Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 17. Quantencomputer, Postquantum Kryptographie

Größe: px
Ab Seite anzeigen:

Download "Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 17. Quantencomputer, Postquantum Kryptographie"

Transkript

1 Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 17 Quantencomputer, Postquantum Kryptographie

2 Shor's Algorithmus (klassischer Teil) Shor's Algorithmus zur Faktorisierung - Teilalgorithmus (der Teil ohne Physik) Sei n = pq gegeben (p,q Primzahl). Jedes des phi(n) Elemente a aus Z n * hat eine Ordnung ord(a), nämlich die Größe der Menge {a, a 2,..., a ord(a) = 1}. ord(a) muss phi(n) = (p-1)(q-1) teilen, weil es eine Untergruppe ist. Für 3/4 der a aus Z n * ist ord(a) gerade. Das kann man beweisen (Gruppentheorie) - man kann es sich plausibel machen dadurch, dass 2 ja schon zweimal als Teiler von phi(n) vorkommt und somit für viele Untergruppen ein Teiler ihrer Ordnung ist. Für max. ¼ der a aus Z n * gilt, dass a gerade Ordnung r hat und dabei a r/2 = -1 gilt. Insgesamt haben also mind 50% der Elemente a aus Z n * die Eigenschaft, dass die Ordnung von a gerade ist und a r/2!= -1 gilt. Wenn man zu so einem a die gerade Ordnung r = ord(a) bekommt, dann kann man n = pq faktorisieren (3. Binomische Formel) a r - 1 = (a r/2-1)(a r/2 + 1) ungleich 0 mod n wg. Def. von r: dann wäre ja schon bei r/2 ein Zyklus von a da auch ungleich 0 mod n, denn solche a hatten wir ausgeschlossen (nur ein ¼ aller a) n ist Teiler von a r 1 wegen a r = 1 mod n <--> a r - 1 = 0 mod n. Weil aber beide Faktoren oben rechts ungleich 0 mod n sind, müssen die Teiler p und q von n sich auf die beiden Faktoren oben rechts verteilen. Damit kann man mit ggt(n, a r/2 1) (oder auch ggt(n, a r/2 + 1)) einen der zwei Primfaktoren finden.

3 a a i mod 21 ord gerade a r/2!= -1=20 beides , 4, 8, 16, 11, , 16, , 4, 20, 16, 17, , , 12, 15, 13, 4, 19, , 16, 8, 4, 2, , , 4, , 16, 20, 4, 5, , 4, 13, 16, 10, , Beispiel 21 = 3*7 (2 3 1)(2 3 +1) = 7 * 9 (8 1 1)(8 1 +1) = 7 *9 (11 3 1)( ) = 7 * 9 (mod 21) (13 1)(13 +1) = 12 *14 (19 3 1)( ) = 12 *14 (mod 21)

4 Orakel Teilalgorithmus Mit einem Orakel, das einem zu einem Z n * und einem a die Ordnung ord(a) gäbe, wäre also der folgende probabilistische Algorithmus zur Faktorisierung von n erfolgreich, jedesmal mit 50%: Gegeben n= pq. 1. Rate ein a aus Z n ; 2. Prüfe ob a in Z n * via ggt(a,n). Falls ggt > 1 ist Teiler gefunden --> fertig. 3. Lass Dir vom Orakel r = ord(a) geben 4. Wenn ord(a) nicht gerade ist oder a r/2 = -1, dann gehe zu 1 zurück 5. Ansonsten wird ggt(n,a r/2-1) > 1 einen nicht-trivialen Teiler von n liefern. Physiker-Idee: Das Orakel könnte ein sog. Quanten-Computer sein. a n Qubits, Q Circuits, FourierTransform ord(a)

5 Quantenrechner a r Qubits, Q Circuits, FourierTransform ord(r) 1) Initialize the registers. This initial state is a superposition of Q states. 2) Construct f(r) as a quantum function and apply it to the above state This is still a superposition of Q states. 3) Apply the quantum Fourier transform to the input register. 4) Perform measurements, and output with high probablity

6 Post-Quantum Kryptographie Der Fortschritt bei den Quantencomputern ist bei genauer Betrachtung eher bescheiden (vor allem in der Extrapolation ernüchternd): 1996 stellt P. Shor den Quantencomputer-Faktorisierungsalgorithmus vor 2001 verkündet IBM, man habe die Zahl 15 mit einem Quantencomputer faktorisiert 2012 verkündet die Univ. Bristol, man habe die Zahl 21 mit einem Quantencomputer faktorisiert Deshalb/dennoch: Post-Quantum Kryptographie: Symmetric key Auch/vor allem aus dem Grund: Faktorisierung oder Diskr. Logarithmus könnte mathematisch gelöst werden ( indischer Doktorand mit einer neuen Formel für die ganzen Zahlen...) Code-based cryptography Lattice-based cryptography Multivariate cryptography und viele andere mehr Hash-based cryptography Basierend auf Schwierigkeit von math. Problemen, also so wie RSA, DH etc. Teilweise sind die math. Probleme NP-hart, was verdächtig ist, denn bislang haben sich alle auf NP-harten Problemen basierenden Verfahren als unbrauchbar erwiesen. Hoffnungsträger, weil nicht auf math. Annahmen basierend. Nachteile: 1. große Schlüssel mit dynamischer Verwaltung nötig. 2. nur Signieren und Authentisieren möglich, Verschlüsseln nicht. Forward secrecy (als Eigenschaft eine Verschlüsselungsverfahrens): Auch wenn das Verfahren gebrochen wird, können die verschlüsselten Nachrichten der Vergangenheit nicht entschlüsselt werden. Weak forward secrecy: Wenn das Verfahren gebrochen wird, können die verschlüsselten Nachrichten aus der Vergangenheit nur dann entschlüsselt werden, wenn beim Versenden der Nachricht schon aktiv/vorbereitend abgehört wurde.

7 Lamport One-Time PKI Schlüsselerzeugung. A erzeugt 2n zufällige Strings s 1,0,s 1,1, s 2,0,s 2,1,, s n,0, s n,1 gewissen Länge l. Diese geordnete Liste (s 1,0,s 1,1, s 2,0,s 2,1,, s n,0, s n,1 ) ist k priv. - alle von einer Mit einer Hash-Funktion h erzeugt A die 2n Hashwerte h 1,0 = h(s 1,0 ),h 1,1 = h(s 1,1 ),, h n,1 = h(s n,1 ), die alle Strings einer Länge m sind. Diese geordnete Liste (h 1,0,h 1,1, h 2,0,h 2,1,, h n,0, h n,1 ) ist k pub. Alice Bob K priv K pub B kann jetzt B einen Text a = a 1...a n der Länge n (die a i sind bits) an A schicken und sich von A signieren lassen. Das macht A, indem er den string c = c 1...c n der Länge n*m erzeugt, wobei der substring c i = s i,ai ist (d.h., c i ist entweder s i,0 oder s i,1, je nachdem,ob a i 0 oder 1 ist). B kann nachprüfen, ob die Signatur korrekt ist, denn er berechnet, ob für alle i gilt h(s i,ai ) = c i. Niemand anders als A kann aber die h-ur-werte der c i gewusst oder berechnet haben. Also hat A die Nachricht tatsächlich signiert. Die Signatur ist nicht abstreitbar. Nachteile: 1. Nur Signatur und Authentication, aber keine Verschlüsselung möglich. 2. Wie beim One- Time-Pad ist der Schlüssel nur einmal verwendbar viel Speicherplatz für k pub Vorteil: Dieses PKI baut nicht auf der Schwierigkeit eines mathematischen Problems auf (und wäre damit ein Kandidat für den Ersatz für RSA etc. im Ernstfall Postquantum Kryptographie ).

8 Merkle-Tree Signature Lamport One-time Signature k pub H1= h(p1) H2 = h(p2) H3 = h(p3) H4 = h(p4) k priv P1 P2 P3 P4 Merkle-Tree One-time Signature H1,2,3,4 = h(h1,2 H3,4) = k pub Vorteil gegenüber Lamport: öffentl. Schlüssel k pub ist klein. H1,2 = h(h1 H2) H3,4 = h(h3 H4) H1= h(p1) H2 = h(p2) H3 = h(p3) H4 = h(p4) P1 P2 P3 P4 = k priv

9 Merkle-Tree Verfikation H1,2,3,4 = h(h1,2 H3,4) H1,2 = h(h1 H2) H3,4 = h(h3 H4) von rechts von links H1= h(p1) H2 = h(p2) H3 = h(p3) H4 = h(p4) P1 P2 P3 P4 Das bit 1 wird mit dem ersten Blatt-Paar signiert. Weil das bit 1 ist, wird das rechte Blatt P2 genommen. Die Signatur ist: <P2, H1 links, H3,4 rechts> (links/rechts ist ein flag, damit der Verifizierer weiß, von welcher Seite dieser Hash-wert konkateniert werden muss) Der Verfizierer prüft: 1. berechne H2 = h(p2) 2. berechne H1,2 = h(h1 H2) 3. berechne H1,2,3,4 = h(h1,2 H3,4) 4. wenn H1,2,3,4 = k pub, dann ist die Signatur in Ordnung. Warum kann niemand anderes eine gültige Signatur schicken? - niemand kann andere Werte als H1,2 und H3,4 angeben, so dass k pub = H1,2,3,4 = h(h1,2 H3,4) - niemand kann andere Werte als H1 und H2 angeben, so dass H1,2 = h(h1 H2) - niemand anderes als der, der den privaten Schlüssel hat, kann ein P2 angeben, so dass h(p2) = H2 ist. könnte aber abgehört worden sein kann nicht abgehört worden sein hier zum ersten Mal veröffentlicht

10 Merkle-Tree mit pseudo-random Urwerten Verbesserung Merkle-Tree One-time Signature. H1,2,3,4 = h(h1,2 H3,4) = k pub H1,2 = h(h1 H2) H3,4 = h(h3 H4) H1= h(p1) H2 = h(p2) H3 = h(p3) H4 = h(p4) P1 P2 P3 P4 h h h h <s 0> <s 1> <s,2> <s,3> s = kurzes Geheimnis ( seed ) Vorteil: Auch der private Schlüssel reduziert sich praktisch auf ein kurzes Geheimnis s. Zwar muss am Anfang, d.h. zur Generierung des public key, der gesamte Baum aufgebaut und durchgerechnet werden, aber ab dann kann man durch entsprechende Baum-Verwaltung mit einem nur logarithmisch großen Teil des Baumes den Baum effektiv traversieren (nur ab zu und muss wieder gerechnet werden, in der Summe noch einmal der ganze Baum)

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 10 Signaturen, Diffie-Hellman Signatur Signatur s(m) einer Nachricht m Alice m, s(m) Bob K priv K pub K pub Signatur Signatur (Thema Integrity

Mehr

Universität Tübingen WS 2015/16. Kryptologie. Klausur

Universität Tübingen WS 2015/16. Kryptologie. Klausur Universität Tübingen WS 2015/16 Kryptologie Klausur 31.3.2016 Name: Matrikel-Nr.: 1 2 3 4 5 6 7 8 9 10 Summe 10 15 10 10 8 10 12 5 10 10 100 Aufgabe 1 a) (8P) Testen Sie mit Miller-Rabin, ob 13 eine Primzahl

Mehr

Cryptanalytic Attacks on RSA

Cryptanalytic Attacks on RSA Seminararbeit Cryptanalytic Attacks on RSA Quantum Computing Attack Eingereicht am: 5. Juni 2016 Eingereicht von: Rimbert Fischer Matrikelnummer: inf100606 E-Mail: inf100606 (at) fh-wedel.de Referent:

Mehr

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3

Mehr

Kryptographie - eine mathematische Einführung

Kryptographie - eine mathematische Einführung Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen

Mehr

3 Public-Key-Kryptosysteme

3 Public-Key-Kryptosysteme Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.

Mehr

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976)

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) p : eine (grosse) Primzahl e : Zahl 0 < e < p mit ggt(e, p 1) = 1 d Inverses von e in Z p 1, dh d e 1 mod p 1 (= φ(p)) M : numerisch codierter

Mehr

6: Public-Key Kryptographie (Grundidee)

6: Public-Key Kryptographie (Grundidee) 6: Public-Key Kryptographie (Grundidee) Ein Teil des Schlüssels ist nur dem Empfänger bekannt. Der auch dem Sender bekannte Teil kann sogar veröffentlicht werden. Man spricht dann von einem Schlüsselpaar.

Mehr

Regine Schreier

Regine Schreier Regine Schreier 20.04.2016 Kryptographie Verschlüsselungsverfahren Private-Key-Verfahren und Public-Key-Verfahren RSA-Verfahren Schlüsselerzeugung Verschlüsselung Entschlüsselung Digitale Signatur mit

Mehr

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz 2007-11-23 Überblick 1 2 Schnelle modulare Exponentiation Chinesischer Restsatz 3 Allgemeines Public-Key Methode Rivest, Shamir und Adleman 1977 Sicherheit des Verfahrens beruht auf Schwierigkeit der Primfaktorenzerlegung

Mehr

Public-Key-Verschlüsselung und Diskrete Logarithmen

Public-Key-Verschlüsselung und Diskrete Logarithmen Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 12. Elliptische Kurven

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 12. Elliptische Kurven Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 12 Elliptische Kurven Elliptische Kurven im Reellen Punktmengen in R 2 Elliptische Kurve y 2 = x 3 + ax + b Kreis y 2 = b - x 2 Ellipse

Mehr

6.2 Asymmetrische Verschlüsselung

6.2 Asymmetrische Verschlüsselung 6.2 Asymmetrische Verschlüsselung (asymmetric encryption, public-key encryption) Prinzip (Diffie, Hellman, Merkle 1976-78): Statt eines Schlüssels K gibt es ein Schlüsselpaar K E, K D zum Verschlüsseln

Mehr

Vorlesung Datensicherheit. Sommersemester 2010

Vorlesung Datensicherheit. Sommersemester 2010 Vorlesung Datensicherheit Sommersemester 2010 Harald Baier Kapitel 3: Hashfunktionen und asymmetrische Verfahren Inhalt Hashfunktionen Asymmetrische kryptographische Verfahren Harald Baier Datensicherheit

Mehr

RSA (Rivest, Shamir, Adleman)

RSA (Rivest, Shamir, Adleman) Juli 2012 LB 3 Kryptographie F. Kaden 1/11 1977 von Rivest, Shamir, Adleman am MIT (Massachusetts Institut of Technology) entwickelt asymmetrisches Verschlüsselungsverfahren Ziel: email-verschlüsselung,

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.4 Semantische Sicherheit 1. Sicherheit partieller Informationen 2. Das Verfahren von Rabin 3. Sicherheit durch Randomisierung Semantische Sicherheit Mehr als nur

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs

Mehr

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch Einführung in die Kryptographie 20.6.2011, www.privacyfoundation.ch Kryptographie Name kryptós: verborgen, geheim gráphein: schreiben Verschlüsselung Text so umwandeln, dass man ihn nur noch entziffern/lesen

Mehr

Post-Quanten Kryptografie. Chancen und Risiken in der IT-Sicherheit. Stefan Schubert Institut für IT-Sicherheitsforschung

Post-Quanten Kryptografie. Chancen und Risiken in der IT-Sicherheit. Stefan Schubert Institut für IT-Sicherheitsforschung Post-Quanten Kryptografie Chancen und Risiken in der IT-Sicherheit Stefan Schubert Institut für IT-Sicherheitsforschung 5. Semester IT-Security Stefan Schubert Research Assistant Institut für IT-Security

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 4: Schlüsselvereinbarung Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2017 8.5.2017 Einleitung Einleitung In dieser Lerneinheit

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 11. Primzahltests: Fermat, Miller-Rabin

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 11. Primzahltests: Fermat, Miller-Rabin Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 11 Primzahltests: Fermat, Miller-Rabin Primzahltests Problem: Gegeben n. Ist n Primzahl? Naive Methoden: Ausprobieren: gehe der Reihe nach

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 14. Faktorisierungsmethoden

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 14. Faktorisierungsmethoden Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 14 Faktorisierungsmethoden Faktorisierungsmethoden Kryptologie Probedivision ggt Pollard rho Methode Fermat Methode Lucas Test Probedivision

Mehr

Einführung in die asymmetrische Kryptographie

Einführung in die asymmetrische Kryptographie !"#$$% Einführung in die asymmetrische Kryptographie Dipl.-Inform. Mel Wahl Prof. Dr. Christoph Ruland Universität Siegen Institut für digitale Kommunikationssysteme Grundlagen Verschlüsselung Digitale

Mehr

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Satz 4.2.11 (Chinesischer Restsatz, Ring-Version) Sind N teilerfremd (d.h. ggt( ) =1), so ist die Abbildung ein Ring-Isomorphismus. :

Mehr

Volker Kaatz. Faktorisierung. Faktorisierung. Problem und Algorithmen. Relevanz in der Kryptographie

Volker Kaatz. Faktorisierung. Faktorisierung. Problem und Algorithmen. Relevanz in der Kryptographie Faktorisierung Problem und Algorithmen Relevanz in der Kryptographie Inhalt Begriff Faktorisierung Algorithmen (Übersicht) Strategie und Komplexität Pollard p-1 Algorithmus Pseudocode, mathematische Basis,

Mehr

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen 3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt

Mehr

Digitale Signaturen. Einführung und das Schnorr Signatur Schema. 1 Digitale Signaturen Einführung & das Schnorr Signatur Schema.

Digitale Signaturen. Einführung und das Schnorr Signatur Schema. 1 Digitale Signaturen Einführung & das Schnorr Signatur Schema. Digitale Signaturen Einführung und das Schnorr Signatur Schema 1 Übersicht 1. Prinzip der digitalen Signatur 2. Grundlagen Hash Funktionen Diskreter Logarithmus 3. ElGamal Signatur Schema 4. Schnorr Signatur

Mehr

El Gamal Verschlüsselung und seine Anwendungen

El Gamal Verschlüsselung und seine Anwendungen El Gamal Verschlüsselung und seine Anwendungen Andrés Guevara July 11, 2005 1 Kurze Einführung in die Kryptographie Situation: Absender will Empfänger eine Nachricht schicken. Einige Ziele der Kryptographie

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen, SS Vorlesung. Doppelstunde 2. - One Time Pad - Authentisierung

Kryptologie. Bernd Borchert. Univ. Tübingen, SS Vorlesung. Doppelstunde 2. - One Time Pad - Authentisierung Kryptologie Bernd Borchert Univ. Tübingen, SS 2017 Vorlesung Doppelstunde 2 - One Time Pad - Authentisierung Homophone Chiffre Monoalphabetische Chiffre : Bijektion der Buchstaben: A B C D E F G H I J

Mehr

Digitale Unterschriften mit ElGamal

Digitale Unterschriften mit ElGamal Digitale Unterschriften mit ElGamal Seminar Kryptographie und Datensicherheit Institut für Informatik Andreas Havenstein Inhalt Einführung RSA Angriffe auf Signaturen und Verschlüsselung ElGamal Ausblick

Mehr

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Herwig Stütz 2007-11-23 1 Inhaltsverzeichnis 1 Einführung 2 2 Das RSA-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

Universität Tübingen SS Kryptologie. B. Borchert, D. Reichl. Klausur , (90 min)

Universität Tübingen SS Kryptologie. B. Borchert, D. Reichl. Klausur , (90 min) Universität Tübingen SS 2017 Kryptologie B. Borchert, D. Reichl Klausur 28.7.2017, 12.30-14.00 (90 min) Name: Matrikel-Nr.: Studiengang: MSc Informatik MSc Bioinformatik MSc Medieninformatik MSc Kognitionswissenschaft

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 11 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Bernd Borchert. Univ. Tübingen WS 13/14. Vorlesung. Kryptographie. Teil 4b. Diffie-Hellmann, Authentisierung

Bernd Borchert. Univ. Tübingen WS 13/14. Vorlesung. Kryptographie. Teil 4b. Diffie-Hellmann, Authentisierung Bernd Borchert Univ. Tübingen WS 13/14 Vorlesung Kryptographie Teil 4b Diffie-Hellmann, Authentisierung Diffie-Hellmann Schlüsselaustausch - Verfahren, mit dem sich zwei Parteien einen gemeinsamen Schlüssel

Mehr

Abschnitt 5: Kryptographie. j (p j 1). 1 (p 1 1)p α 2

Abschnitt 5: Kryptographie. j (p j 1). 1 (p 1 1)p α 2 Abschnitt 5: Kryptographie. Zunächst wollen wir die Struktur von (Z/mZ) untersuchen. 5.1 Definition: Die Eulersche ϕ-funktion: ϕ : N N; ϕ(m) := (Z/mZ) 5.2 Bemerkung: (Z/mZ) {a {1,..., m 1} ggt(a, m) =

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von

Mehr

Mathematische Grundlagen der Kryptografie (1321) SoSe 06

Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Klausur am 19.08.2006: Lösungsvorschläge zu den Aufgaben zu Aufgabe I.1 (a) Das numerische Äquivalent zu KLAUSUR ist die Folge [10, 11, 0, 20, 18,

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) WS 2016/17 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Diskreter Logarithmus und Primkörper

Diskreter Logarithmus und Primkörper Diskreter Logarithmus und Primkörper Neben dem RSA-Verfahren ist die ElGamal-Verschlüsselung 8 ein weiteres klassische Public-Key-Verfahren, welches von Taher ElGamal auf der Konferenz CRYPTO 84 vorgestellt

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Bernd Borchert. Univ. Tübingen WS 13/14. Vorlesung. Kryptographie. Teil

Bernd Borchert. Univ. Tübingen WS 13/14. Vorlesung. Kryptographie. Teil Bernd Borchert Univ. Tübingen WS 13/14 Vorlesung Kryptographie Teil 1 18.10.13 1 Kryptologie der Umgang mit Geheimnissen Geheimnisse müssen nichts romantisches oder kriminelles sein, sondern es gibt ganz

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 04.05.2015 1 / 20 Kummerkasten Vorlesungsfolien bitte einen Tag vorher hochladen : Sollte

Mehr

Ziel: Zertifiziere Pfad von Wurzel zu m mittels Signaturen. Signieren Public-Keys auf Pfad inklusive der Nachbarknoten.

Ziel: Zertifiziere Pfad von Wurzel zu m mittels Signaturen. Signieren Public-Keys auf Pfad inklusive der Nachbarknoten. Merkle-Baum Idee: Konstruktion von Merkle-Bäumen Ersetze Signaturkette durch Baum (sogenannter Merkle-Baum). Verwenden Baum der Tiefe n für Nachrichten der Länge n. Die Wurzel erhält Label ɛ. Die Kinder

Mehr

Asymmetrische Algorithmen

Asymmetrische Algorithmen Asymmetrische Algorithmen Abbildung 9. Leonhard Euler Leonhard Euler, geboren am 15. April 1707 in Basel, gestorben am 18. September 1783 in Sankt Petersburg, war einer der produktivsten Mathematiker aller

Mehr

PRIMZAHLEN PATRICK WEGENER

PRIMZAHLEN PATRICK WEGENER PRIMZAHLEN PATRICK WEGENER 1. Einführung: Was sind Primzahlen? Eine ganze Zahl p, welche größer als 1 ist, heißt Primzahl, wenn sie nur durch 1 und sich selbst teilbar ist. Mit teilbar meinen wir hier

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Kryptographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

EINIGE GRUNDLAGEN DER KRYPTOGRAPHIE

EINIGE GRUNDLAGEN DER KRYPTOGRAPHIE EINIGE GRUNDLAGEN DER KRYPTOGRAPHIE Steffen Reith reith@thi.uni-hannover.de 22. April 2005 Download: http://www.thi.uni-hannover.de/lehre/ss05/kry/folien/einleitung.pdf WAS IST KRYPTOGRAPHIE? Kryptographie

Mehr

11. Das RSA Verfahren

11. Das RSA Verfahren Chr.Nelius: Zahlentheorie (SoSe 2017) 53 11. Das RSA Verfahren Bei einer asymmetrischen Verschlüsselung lässt sich der Schlüssel zum Entschlüsseln nicht aus dem Schlüssel zum Verschlüsseln bestimmen und

Mehr

Vorlesung 7. Tilman Bauer. 25. September 2007

Vorlesung 7. Tilman Bauer. 25. September 2007 Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

El. Zahlentheorie I: Der kleine Satz von Fermat

El. Zahlentheorie I: Der kleine Satz von Fermat Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Seminar Codes und Kryptographie WS 2003 Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Kai Gehrs Übersicht 1. Motivation 2. Das Public Key Kryptosystem 2.1 p-sylow Untergruppen und eine spezielle

Mehr

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie Dozent: Dr. Ralf Gerkmann Referenten: Jonathan Paulsteiner (10939570) und Roman Lämmel ( ) Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie 0. Inhalt 1. Einführung in die Kryptographie

Mehr

Hybride Verschlüsselungsverfahren

Hybride Verschlüsselungsverfahren Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen

Mehr

Bernd Borchert. Univ. Tübingen WS 13/14. Vorlesung. Kryptographie. Teil 11. Einwegfunktionen, Geheimnisteilung, Steganographie 7.2.

Bernd Borchert. Univ. Tübingen WS 13/14. Vorlesung. Kryptographie. Teil 11. Einwegfunktionen, Geheimnisteilung, Steganographie 7.2. Bernd Borchert Univ. Tübingen WS 13/14 Vorlesung Kryptographie Teil 11 Einwegfunktionen, Geheimnisteilung, Steganographie 7.2.14 P-Zeit berechenbare Funktionen FP ist die Klasse aller Funktionen f : {0,1}*

Mehr

Das RSA Kryptosystem

Das RSA Kryptosystem Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice

Mehr

Absolut geheim! Fakultät für Physik Universität Bielefeld schnack/

Absolut geheim! Fakultät für Physik Universität Bielefeld  schnack/ Absolut geheim! Jürgen Schnack Fakultät für Physik Universität Bielefeld http://obelix.physik.uni-bielefeld.de/ schnack/ Preisverleihung Mathematikolympiade Kreis Gütersloh Städtisches Gymnasium Gütersloh,

Mehr

Hashfunktionen und MACs

Hashfunktionen und MACs 3. Mai 2006 Message Authentication Code MAC: Message Authentication Code Was ist ein MAC? Der CBC-MAC Der XOR-MAC Kryptographische Hashfunktionen Iterierte Hashfunktionen Message Authentication Code Nachrichten

Mehr

IT-Sicherheit Kapitel 4 Public Key Algorithmen

IT-Sicherheit Kapitel 4 Public Key Algorithmen IT-Sicherheit Kapitel 4 Public Key Algorithmen Dr. Christian Rathgeb Sommersemester 2014 1 Einführung Der private Schlüssel kann nicht effizient aus dem öffentlichen Schlüssel bestimmt werden bzw. die

Mehr

Neue Technologien im Internet

Neue Technologien im Internet Neue Technologien im Internet und WWW Grundlagen und Verfahren der starken Kryptographie Eike Kettner spider@minet.uni-jena.de FSU Jena Grundlagen und Verfahren der starken Kryptographie p.1/51 Gliederung

Mehr

Elektronische Signaturen

Elektronische Signaturen Elektronische Signaturen Oliver Gasser TUM 3. Juni 2009 Oliver Gasser (TUM) Elektronische Signaturen 3. Juni 2009 1 / 25 Gliederung 1 Einführung 2 Hauptteil Signieren und Verifizieren Digital Signature

Mehr

Quantenkryptographie Vortrag von Georg Krause im Quantenmechanik-Seminar WS 2014/15 an der Universität Heidelberg/G.Wolschin

Quantenkryptographie Vortrag von Georg Krause im Quantenmechanik-Seminar WS 2014/15 an der Universität Heidelberg/G.Wolschin Quantenkryptographie Inhalt Anforderungen an Verschlüsselung Klassische Verfahren Theoretische Quantenkryptografie Ein Teilchen Verfahren (BB84) 2 Teilchen Verfahren (E91) Experimentelle Realisierung und

Mehr

Digitale Signaturen. Proseminar Kryptographie und Datensicherheit SoSe Sandra Niemeyer

Digitale Signaturen. Proseminar Kryptographie und Datensicherheit SoSe Sandra Niemeyer Digitale Signaturen Proseminar Kryptographie und Datensicherheit SoSe 2009 Sandra Niemeyer 24.06.2009 Inhalt 1. Signaturgesetz 2. Ziele 3. Sicherheitsanforderungen 4. Erzeugung digitaler Signaturen 5.

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung

Mehr

ESCAPE THE QUANTUM APOCALYPSE. Dem Quantencomputer ein Schnippchen schlagen

ESCAPE THE QUANTUM APOCALYPSE. Dem Quantencomputer ein Schnippchen schlagen ESCAPE THE QUANTUM APOCALYPSE Dem Quantencomputer ein Schnippchen schlagen Dr. Enrico Thomae Mathematiker & Kryptanalyst Post-Quantum Research Dipl. math. Tim Schneider Mathematiker & Kryptologe Post-Quantum

Mehr

Quantenkryptographie

Quantenkryptographie Quantenkryptographie Tobias Mühlbauer Technische Universität München Hauptseminar Kryptographische Protokolle 2009 Outline 1 Motivation Klassische Kryptographie Alternativen zur klassischen Kryptographie

Mehr

Elliptic Curve Cryptography

Elliptic Curve Cryptography Elliptic Curve Cryptography Institut für Informatik Humboldt-Universität zu Berlin 10. November 2013 ECC 1 Aufbau 1 Asymmetrische Verschlüsselung im Allgemeinen 2 Elliptische Kurven über den reellen Zahlen

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

Public-Key-Kryptographie

Public-Key-Kryptographie Kapitel 2 Public-Key-Kryptographie In diesem Kapitel soll eine kurze Einführung in die Kryptographie des 20. Jahrhunderts und die damit verbundene Entstehung von Public-Key Verfahren gegeben werden. Es

Mehr

Inhaltsübersicht. Geschichte von Elektronischen Wahlen Erwartete Eigenschaften von Protokollen. Merritt Election Protokoll

Inhaltsübersicht. Geschichte von Elektronischen Wahlen Erwartete Eigenschaften von Protokollen. Merritt Election Protokoll Inhaltsübersicht Geschichte von Elektronischen Wahlen Erwartete Eigenschaften von Protokollen Merritt Election Protokoll Ein fehlertolerantes Protokoll Für ein Wahlzentrum Für mehrere Wahlzentren von Wählern

Mehr

Public Key Kryptographie

Public Key Kryptographie 3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische

Mehr

Digitale Signaturen. Kapitel 8

Digitale Signaturen. Kapitel 8 Digitale Signaturen Kapitel 8 Handschriftliche vs. digitale Unterschrift digitalisieren mp3 Unterschrift digitale Unterschrift von D.H. für mp3? (Scannen und als Bitmap anhängen z.b. zu leicht zu fälschen)

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2014 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 16. Anwendungen Hashing

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 16. Anwendungen Hashing Kryptologie ernd orchert Univ. Tübingen SS 2017 Vorlesung Teil 16 nwendungen Hashing nwendung Hashing: Gehashte Passwörter Das enutzername/passwort Verfahren (Fator Wissen) ist mit weitem bstand das gängigste

Mehr

Beliebige Anzahl von Signaturen

Beliebige Anzahl von Signaturen Beliebige Anzahl von Signaturen Algorithmus Signaturketten Sei Π = (Gen, Sign, Vrfy) ein Einwegsignaturverfahren. 1 Gen : (pk 1, sk 1 ) Gen(1 n ) 2 Sign : Signieren der Nachricht m i. Verwende gemerkten

Mehr

Sicherheit: Fragen und Lösungsansätze

Sicherheit: Fragen und Lösungsansätze Vorlesung (WS 2014/15) Sicherheit: Fragen und Lösungsansätze Dr. Thomas P. Ruhroth TU Dortmund, Fakultät Informatik, Lehrstuhl XIV 1 Asymmetrische Verschlüsselung [mit freundlicher Genehmigung basierend

Mehr

Vortrag über QUANTENCOMPUTER. gehalten von Marcus HARRINGER, Gregor KÖNIG, Michael POBER, Klaus WERDENICH

Vortrag über QUANTENCOMPUTER. gehalten von Marcus HARRINGER, Gregor KÖNIG, Michael POBER, Klaus WERDENICH Vortrag über QUANTENCOMPUTER gehalten von Marcus HARRINGER, Gregor KÖNIG, Michael POBER, Klaus WERDENICH 24.01.2002 Einleitung massive Parallelrechner und absolut sichere Kodierungssyteme Erweiterung der

Mehr

Digitale Signaturen. Prinzipielle Verfahren und mathematische Hintergründe

Digitale Signaturen. Prinzipielle Verfahren und mathematische Hintergründe Digitale Signaturen Prinzipielle Verfahren und mathematische Hintergründe Seminar für Lehramtskandidaten SS2014 a1125227 - Roman Ledinsky Digitale Signaturen Was Euch heute erwartet: 1 2 3 4 5 Prinzip

Mehr

3. Vortrag: Das RSA-Verschlüsselungsverfahren

3. Vortrag: Das RSA-Verschlüsselungsverfahren Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 3. Vortrag: Das RSA-Verschlüsselungsverfahren Hendrik

Mehr

Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer

Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer Public Key Kryptographie mit dem RSA Schema Karsten Fischer, Sven Kauer Gliederung I. Historischer Hintergrund II. Public Key Kryptographie III. Beispielszenario IV. Einweg-Funktion V. RSA Verfahren VI.

Mehr

Quantenrechner. Ideen der Informatik Kurt Mehlhorn

Quantenrechner. Ideen der Informatik Kurt Mehlhorn Quantenrechner Ideen der Informatik Kurt Mehlhorn Übersicht Vorteile von Quantenrechnern Qbits und Überlagerungen Quantenrechner Grovers Algorithmus Technische Realisierung Zusammenfassung Quantenrechner

Mehr

Elliptische Kurven und ihre Anwendung in der Kryptographie

Elliptische Kurven und ihre Anwendung in der Kryptographie Elliptische Kurven und ihre Anwendung in der Kryptographie Carsten Baum Institut für Informatik Universität Potsdam 17. Juni 2009 1 / 29 Inhaltsverzeichnis 1 Mathematische Grundlagen Charakteristik eines

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Übungen zur Vorlesung Systemsicherheit

Übungen zur Vorlesung Systemsicherheit Übungen zur Vorlesung Systemsicherheit Asymmetrische Kryptographie Tilo Müller, Reinhard Tartler, Michael Gernoth Lehrstuhl Informatik 1 + 4 24. November 2010 c (Lehrstuhl Informatik 1 + 4) Übungen zur

Mehr

INFORMATIONSSICHERHEIT

INFORMATIONSSICHERHEIT Fakultät Informatik/Mathematik Professur Informatikrecht/Informationssysteme INFORMATIONSSICHERHEIT Prof. Dr. Andreas Westfeld Dresden, Wintersemester 2017/2018 Die revolutionäre Idee Diffie und Hellman

Mehr

Netzsicherheit Architekturen und Protokolle Instant Messaging

Netzsicherheit Architekturen und Protokolle Instant Messaging Instant Messaging Versuch: Eigenschaften einer Unterhaltung Unterhalten Sie sich leise mit Ihrem Nachbarn über ein aktuelles Thema. Dauer ca. 2 Minuten welche Rollen gibt es in einem IM-System? Analysieren

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Manfred Gruber http://www.lrz-muenchen.de/~gruber SS 2009, KW 15 Kleiner Fermatscher Satz Satz 1. Sei p prim und a 2 Z p. Dann

Mehr

Kryptographie. Nachricht

Kryptographie. Nachricht Kryptographie Kryptographie Sender Nachricht Angreifer Empfänger Ziele: Vertraulichkeit Angreifer kann die Nachricht nicht lesen (Flüstern). Integrität Angreifer kann die Nachricht nicht ändern ohne dass

Mehr

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über

Mehr

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Wiederholung Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Mathematische Grundlagen: algebraische Strukturen: Halbgruppe, Monoid,

Mehr