergestellt,

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2016 Nachklausur 12.10.2016 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung

Mehr

2.7 Digitale Signatur (3) 2.7 Digitale Signatur (4) Bedeutung der digitalen Signatur. Bedeutung der digitalen Signatur (fortges.)

2.7 Digitale Signatur (3) 2.7 Digitale Signatur (4) Bedeutung der digitalen Signatur. Bedeutung der digitalen Signatur (fortges.) 2.7 Digitale Signatur (3) Bedeutung der digitalen Signatur wie Unterschrift Subjekt verknüpft Objekt mit einer höchst individuellen Marke (Unterschrift) Unterschrift darf nicht vom Dokument loslösbar sein

Mehr

Konstruktion CPA-sicherer Verschlüsselung

Konstruktion CPA-sicherer Verschlüsselung Konstrution CPA-sicherer Verschlüsselung Algorithmus Verschlüsselung Π B Sei F eine längenerhaltende, schlüsselabhängige Funtion auf n Bits. Wir definieren Π B = (Gen, Enc, Dec) für Nachrichtenraum M =

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 6.2 Digitale Signaturen 1. Sicherheitsanforderungen 2. RSA Signaturen 3. ElGamal Signaturen Wozu Unterschriften? Verbindliche Urheberschaft von Dokumenten Unterschrift

Mehr

Digitale Unterschriften. Angriffe und Sicherheitsmodelle. Bemerkungen. Angriffe und Sicherheitsmodelle

Digitale Unterschriften. Angriffe und Sicherheitsmodelle. Bemerkungen. Angriffe und Sicherheitsmodelle Digitale Unterschriften Auch digitale Signaturen genannt. Nachrichten aus Nachrichtenraum: M M. Signaturen aus Signaturenraum: σ S. Schlüssel sind aus Schlüsselräumen: d K 1, e K 2. SignierungsverfahrenS

Mehr

Digitale Signaturen. Einführung und das Schnorr Signatur Schema. 1 Digitale Signaturen Einführung & das Schnorr Signatur Schema.

Digitale Signaturen. Einführung und das Schnorr Signatur Schema. 1 Digitale Signaturen Einführung & das Schnorr Signatur Schema. Digitale Signaturen Einführung und das Schnorr Signatur Schema 1 Übersicht 1. Prinzip der digitalen Signatur 2. Grundlagen Hash Funktionen Diskreter Logarithmus 3. ElGamal Signatur Schema 4. Schnorr Signatur

Mehr

Bruce Schneier, Applied Cryptography

Bruce Schneier, Applied Cryptography Gnu Privacy Guard In der Praxis gibt es zwei Formen von Kryptographie: Mit der einen Form der Kryptographie können Sie Ihre Dateien vielleicht vor Ihrer kleinen Schwester schützen, mit der anderen Form

Mehr

Digitale Signaturen. Andreas Spillner. Kryptografie, SS 2018

Digitale Signaturen. Andreas Spillner. Kryptografie, SS 2018 Digitale Signaturen Andreas Spillner Kryptografie, SS 2018 Ausgangspunkt Digitale Signaturen bieten unter anderem das, was man auch mit einer eigenhändigen Unterschrift auf einem Dokument bezweckt. Beispiel:

Mehr

El Gamal Verschlüsselung und seine Anwendungen

El Gamal Verschlüsselung und seine Anwendungen El Gamal Verschlüsselung und seine Anwendungen Andrés Guevara July 11, 2005 1 Kurze Einführung in die Kryptographie Situation: Absender will Empfänger eine Nachricht schicken. Einige Ziele der Kryptographie

Mehr

11. Das RSA Verfahren

11. Das RSA Verfahren Chr.Nelius: Zahlentheorie (SoSe 2017) 53 11. Das RSA Verfahren Bei einer asymmetrischen Verschlüsselung lässt sich der Schlüssel zum Entschlüsseln nicht aus dem Schlüssel zum Verschlüsseln bestimmen und

Mehr

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier Kryptologie K l a u s u r WS 2006/2007, 2007-02-01 Prof. Dr. Harald Baier Name, Vorname: Matrikelnummer: Hinweise: (a) Als Hilfsmittel ist nur der Taschenrechner TI-30 zugelassen. Weitere Hilfsmittel sind

Mehr

Systemsicherheit 8: Das Internet und Public-Key-Infratrukturen

Systemsicherheit 8: Das Internet und Public-Key-Infratrukturen Systemsicherheit 8: Das Internet und Public-Key-Infratrukturen Das TCP/IP-Schichtenmodell Das TCP/IP-Schichtenmodell (2) Modem Payload Payload Payload Payload http http http http TCP TCP TCP IP IP IP PPP

Mehr

Universität Tübingen WS 2015/16. Kryptologie. Klausur

Universität Tübingen WS 2015/16. Kryptologie. Klausur Universität Tübingen WS 2015/16 Kryptologie Klausur 31.3.2016 Name: Matrikel-Nr.: 1 2 3 4 5 6 7 8 9 10 Summe 10 15 10 10 8 10 12 5 10 10 100 Aufgabe 1 a) (8P) Testen Sie mit Miller-Rabin, ob 13 eine Primzahl

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Klausur 22.07.2014 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Bemerkungen. Orientierung. Digitale Unterschriften. Angriffe und Sicherheitsmodelle

Bemerkungen. Orientierung. Digitale Unterschriften. Angriffe und Sicherheitsmodelle Orientierung Haben bisher im Public-Key Bereich nur Verschlüsselung betrachtet. Haben dafür geeignete mathematische Strukturen und ihre Eigenschaften diskutiert. RSA, Rabin: Restklassenringe modulo n,

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Einführung in die asymmetrische Kryptographie

Einführung in die asymmetrische Kryptographie !"#$$% Einführung in die asymmetrische Kryptographie Dipl.-Inform. Mel Wahl Prof. Dr. Christoph Ruland Universität Siegen Institut für digitale Kommunikationssysteme Grundlagen Verschlüsselung Digitale

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung

Mehr

Voll homomorpe Verschlüsselung

Voll homomorpe Verschlüsselung Voll homomorpe Verschlüsselung Definition Voll homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : R R für Ringe R, R. Π heißt voll homomorph, falls 1 Enc(m 1 ) + Enc(m 2 ) eine gültige

Mehr

Konzepte. SelfLinux Autor: Mike Ashley () Formatierung: Matthias Hagedorn Lizenz: GFDL

Konzepte. SelfLinux Autor: Mike Ashley () Formatierung: Matthias Hagedorn Lizenz: GFDL Konzepte Autor: Mike Ashley () Formatierung: Matthias Hagedorn (matthias.hagedorn@selflinux.org) Lizenz: GFDL GnuPG verwendet mehrere kryptographische Verfahren wie beispielsweise symmetrische Verschlüsselung,

Mehr

h(m) Message encrypt Bobs geheimer Schlüssel digitale Signatur encrypt(ks,h(m)) digitale Signatur encrypt(ks,h(m)) decrypt h(m ) Message

h(m) Message encrypt Bobs geheimer Schlüssel digitale Signatur encrypt(ks,h(m)) digitale Signatur encrypt(ks,h(m)) decrypt h(m ) Message 666 9. Unter vier Augen Sicherheit im Internet dem empfangenen Fingerabdruck h(m) übereinstimmt. Ist h(m 0 )=h(m), dann gilt (zumindest mit überwältigender Wahrscheinlichkeit) aufgrund der Anforderungen,

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) WS 2016/17 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Masterarbeit OCRA Challenge/Response - Framework. Sideris Minovgioudis

Masterarbeit OCRA Challenge/Response - Framework. Sideris Minovgioudis Masterarbeit Challenge/Response - Framework Sideris Minovgioudis 1 Inhalt Einführung Kryptographische Hashfunktionen HMAC HOTP Anforderungen Definition Modi Sicherheit 2 Inhalt Anwendungen Authentifizierung

Mehr

Netzsicherheit 9: Das Internet und Public-Key-Infrastrukturen

Netzsicherheit 9: Das Internet und Public-Key-Infrastrukturen Netzsicherheit 9: Das Internet und Public-Key-Infrastrukturen Das TCP/IP-Schichtenmodell Session 2 / 1 Das TCP/IP-Schichtenmodell (2) Modem Payload Payload Payload Payload http http http http TCP TCP TCP

Mehr

Elektronische Signaturen

Elektronische Signaturen Elektronische Signaturen Oliver Gasser TUM 3. Juni 2009 Oliver Gasser (TUM) Elektronische Signaturen 3. Juni 2009 1 / 25 Gliederung 1 Einführung 2 Hauptteil Signieren und Verifizieren Digital Signature

Mehr

PRIMZAHLEN PATRICK WEGENER

PRIMZAHLEN PATRICK WEGENER PRIMZAHLEN PATRICK WEGENER 1. Einführung: Was sind Primzahlen? Eine ganze Zahl p, welche größer als 1 ist, heißt Primzahl, wenn sie nur durch 1 und sich selbst teilbar ist. Mit teilbar meinen wir hier

Mehr

2.4 Diskussion und Literaturempfehlungen Lessons Learned A ufgaben Literatur... 62

2.4 Diskussion und Literaturempfehlungen Lessons Learned A ufgaben Literatur... 62 Inhaltsverzeichnis 1 Einführung in die Kryptografie und Datensicherheit... 1 1.1 Überblick über die Kryptografie (und dieses Buch)... 1 1.2 Symmetrische Kryptografie... 4 1.2.1 Grundlagen... 4 1.2.2 Die

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 18.05.2015 1 / 30 Überblick 1 Asymmetrische Authentifikation von Nachrichten Erinnerung

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

Sicherheit in Pervasiven Systemen. Peter Langendörfer & Zoya Dyka

Sicherheit in Pervasiven Systemen. Peter Langendörfer & Zoya Dyka Sicherheit in Pervasiven Systemen Peter Langendörfer & Zoya Dyka 1 Grundlagen der Sicherheit 2 Sichere Kommunikation - Ist er wirklich von Bob? - authentication - non-repudiation - Ist Inhalt nicht geändert/gefälscht?

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Übungsblatt 5. pk = (g, y) und sk = (g, x). ? = y H(t m) t. g s

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Übungsblatt 5. pk = (g, y) und sk = (g, x). ? = y H(t m) t. g s Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Übungsblatt 5 Hinweis: Übungsblätter können freiwillig bei Jessica Koch, Raum 256, Geb.

Mehr

Kurs 1866 Sicherheit im Internet

Kurs 1866 Sicherheit im Internet Fachbereich Informatik Lehrgebiet Technische Informatik II Kurs 1866 Sicherheit im Internet Lösungsvorschläge zur Hauptklausur im SS 2003 am 20.09.2003 Aufgabe 1 (7 Punkte) Warum sollen Passwörter auch

Mehr

Ideen und Konzepte der Informatik Kryptographie

Ideen und Konzepte der Informatik Kryptographie Ideen und Konzepte der Informatik Kryptographie und elektronisches Banking Antonios Antoniadis (basiert auf Folien von Kurt Mehlhorn) 4. Dec. 2017 4. Dec. 2017 1/30 Übersicht Zwecke der Kryptographie Techniken

Mehr

Ideen und Konzepte der Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn

Ideen und Konzepte der Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Ideen und Konzepte der Informatik Wie funktioniert Electronic Banking? Kurt Mehlhorn Übersicht Zwecke der Techniken Symmetrische Verschlüsselung (Caesar, One-time Pad, moderne Blockchiffres, seit 2000

Mehr

Praktikum IT-Sicherheit

Praktikum IT-Sicherheit IT-Sicherheit Praktikum IT-Sicherheit - Versuchshandbuch - Aufgaben Kryptografie II In diesem zweiten Versuch zur Kryptografie gehen wir etwas genauer auf die Art und Weise der Verschlüsselung mit der

Mehr

Vorlesung Datensicherheit. Sommersemester 2010

Vorlesung Datensicherheit. Sommersemester 2010 Vorlesung Datensicherheit Sommersemester 2010 Harald Baier Kapitel 3: Hashfunktionen und asymmetrische Verfahren Inhalt Hashfunktionen Asymmetrische kryptographische Verfahren Harald Baier Datensicherheit

Mehr

Datenschutz- und Verschlüsselungsverfahren

Datenschutz- und Verschlüsselungsverfahren Fachaufsatz Frank Rickert für den Monat April Datenschutz- und Verschlüsselungsverfahren Datenschutz Verschlüsselungsverfahren und elektronische Signatur werden zur Verschlüsselung von en verwendet. Dabei

Mehr

Digitale Unterschriften mit ElGamal

Digitale Unterschriften mit ElGamal Digitale Unterschriften mit ElGamal Seminar Kryptographie und Datensicherheit Institut für Informatik Andreas Havenstein Inhalt Einführung RSA Angriffe auf Signaturen und Verschlüsselung ElGamal Ausblick

Mehr

Verteilte Kyroptographie

Verteilte Kyroptographie Verteilte Kyroptographie Klassische kryptographische Verfahren Kryptographische Hash-Funktionen Public-Key-Signaturen Verteilte Mechanismen Schwellwert-Signaturen Verteilt generierte Zufallszahlen Verteilte

Mehr

Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer

Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer Kryptographie ein erprobter Lehrgang AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ 1 Variante: Kryptographie in 5 Tagen Ein kleiner Ausflug in die Mathematik (Primzahlen, Restklassen,

Mehr

Systeme II. Christian Schindelhauer Sommersemester Vorlesung

Systeme II. Christian Schindelhauer Sommersemester Vorlesung Systeme II Christian Schindelhauer Sommersemester 2006 20. Vorlesung 13.07.2006 schindel@informatik.uni-freiburg.de 1 Sicherheit in Rechnernetzwerken Spielt eine Rolle in den Schichten Bitübertragungsschicht

Mehr

@OliverMilke @cloudogu 1 meta 2 Überblick Abgrenzung 3 Key Pair vs. Signature 4 Cipher Suite Crypto is hard to get right Dutch Election Security Talk Begriffe / Konzepte Dinge, über die ich gestolpert

Mehr

Wie sicher können PKI sein?

Wie sicher können PKI sein? Wie sicher können PKI sein? Hannes Federrath http://www.inf.tu-dresden.de/~hf2/ Grundlagen Grundaufbau eines Signatursystems Schlüsselgenerierung durch Teilnehmergeräte Public Key Infrastrukturen Web of

Mehr

Einführungs- und Orientierungsstudium Informatik, Teil 2. Digitales Geld: Bitcoin und Blockketten Günter Rote. Freie Universität Berlin

Einführungs- und Orientierungsstudium Informatik, Teil 2. Digitales Geld: Bitcoin und Blockketten Günter Rote. Freie Universität Berlin EinS@FU Einführungs- und Orientierungsstudium Informatik, Teil 2 Digitales Geld: Bitcoin und Blockketten Günter Rote Freie Universität Berlin Überblick Geld ohne zentrale Kontrolle Hashfunktionen zum Speichern

Mehr

Verbindlichkeit: Ein Sender sollte nachträglich nicht leugnen können, eine Nachricht gesendet zu haben.

Verbindlichkeit: Ein Sender sollte nachträglich nicht leugnen können, eine Nachricht gesendet zu haben. Allgemein Ein Kryptosystem besteht aus einem Algorithmus einschließlich aller möglichen Klartexte, Chiffretexte und Schlüssel. Neben der Geheimhaltung soll Kryptographie noch andere Ansprüche erfüllen:

Mehr

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch Einführung in die Kryptographie 20.6.2011, www.privacyfoundation.ch Kryptographie Name kryptós: verborgen, geheim gráphein: schreiben Verschlüsselung Text so umwandeln, dass man ihn nur noch entziffern/lesen

Mehr

Socrative-Fragen aus der Übung vom

Socrative-Fragen aus der Übung vom Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Übungsleiter: Björn Kaidel, Alexander Koch Stammvorlesung Sicherheit im Sommersemester 2016 Socrative-Fragen aus der Übung vom 28.04.2016

Mehr

Bernd Borchert. Univ. Tübingen WS 13/14. Vorlesung. Kryptographie. Teil 4b. Diffie-Hellmann, Authentisierung

Bernd Borchert. Univ. Tübingen WS 13/14. Vorlesung. Kryptographie. Teil 4b. Diffie-Hellmann, Authentisierung Bernd Borchert Univ. Tübingen WS 13/14 Vorlesung Kryptographie Teil 4b Diffie-Hellmann, Authentisierung Diffie-Hellmann Schlüsselaustausch - Verfahren, mit dem sich zwei Parteien einen gemeinsamen Schlüssel

Mehr

Digitale Signaturen & Hashfunktionen

Digitale Signaturen & Hashfunktionen Maik Wagner Proseminar: Electronic Commerce und Digitale Unterschriften Digitale Signaturen & Hashfunktionen Gliederung: -Hashfunktionen -allgemein S. 1 -MD5 S. 2 -SHA-1 S. 5 -RipeMD-160 S. 7 -Vergleich

Mehr

Universität Tübingen SS Kryptologie. B. Borchert, D. Reichl. Klausur , (90 min)

Universität Tübingen SS Kryptologie. B. Borchert, D. Reichl. Klausur , (90 min) Universität Tübingen SS 2017 Kryptologie B. Borchert, D. Reichl Klausur 28.7.2017, 12.30-14.00 (90 min) Name: Matrikel-Nr.: Studiengang: MSc Informatik MSc Bioinformatik MSc Medieninformatik MSc Kognitionswissenschaft

Mehr

Proseminar Bakkalaureat TM 2008/2009 Datensicherheit und Versicherungsmathematik Public-Key-Kryptosystem

Proseminar Bakkalaureat TM 2008/2009 Datensicherheit und Versicherungsmathematik Public-Key-Kryptosystem Proseminar Bakkalaureat TM 2008/2009 Datensicherheit und Versicherungsmathematik Technische Universität Graz 29. Dezember 2008 Überblick Unterschied zwischen symmetrischen und asymmetrischen Verschlüsselungsverfahren

Mehr

Netzwerktechnologien 3 VO

Netzwerktechnologien 3 VO Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs helmut.hlavacs@univie.ac.at Dr. Ivan Gojmerac gojmerac@ftw.at Bachelorstudium Medieninformatik SS 2012 Kapitel 8 - Netzwerksicherheit 8.1 Was ist

Mehr

Message Authentication Codes

Message Authentication Codes Message Authentication Codes Martin Schütte 30. Nov. 2004 Gliederung Denitionen Grundlegende Begrie Konstruktion von MACs häug benutzte MACs Einschätzung der Sicherheit Bedingungslos sichere MACs zusätzliche

Mehr

Kryptographie mit Anwendungen. Rebecca Tiede, Lars Taube

Kryptographie mit Anwendungen. Rebecca Tiede, Lars Taube 1 Kryptographie mit Anwendungen Rebecca Tiede, Lars Taube 2 Inhalt Terminologie Authentizität Hashing Digitale Signatur Secret Sharing Terminologie 3 4 Terminologie Sender und Empfänger Ein Sender möchte

Mehr

Sicherheit von PDF-Dateien

Sicherheit von PDF-Dateien Sicherheit von PDF-Dateien 27.10.2005 Albrecht-Dürer-Schule, Düsseldorf Alexander Jacob BU Wuppertal Berechtigungen/Nutzungsbeschränkungen zum Drucken Kopieren und Ändern von Inhalt bzw. des Dokumentes

Mehr

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Kryptographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösung Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösung Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2016 Nachklausur Lösung 12.10.2016 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung

Mehr

Elliptic Curve Cryptography

Elliptic Curve Cryptography Elliptic Curve Cryptography Institut für Informatik Humboldt-Universität zu Berlin 10. November 2013 ECC 1 Aufbau 1 Asymmetrische Verschlüsselung im Allgemeinen 2 Elliptische Kurven über den reellen Zahlen

Mehr

Kurze Einführung in kryptographische Grundlagen.

Kurze Einführung in kryptographische Grundlagen. Kurze Einführung in kryptographische Grundlagen. Was ist eigentlich AES,RSA,DH,ELG,DSA,DSS,ECB,CBC Benjamin.Kellermann@gmx.de GPG-Fingerprint: D19E 04A8 8895 020A 8DF6 0092 3501 1A32 491A 3D9C git clone

Mehr

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Kryptographie Techniken Symmetrische Verschlüsselung (One-time Pad,

Mehr

Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer?

Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer? Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer? Harold Gutch logix@foobar.franken.de KNF Kongress 2007, 25. 11. 2007 Outline Worum geht es überhaupt? Zusammenhang

Mehr

Netzsicherheit Architekturen und Protokolle Instant Messaging

Netzsicherheit Architekturen und Protokolle Instant Messaging Instant Messaging Versuch: Eigenschaften einer Unterhaltung Unterhalten Sie sich leise mit Ihrem Nachbarn über ein aktuelles Thema. Dauer ca. 2 Minuten welche Rollen gibt es in einem IM-System? Analysieren

Mehr

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Wiederholung Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Mathematische Grundlagen: algebraische Strukturen: Halbgruppe, Monoid,

Mehr

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Kryptographie Techniken Symmetrische Verschlüsselung (One-time Pad,

Mehr

Datensicherheit. Vorlesung 2: Wintersemester 2017/2018 h_da. Heiko Weber, Lehrbeauftragter

Datensicherheit. Vorlesung 2: Wintersemester 2017/2018 h_da. Heiko Weber, Lehrbeauftragter Vorlesung 2: Wintersemester 2017/2018 h_da, Lehrbeauftragter Teil 2: Themenübersicht der Vorlesung 1. Einführung / Grundlagen der / Authentifizierung 2. Kryptografie / Verschlüsselung und Signaturen mit

Mehr

Betriebssysteme und Sicherheit Sicherheit. Florian Kerschbaum TU Dresden Wintersemester 2011/12

Betriebssysteme und Sicherheit Sicherheit. Florian Kerschbaum TU Dresden Wintersemester 2011/12 Betriebssysteme und Sicherheit Sicherheit Florian Kerschbaum TU Dresden Wintersemester 2011/12 Begriffe Kryptographie: Geheimschrift Nachrichten schreiben ohne das sie von einem Anderen gelesen (verändert)

Mehr

Microtraining e-security AGETO 25.03.2014

Microtraining e-security AGETO 25.03.2014 Microtraining e-security AGETO 25.03.2014 Neuer Personalausweis (Technik) Überblick Protokolle für die Online-Funktion 1. PACE: Nutzer-Legitimierung via PIN 2. EAC: Server-Legitimierung via CVC 3. TA/CA:

Mehr

Sichere Abwicklung von Geschäftsvorgängen im Internet

Sichere Abwicklung von Geschäftsvorgängen im Internet Sichere Abwicklung von Geschäftsvorgängen im Internet Diplomarbeit von Peter Hild Theoretische Grundlagen der Kryptologie Vorhandene Sicherheitskonzepte für das WWW Bewertung dieser Konzepte Simulation

Mehr

4 Kryptologie. Übersicht

4 Kryptologie. Übersicht 4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von

Mehr

Regine Schreier

Regine Schreier Regine Schreier 20.04.2016 Kryptographie Verschlüsselungsverfahren Private-Key-Verfahren und Public-Key-Verfahren RSA-Verfahren Schlüsselerzeugung Verschlüsselung Entschlüsselung Digitale Signatur mit

Mehr

FH Schmalkalden Fachbereich Informatik. Kolloquium 21. März 2002

FH Schmalkalden Fachbereich Informatik. Kolloquium 21. März 2002 FH Schmalkalden Fachbereich Informatik http://www.informatik.fh-schmalkalden.de/ 1/17 Kolloquium 21. März 2002 Entwicklung eines JCA/JCE API konformen Kryptographischen Service Providers für HBCI unter

Mehr

Angewandte Kryptographie

Angewandte Kryptographie 14.02.2017 Angewandte Kryptographie 1 Angewandte Kryptographie Rüdiger Kügler Security Expert ruediger.kuegler@wibu.com 14.02.2017 Angewandte Kryptographie 2 Legendäre Fehler Verschlüsseltes Geschlecht

Mehr

Digitale Signaturen. Proseminar Kryptographie und Datensicherheit SoSe Sandra Niemeyer

Digitale Signaturen. Proseminar Kryptographie und Datensicherheit SoSe Sandra Niemeyer Digitale Signaturen Proseminar Kryptographie und Datensicherheit SoSe 2009 Sandra Niemeyer 24.06.2009 Inhalt 1. Signaturgesetz 2. Ziele 3. Sicherheitsanforderungen 4. Erzeugung digitaler Signaturen 5.

Mehr

Neue Technologien im Internet

Neue Technologien im Internet Neue Technologien im Internet und WWW Grundlagen und Verfahren der starken Kryptographie Eike Kettner spider@minet.uni-jena.de FSU Jena Grundlagen und Verfahren der starken Kryptographie p.1/51 Gliederung

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung

Mehr

Digital Rights Management (DRM) Verfahren, die helfen Rechte an virtuellen Waren durchzusetzen. Public-Key-Kryptographie (2 Termine)

Digital Rights Management (DRM) Verfahren, die helfen Rechte an virtuellen Waren durchzusetzen. Public-Key-Kryptographie (2 Termine) Digital Rights Management (DRM) Verfahren, die helfen Rechte an virtuellen Waren durchzusetzen Vorlesung im Sommersemester 2010 an der Technischen Universität Ilmenau von Privatdozent Dr.-Ing. habil. Jürgen

Mehr