6: Public-Key Kryptographie (Grundidee)

Größe: px
Ab Seite anzeigen:

Download "6: Public-Key Kryptographie (Grundidee)"

Transkript

1 6: Public-Key Kryptographie (Grundidee) Ein Teil des Schlüssels ist nur dem Empfänger bekannt. Der auch dem Sender bekannte Teil kann sogar veröffentlicht werden. Man spricht dann von einem Schlüsselpaar. Schlüsselpaar: öffentlicher (P K) und geheimer Schlüssel (SK) Kein sicherer Kanal benötigt Jeder kann mit P K verschlüsseln, Nur mit SK kann entschlüsselt werden I. A. ineffizienter als symmetrische Kryptographie Alice Bob C = E P KB (M) (P K A, SK A ) (P K B, SK B ) 187 6: Public-Key Krypto

2 6: Public-Key Kryptographie (Beispiel: RSA) ( Diskrete Strukturen) 1 Wähle große Primzahlen p und q; berechne n := pq 2 wähle e Zϕ(n) ; berechne d: ed 1 (modϕ(n)). 3 Schlüssel: Tripel (e, d, n); öffentlich: (e, n) geheim: d 4 Verschlüsselungsfunktion E: E (e,n) (x) = x e mod n 5 Entschlüsselungsfunktion D: D (e,d,n) (y) = y d mod n 188 6: Public-Key Krypto

3 Vorstellbare Angriffe auf RSA 1 Faktorisieren von n. (Gilt als extrem schwierig!) 2 Berechnen von ϕ(n). (Dann kann man n faktorisieren Tafel!) 3 Ermitteln eines d mit x ed x ed x (modn); nicht notwendigerweise d = d. (Wg. ed = kϕ(n) + 1 erhält man Information über ϕ(n).) 4 Berechnen der e-ten Wurzel modulo n ( RSA-Wurzel ). (Vermutlich ebenso schwierig wie die Faktorisierung.) 5 Iteriertes Verschlüsseln des Kryptogramms. (Erfordert mit überwältigender Wahrscheinlichkeit astronomisch viele Iterationen nächste Folie.) 189 6: Public-Key Krypto

4 Iteriertes Verschlüsseln Geg. y Z n, wende den folgenden Algorithmus an: x := y. Solange x e y mod n: x := x e mod n. Gib x aus. (Offenbar: y x e (mod n).) It. Verschl. terminiert nach endlicher Zeit. (Warum?) In der Praxis: endliche Zeit fast immer überwältigend groß. Geg.: e = 17, n = 2773, y = 2209; ges: x mit E(x) = y? E(2209) = = 1504 E(1504) = = 2444 E(2444) = = 470 E( 470) = = 2209 Heureka! Es ist x = : Public-Key Krypto

5 6.1: Das Rabin-Kryptosystem Wie RSA, aber e = 2. Algorithmische Grundlage: Für zusammengesetztes n ist es extrem schwierig, die Gleichung x 2 y (mod n) zu lösen. Wenn man die Primteiler p und q von n kennt, kann man die Quadratwurzeln x p und x q (mod p bzw. mod q) effizient berechnen: x p 2 y (mod p) und x q 2 y (mod q). Mit dem Chinesischen Restsatz kann man x effizient berechnen, wenn man x p und x q kennt : Public-Key Krypto 6.1: Rabin

6 Quadratwurzeln modulo einer Primzahl Sei p > 2 prim. Entweder, p 3 (mod 4) oder p 1 (mod 4). In beiden Fällen kann man Quadratwurzeln mod p effizient berechnen. Wir betrachten nur den (mathemtisch einfacheren) Fall p 3 (mod 4). Sei a Z p. Gesucht: x mit x 2 a mod p. Da p prim ist, gilt ϕ(p) = p 1. Sei ggt(p, x) = 1. Nach dem kleinen Satz v. Fermat gilt Daraus folgt: x p 1 1 a (p 1)/2 (mod p). x 2 a 1 a a (p 1)/2 a a (p+1)/2 a 2(p+1)/4 (a 2 ) (p+1)/4 (mod p). Also gilt x = a (p+1)/4 (mod p) oder x = a (p+1)/4 (mod p) : Public-Key Krypto 6.1: Rabin

7 Ein Spezialfall des Chinesischen Restsatzes Satz 16 Seien m = m 1 m 2 mit ggt(m 1, m 2 ) = 1; y 1 = m 1 2 (mod m 1 ), und y 2 = m1 1 (mod m 2 ). Für a 1, a 2 Z und x = a 1 y 1 m 2 + a 2 y 2 m 1 gilt: x a 1 (mod m 1 ) und x a 2 (mod m 2 ). Beweis Es ist 1 mod m 1 0 mod m 1 {}}{{}}{ x = a 1 y 1 m 2 + a 2 y 2 m 1, also x a a 1 mod m 1. Analog x a 2 mod m 2. Nutzen für Rabin: m 1 = p, m 2 = q, x p y 1 m 2 + x q y 2 m 1 = x : Public-Key Krypto 6.1: Rabin

8 Rabin (Grundlagen) Für ungerade Primzahlen p q und n = pq gilt: Sei y Z p. Die Gleichung y = x 2 (modp) hat entweder gar keine oder genau zwei Lösungen, denn wenn y x 2 (mod p), dann y ( x) 2 (mod p). Sei y Z n. Die Gleichung y x 2 (mod n) hat entweder keine oder genau vier Lösungen x in Z n: 1 Eine Gleichung der Form y x 2 mod p ( ) bzw. y x 2 mod q ( ) hat entweder keine oder genau zwei Lösungen. 2 Hat (mindestens) eine der Gleichungen ( ) und ( ) keine Lösung, dann hat die Gleichung y = x 2 mod n auch keine. 3 Sonst ergibt jede Kombination je einer Lösung mod p und mod q (mit Hilfe des Chin. Restsatzes) eine Lösung mod n : Public-Key Krypto 6.1: Rabin

9 Rabin (Definition) 1 Wie RSA: p, q und n = pq. 2 Verschlüsselungsfunktion E: E[x] = x 2 mod n. 3 Entschlüsselungsoperation D??? 195 6: Public-Key Krypto 6.1: Rabin

10 Rabin Entschlüsselung Gegeben ein Chiffretext y. Berechne die beiden Lösungen der Gleichung y x 2 (mod p). Berechne die beiden Lösungen der Gleichung y x 2 (mod q). Berechne daraus die vier Lösungen der Gleichung y x 2 (mod n). Welche Lösung nehmen wir denn nun? Entscheide, welche der vier Lösungen richtig ist. (Z.B. mit Hilfe einer Prüfsumme.) Strenggenommen ist D gar keine Funktion! 196 6: Public-Key Krypto 6.1: Rabin

11 Rabin (Sicherheitsbeweis) Satz 17 Seien n = pq ein Rabin-Modulus und A ein Algorithmus zur Berechnung von Quadratwurzeln modulo n. Der folgende Algorithmus liefert mit mindestens der Wahrscheinlichkeit 0.5 einen Primfaktor von n: 1 Wähle zufällig r Z n. 2 Berechne y = r 2 mod n. 3 Berechne t = ggt(y, n). Wenn t > 1, gib t aus. stop 4 Rufe A auf zur Berechnung von x mit x 2 y mod n. 5 Ist x ±r, gib 1 aus. Sonst gib ggt(x + r, n) aus. stop Beweis-Skizze: ( Tafel) 197 6: Public-Key Krypto 6.1: Rabin

12 6.2: Elektronischer Münzwurf Aufgabenstellung für ein kryptographisches Protokoll: Ein Disput zwischen Alice und Bob soll durch einen Münzwurf entschieden werden ( Kopf Alice gewinnt, Zahl Bob gewinnt). Kann man so etwas auch über Telefon oder Internet machen? (Das ist natürlich leicht, wenn beide Beteiligte sich auf die Ehrlichkeit des Gegenübers verlassen... ) 198 6: Public-Key Krypto 6.2: Elektr. Münzwurf

13 Münzwurf-Protokoll 1 Alice wählt Primzahlen p und q. Alice Bob: n = pq. (Intention: Bob gewinnt Bob findet Teiler t n, 1 < t < n.) 2 Bob wählt zufällig x Z n. Ist ggt(x, n) > 1 hat Bob bereits gewonnen. Sonst: Bob Alice: y = x 2 mod n. 3 Alice berechnet r 1,..., r 4 mit ( ) r i 2 y (mod n). Alice Bob: r {r i } (zufällig gewählt). 4 Bob rechnet nach, ob ( ) gilt. 5 Ist r ±x mod n, gewinnt Bob: ggt(r + x, n) {p, q}. 6 Kann Bob keinen Faktor p bzw. q angeben, muss Alice dies tun. Sie gewinnt nur, wenn n = pq gilt und p und q teilerfremd sind. Andernfalls verliert sie : Public-Key Krypto 6.2: Elektr. Münzwurf

14 Kann Alice (unentdeckt) betrügen? Es gilt x {r i }. Sonst hat Alice keine Informationen über x. Ist n eine Primzahl(potenz), kann Alice im letzten Schritt selbst keine passenden Faktoren p und q angeben. Wählt Alice n als das Produkt mehrerer (verschiedener) Primzahlen, steigen Bobs Chancen, einen geeigneten Teiler t zu finden. Der Wert r ist tatsächlich eine Quadratwurzel von y (mod n). (Andernfalls würde Bob das beim Nachrechnen entdecken.) 200 6: Public-Key Krypto 6.2: Elektr. Münzwurf

15 Kann Bob betrügen? Bob kann versuchen, mehr als zwei Quadratwurzeln von y (modn) zu finden. Ebensogut kann er n faktorisieren. Ansonsten hat er keinen Einfluss darauf, welche Quadratwurzel r {r i } Alice ihm schickt : Public-Key Krypto 6.2: Elektr. Münzwurf

16 6.3: Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick (wenn die Fälschung bei einer gründlichen Prüfung nicht auffallen soll... ). Kopieren einer Unterschrift ist nicht möglich (Fotokopien und Faxe haben einen geringeren Beweiswert als Originale) : Public-Key Krypto 6.3: Digitale Unterschriften

17 Beispiel RSA-Modulus n = pq, öffentl. Exponent e, Verschlüsselungsoperation E geheimer Exponent d, Entschlüsselungsoperation D m Z n gilt ( Satz??): Für alle E(D(m)) = m, d.h. (m d ) e m (mod n). D.h., wenn man zuerst die geheime ( Signier -)Operation anwendet, und dann die öffentliche Operation (die Verifikation ), dann erhält man die ursprüngliche Nachricht. RSA-Modulus n = pq, öffentl. Exponent e, Verifikation E = V geheimer Exponent d, Signier-Operation D = S 203 6: Public-Key Krypto 6.3: Digitale Unterschriften

18 6.4: Diskrete Logarithmen( Diskrete Strukturen) Diffie-Hellman Schlüsselaustausch: Diskreter Logarithmus: Primzahl p und Generator g festgelegt. Alice: wählt a als geheimen Schlüssel öffentlicher Schlüssel: A = g a mod p. Bob: wählt b als geheimen Schlüssel öffentlicher Schlüssel: B = g b mod p. Geheimer Sitzungsschlüssel: K = g ab mod p. gegeben: Y g x (mod p); berechne : x Diffie-Hellman Problem : Gegeben A und B, berechne K : Public-Key Krypto 6.4: Diskrete Logarithmen

19 ElGamal Verschlüsselung Schlüsselerzeugung Primzahl p und Generator g entweder extern festgelegt, oder Teil des öffentlichen Schlüssels wichtig: g ist erzeugendes Element der Gruppe Z p, d.h., alle i {1,..., p 1} können in der Form mit j N dargestellt werden geheim: a öffentlich: A = g a mod p. i = g j mod p 205 6: Public-Key Krypto 6.4: Diskrete Logarithmen

20 ElGamal Verschlüsselung Ver- und Entschlüsseln Verschlüsseln: Nachricht M Z p wähle b zufällig Chiffretext: (C 1, C 2 ) mit C 1 = g b mod p und C 2 = M A b mod p Entschlüsseln: ( Tafel) 206 6: Public-Key Krypto 6.4: Diskrete Logarithmen

21 Bemerkungen Chiffretexte sind doppelt so lang wie Klartexte. Wenn man zweimal die gleiche Nachricht M verschlüsselt, erhält man mit hoher Wahrscheinlichkeit zwei verschiedene Chiffretexte (im Unterschied zu RSA und Rabin). Es gibt auch ElGamal Unterschriften. Die Sicherheit der ElGamal Verschlüsselung beruht auf der Härte des Diffie-Hellman Problems. Unterschied zwischen Diffie-Hellman und ElGamal: Diffie-Hellman: g ist erzeugendes Element irgend einer Untergruppe von Z p. ElGamal: g ist erzeugendes Element der ganzen Gruppe Z p. Wichtig für die Effizienz praktischer Implementationen! 207 6: Public-Key Krypto 6.4: Diskrete Logarithmen

22 6.5: Sicherheitsparameter kurzfristig für mehrere Jahrzehnte Symmetrische Kryptosysteme 80 bit 100 bit RSA/Rabin n > n > Diffie-Hellman p > p > ord(g) > ord(g) > ElGamal p > p > ord(g) = p 1 ord(g) = p : Public-Key Krypto 6.5: Sicherheitsparameter

23 6.6: Schlussbemerkungen Sie sollten in der Lage sein, beispielhaft zu erläutern, wie Public-Key-Kryptographie grundsätzlich funktioniert, das RSA- Kryptosysstem als Chiffre zu erklären (auch die Schlüsselerzeugung), RSA-Beispiele mit kleinen Zahlen zu berechnen, Fragen zu Sicherheit und Korrektheit des RSA Kryptosytems zu beantworten, und all diese Erkenntnisse auf andere Public-Key Kryptosysteme zu übetragen, insbesondere auf: Rabin, das geschilderte Münzwurfprotokoll, digitale Unterschriften und Kryptosysteme, deren Sicherheit auf der vermuteten Schwierigkeit basiert, diskrete Logarithmen zu berechnen : Public-Key Krypto 6.6: Schlussbemerkungen

Public Key Kryptographie

Public Key Kryptographie 3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische

Mehr

7: Grundlagen der Public-Key-Kryptographie

7: Grundlagen der Public-Key-Kryptographie 7: Grundlagen der Public-Key-Kryptographie 214 7: Public-Key-Kryptographie 7: Grundlagen der Public-Key-Kryptographie Wiederholung: Symmetrische Kryptographie 1 Schlüssel für Sender und Empfänger Benötigt

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen 3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt

Mehr

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren VI.4 Elgamal - vorgestellt 1985 von Taher Elgamal - nach RSA das wichtigste Public-Key Verfahren - besitzt viele unterschiedliche Varianten, abhängig von zugrunde liegender zyklischer Gruppe - Elgamal

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel

Mehr

3 Public-Key-Kryptosysteme

3 Public-Key-Kryptosysteme Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.

Mehr

Proseminar Schlüsselaustausch (Diffie - Hellman)

Proseminar Schlüsselaustausch (Diffie - Hellman) Proseminar Schlüsselaustausch (Diffie - Hellman) Schlüsselaustausch Mathematische Grundlagen Das DH Protokoll Sicherheit Anwendung 23.06.2009 Proseminar Kryptographische Protokolle SS 2009 : Diffie Hellman

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren VI.3 RSA - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman - vorgestellt 1977 - erstes Public-Key Verschlüsselungsverfahren - auch heute noch das wichtigste Public-Key Verfahren 1

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 4: Schlüsselvereinbarung Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2017 8.5.2017 Einleitung Einleitung In dieser Lerneinheit

Mehr

Public-Key-Verschlüsselung und Diskrete Logarithmen

Public-Key-Verschlüsselung und Diskrete Logarithmen Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln

Mehr

Hybride Verschlüsselungsverfahren

Hybride Verschlüsselungsverfahren Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 4. Auflage, 2009 [8-3] Schneier,

Mehr

Literatur. [8-9] ISM WS 2018/19 Teil 8/Asymmetrische Verschlüsselung

Literatur. [8-9]   ISM WS 2018/19 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 6. Auflage, 2017 [8-3] Schneier,

Mehr

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein

Mehr

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.

Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein

Mehr

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5 Kryptosysteme auf der Basis diskreter Logarithmen 1. Diffie Hellman Schlüsselaustausch 2. El Gamal Systeme 3. Angriffe auf Diskrete Logarithmen 4. Elliptische Kurven

Mehr

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz 2007-11-23 Überblick 1 2 Schnelle modulare Exponentiation Chinesischer Restsatz 3 Allgemeines Public-Key Methode Rivest, Shamir und Adleman 1977 Sicherheit des Verfahrens beruht auf Schwierigkeit der Primfaktorenzerlegung

Mehr

Abschnitt 5: Kryptographie. j (p j 1). 1 (p 1 1)p α 2

Abschnitt 5: Kryptographie. j (p j 1). 1 (p 1 1)p α 2 Abschnitt 5: Kryptographie. Zunächst wollen wir die Struktur von (Z/mZ) untersuchen. 5.1 Definition: Die Eulersche ϕ-funktion: ϕ : N N; ϕ(m) := (Z/mZ) 5.2 Bemerkung: (Z/mZ) {a {1,..., m 1} ggt(a, m) =

Mehr

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse

Mehr

IT-Sicherheitsmanagement. Teil 8: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 8: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 8: Asymmetrische Verschlüsselung 02.01.18 1 Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001

Mehr

Proseminar Datensicherheit & Versicherungsmathematik ElGamal-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik ElGamal-Verfahren Proseminar Datensicherheit & Versicherungsmathematik ElGamal-Verfahren Markus Kröll 14. Jänner 2009 Inhaltsverzeichnis 1 Einführung 2 2 Das ElGamal-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

IT-Sicherheit Kapitel 4 Public Key Algorithmen

IT-Sicherheit Kapitel 4 Public Key Algorithmen IT-Sicherheit Kapitel 4 Public Key Algorithmen Dr. Christian Rathgeb Sommersemester 2014 1 Einführung Der private Schlüssel kann nicht effizient aus dem öffentlichen Schlüssel bestimmt werden bzw. die

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.4 Semantische Sicherheit 1. Sicherheit partieller Informationen 2. Das Verfahren von Rabin 3. Sicherheit durch Randomisierung Semantische Sicherheit Mehr als nur

Mehr

Das RSA Kryptosystem

Das RSA Kryptosystem Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice

Mehr

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Herwig Stütz 2007-11-23 1 Inhaltsverzeichnis 1 Einführung 2 2 Das RSA-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

Asymmetrische Algorithmen

Asymmetrische Algorithmen Asymmetrische Algorithmen Abbildung 9. Leonhard Euler Leonhard Euler, geboren am 15. April 1707 in Basel, gestorben am 18. September 1783 in Sankt Petersburg, war einer der produktivsten Mathematiker aller

Mehr

Kryptographie - eine mathematische Einführung

Kryptographie - eine mathematische Einführung Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen

Mehr

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie Dozent: Dr. Ralf Gerkmann Referenten: Jonathan Paulsteiner (10939570) und Roman Lämmel ( ) Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie 0. Inhalt 1. Einführung in die Kryptographie

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Manfred Gruber http://www.lrz-muenchen.de/~gruber SS 2009, KW 15 Kleiner Fermatscher Satz Satz 1. Sei p prim und a 2 Z p. Dann

Mehr

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976)

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) p : eine (grosse) Primzahl e : Zahl 0 < e < p mit ggt(e, p 1) = 1 d Inverses von e in Z p 1, dh d e 1 mod p 1 (= φ(p)) M : numerisch codierter

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. 29.11.2018 32. Vorlesung Homomorphiesatz für Ringe Chinesischer Restsatz, speziell für Ringe Z n Lösen von t simultanen linearen Kongruenzen Sonderfall t = 2 Anwendungen, z.b. schnelle Addition

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Übungen zur Vorlesung Systemsicherheit

Übungen zur Vorlesung Systemsicherheit Übungen zur Vorlesung Systemsicherheit Asymmetrische Kryptographie Tilo Müller, Reinhard Tartler, Michael Gernoth Lehrstuhl Informatik 1 + 4 24. November 2010 c (Lehrstuhl Informatik 1 + 4) Übungen zur

Mehr

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3

Mehr

6.2 Asymmetrische Verschlüsselung

6.2 Asymmetrische Verschlüsselung 6.2 Asymmetrische Verschlüsselung (asymmetric encryption, public-key encryption) Prinzip (Diffie, Hellman, Merkle 1976-78): Statt eines Schlüssels K gibt es ein Schlüsselpaar K E, K D zum Verschlüsseln

Mehr

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Satz 4.2.11 (Chinesischer Restsatz, Ring-Version) Sind N teilerfremd (d.h. ggt( ) =1), so ist die Abbildung ein Ring-Isomorphismus. :

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Betriebssysteme und Sicherheit

Betriebssysteme und Sicherheit Betriebssysteme und Sicherheit Asymmetrische Kryptographie WS 2012/2012 Dr.-Ing. Elke Franz Elke.Franz@tu-dresden.de 1 Überblick 1 Prinzip asymmetrischer (Konzelations-)Systeme 2 Mathematische Grundlagen

Mehr

Attacken auf RSA und Das Rabin Kryptosystem

Attacken auf RSA und Das Rabin Kryptosystem Attacken auf RSA und Das Rabin Kryptosystem Institut für Informatik Universität Potsdam 4. Januar 2005 Überblick Wiederholung: RSA Das RSA Kryptosystem Attacken auf RSA RSA-FACTOR Wieners Algorithmus Das

Mehr

4 Der diskrete Logarithmus mit Anwendungen

4 Der diskrete Logarithmus mit Anwendungen 4 Der diskrete Logarithmus mit Anwendungen 62 4.1 Der diskrete Logarithmus Für eine ganze Zahl a Z mit ggt(a, n) = 1 hat die Exponentialfunktion mod n zur Basis a exp a : Z M n, x a x mod n, die Periode

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) WS 2016/17 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 11 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n)

RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n) RSA Parameter { öffentlich: N = pq mit p, q prim und e Z RSA Parameter φ(n) geheim: d Z φ(n) mit ed = 1 mod φ(n). Satz RSA Parameter Generierung RSA-Parameter (N, e, d) können in Zeit O(log 4 N) generiert

Mehr

Rabin Verschlüsselung 1979

Rabin Verschlüsselung 1979 Rabin Verschlüsselung 1979 Idee: Rabin Verschlüsselung Beobachtung: Berechnen von Wurzeln in Z p ist effizient möglich. Ziehen von Quadratwurzeln in Z N ist äquivalent zum Faktorisieren. Vorteil: CPA-Sicherheit

Mehr

Regine Schreier

Regine Schreier Regine Schreier 20.04.2016 Kryptographie Verschlüsselungsverfahren Private-Key-Verfahren und Public-Key-Verfahren RSA-Verfahren Schlüsselerzeugung Verschlüsselung Entschlüsselung Digitale Signatur mit

Mehr

Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp

Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Fakultät für Mathematik und Informatik Universität of Bremen Übersicht des Vortrags 1 Einfache Kryptosysteme 2 Einmalschlüssel

Mehr

Klausurtermin. Klausur Diskrete Mathematik I Do stündig

Klausurtermin. Klausur Diskrete Mathematik I Do stündig Klausurtermin Klausur Diskrete Mathematik I Do. 28.02.2008 3-stündig 07.12.2007 1 Wiederholung Komplexität modularer Arithmetik Addition: O(n) Multiplikation: O(n 2 ) bzw. O(n log 2 3 ) Exponentiation:

Mehr

Public Key Kryptographie

Public Key Kryptographie 4. Dezember 2007 Outline 1 Einführung 2 3 4 Einführung 1976 Whitefield Diffie und Martin Hellman 2 Schlüsselprinzip Asymmetrische Verschlüsselungsverfahren public Key private Key Anwendung E-Mail PGP openpgp

Mehr

Kryptografie Die Mathematik hinter den Geheimcodes

Kryptografie Die Mathematik hinter den Geheimcodes Kryptografie Die Mathematik hinter den Geheimcodes Rick Schumann www.math.tu-freiberg.de/~schumann Institut für Diskrete Mathematik und Algebra, TU Bergakademie Freiberg Akademische Woche Sankt Afra /

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 06.05.2013 1 / 25 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung Kapitel 2. Elementare Zahlentheorie 2.1. Primfaktorzerlegung Menge der ganzen Zahlen Z = {..., 3, 2, 1, 0, 1, 2, 3,...} Addition Inverse Multiplikation Z Z Z, Z Z, Z Z Z, (a, b) a + b a a (a, b) a b Ausgezeichnete

Mehr

3. Vortrag: Das RSA-Verschlüsselungsverfahren

3. Vortrag: Das RSA-Verschlüsselungsverfahren Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 3. Vortrag: Das RSA-Verschlüsselungsverfahren Hendrik

Mehr

Digitale Unterschriften mit ElGamal

Digitale Unterschriften mit ElGamal Digitale Unterschriften mit ElGamal Seminar Kryptographie und Datensicherheit Institut für Informatik Andreas Havenstein Inhalt Einführung RSA Angriffe auf Signaturen und Verschlüsselung ElGamal Ausblick

Mehr

7 Asymmetrische Kryptosysteme

7 Asymmetrische Kryptosysteme 10 7 Asymmetrische Kryptosysteme 7 Asymmetrische Kryptosysteme Diffie und Hellman kamen 1976 auf die Idee, dass die Geheimhaltung des Chiffrierschlüssels keine notwendige Voraussetzung für die Sicherheit

Mehr

4 Kryptologie. Übersicht

4 Kryptologie. Übersicht 4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von

Mehr

Kapitel 3 Elementare Zahletheorie

Kapitel 3 Elementare Zahletheorie Kapitel 3 Elementare Zahletheorie 89 Kapitel 3.1 Ganze Zahlen, Gruppen und Ringe 90 Die ganzen Zahlen Menge der ganzen Zahlen Z={..., 3, 2, 1,0,1,2,3,...} Es gibt zwei Operationen Addition: Z Z Z, (a,b)

Mehr

11. Das RSA Verfahren

11. Das RSA Verfahren Chr.Nelius: Zahlentheorie (SoSe 2017) 53 11. Das RSA Verfahren Bei einer asymmetrischen Verschlüsselung lässt sich der Schlüssel zum Entschlüsseln nicht aus dem Schlüssel zum Verschlüsseln bestimmen und

Mehr

El Gamal Verschlüsselung und seine Anwendungen

El Gamal Verschlüsselung und seine Anwendungen El Gamal Verschlüsselung und seine Anwendungen Andrés Guevara July 11, 2005 1 Kurze Einführung in die Kryptographie Situation: Absender will Empfänger eine Nachricht schicken. Einige Ziele der Kryptographie

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4 Public Key Kryptographie mit RSA 1. Ver- und Entschlüsselung 2. Schlüsselerzeugung und Primzahltests 3. Angriffe auf das RSA Verfahren 4. Sicherheit von RSA Probleme

Mehr

Kryptographie. Nachricht

Kryptographie. Nachricht Kryptographie Kryptographie Sender Nachricht Angreifer Empfänger Ziele: Vertraulichkeit Angreifer kann die Nachricht nicht lesen (Flüstern). Integrität Angreifer kann die Nachricht nicht ändern ohne dass

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 6.2 Digitale Signaturen 1. Sicherheitsanforderungen 2. RSA Signaturen 3. ElGamal Signaturen Wozu Unterschriften? Verbindliche Urheberschaft von Dokumenten Unterschrift

Mehr

Ideen und Konzepte der Informatik Kryptographie

Ideen und Konzepte der Informatik Kryptographie Ideen und Konzepte der Informatik Kryptographie und elektronisches Banking Antonios Antoniadis (basiert auf Folien von Kurt Mehlhorn) 4. Dec. 2017 4. Dec. 2017 1/30 Übersicht Zwecke der Kryptographie Techniken

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4 Public Key Kryptographie mit RSA 1. Ver- und Entschlüsselung 2. Schlüsselerzeugung und Primzahltests 3. Angriffe auf das RSA Verfahren 4. Sicherheit von RSA Probleme

Mehr

4 Der diskrete Logarithmus mit Anwendungen

4 Der diskrete Logarithmus mit Anwendungen 4 Der diskrete Logarithmus mit Anwendungen 53 4.1 Der diskrete Logarithmus Sei G eine Gruppe (multiplikativ geschrieben) und a G ein Element der Ordnung s (die auch sein kann). Dann ist die Exponentialfunktion

Mehr

Kryptographie mit elliptischen Kurven

Kryptographie mit elliptischen Kurven Kryptographie mit elliptischen Kurven Dr. Dirk Feldhusen SRC Security Research & Consulting GmbH Bonn - Wiesbaden Inhalt Elliptische Kurven! Grafik! Punktaddition! Implementation Kryptographie! Asymmetrische

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

Kryptographische Algorithmen

Kryptographische Algorithmen Kryptographische Algorithmen Lerneinheit 6: Public Key Kryptosysteme Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2016/2017 19.9.2016 Public Key Kryptosysteme Einleitung

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

INFORMATIONSSICHERHEIT

INFORMATIONSSICHERHEIT Fakultät Informatik/Mathematik Professur Informatikrecht/Informationssysteme INFORMATIONSSICHERHEIT Prof. Dr. Andreas Westfeld Dresden, Wintersemester 2017/2018 Die revolutionäre Idee Diffie und Hellman

Mehr

RSA Äquivalenz der Parameter

RSA Äquivalenz der Parameter RSA Kryptosystem Wurde 1977 von Rivest, Shamir und Adleman erfunden. Genaue Beschreibung im PKCS #1. De-facto Standard für asymmetrische Kryptosysteme. Schlüsselerzeugung: Seien p, q zwei verschiedene,

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Kryptographische Grundlagen

Kryptographische Grundlagen Kryptographische Grundlagen Bernhard Lamel Universität Wien, Fakultät für Mathematik 10. Mai 2007 Outline 1 Symmetrische Verschlüsselung 2 Asymmetrische Verschlüsselung 3 Praxis Verschlüsseln und Entschlüsseln

Mehr

VIII. Digitale Signaturen

VIII. Digitale Signaturen VIII. Digitale Signaturen Bob Eve Eve möchte - lauschen - ändern - personifizieren Alice 1 Aufgaben - Vertraulichkeit - Lauschen - Authentizität - Tauschen des Datenursprungs - Integrität - Änderung der

Mehr

Mathematische Grundlagen der Kryptografie (1321) SoSe 06

Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Klausur am 19.08.2006: Lösungsvorschläge zu den Aufgaben zu Aufgabe I.1 (a) Das numerische Äquivalent zu KLAUSUR ist die Folge [10, 11, 0, 20, 18,

Mehr

Elliptische Kurven in der Kryptographie. Prusoth Vijayakumar / 16

Elliptische Kurven in der Kryptographie. Prusoth Vijayakumar / 16 1 / 16 06. 06. 2011 2 / 16 Übersicht Motivation Verfahren 3 / 16 Motivation Relativ sicher, da auf der Schwierigkeit mathematischer Probleme beruhend (z.b. Diskreter Logarithmus, Faktorisieren) Schnellere

Mehr

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994).

Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994). Primzahltest Wir wollen testen, ob eine gegebene Zahl n eine Primzahl ist Effizienter Algorithmus zum Faktorisieren ist unbekannt Kontraposition des Kleinen Satzes von Fermat liefert: Falls a n 1 1 mod

Mehr

VI. Public-Key Kryptographie

VI. Public-Key Kryptographie VI. Public-Key Kryptographie Definition 2.1 Ein Verschlüsselungsverfahren ist ein 5-Tupel (P,C,K,E,D), wobei 1. P die Menge der Klartexte ist. 2. C die Menge der Chiffretexte ist. 3. K die Menge der Schlüssel

Mehr

Mathematisches Kaleidoskop 2014 Materialien Teil 2. Dr. Hermann Dürkop

Mathematisches Kaleidoskop 2014 Materialien Teil 2. Dr. Hermann Dürkop Mathematisches Kaleidoskop 2014 Materialien Teil 2 Dr. Hermann Dürkop 1 1.6 Quadratische Reste und das Legendre-Symbol Im folgenden seien die Moduln p immer Primzahlen. Wir haben bisher gesehen, ob und

Mehr

Einführung in die asymmetrische Kryptographie

Einführung in die asymmetrische Kryptographie !"#$$% Einführung in die asymmetrische Kryptographie Dipl.-Inform. Mel Wahl Prof. Dr. Christoph Ruland Universität Siegen Institut für digitale Kommunikationssysteme Grundlagen Verschlüsselung Digitale

Mehr

Asymmetrische Kryptographie u

Asymmetrische Kryptographie u Asymmetrische Kryptographie u23 2015 Simon, Florob e.v. https://koeln.ccc.de Cologne 2015-10-05 1 Zahlentheorie Modulare Arithmetik Algebraische Strukturen Referenzprobleme 2 Diffie-Hellman Diffie-Hellman-Schlüsselaustausch

Mehr

IT-Security. Teil 9: Asymmetrische Verschlüsselung

IT-Security. Teil 9: Asymmetrische Verschlüsselung IT-Security Teil 9: Asymmetrische Verschlüsselung 20.09.18 1 Literatur [9-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [9-2] Schmeh,

Mehr

Anwendungen der Linearen Algebra: Kryptologie

Anwendungen der Linearen Algebra: Kryptologie Anwendungen der Linearen Algebra: Kryptologie Philip Herrmann Universität Hamburg 5.12.2012 Philip Herrmann (Universität Hamburg) AnwLA: Kryptologie 1 / 28 No one has yet discovered any warlike purpose

Mehr

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen Sommersemester 2008 Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick

Mehr

Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer?

Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer? Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer? Harold Gutch logix@foobar.franken.de KNF Kongress 2007, 25. 11. 2007 Outline Worum geht es überhaupt? Zusammenhang

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

Diskreter Logarithmus und Primkörper

Diskreter Logarithmus und Primkörper Diskreter Logarithmus und Primkörper Neben dem RSA-Verfahren ist die ElGamal-Verschlüsselung 8 ein weiteres klassische Public-Key-Verfahren, welches von Taher ElGamal auf der Konferenz CRYPTO 84 vorgestellt

Mehr

Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer

Public Key Kryptographie mit dem RSA Schema. Karsten Fischer, Sven Kauer Public Key Kryptographie mit dem RSA Schema Karsten Fischer, Sven Kauer Gliederung I. Historischer Hintergrund II. Public Key Kryptographie III. Beispielszenario IV. Einweg-Funktion V. RSA Verfahren VI.

Mehr

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

4 Diskrete Logarithmen und Anwendungen

4 Diskrete Logarithmen und Anwendungen Stand: 19.1.2015 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 4 Diskrete Logarithmen und Anwendungen 4.1 Diskrete Logarithmen Wir betrachten eine endliche zyklische Gruppe (G,, e)

Mehr

INFORMATIONSSICHERHEIT

INFORMATIONSSICHERHEIT Fakultät Informatik/Mathematik Professur Informatikrecht/Informationssysteme Modulare Reduktion INFORMATIONSSICHERHEIT Prof. Dr. Andreas Westfeld Die basiert auf einer festen ganzen Zahl m > 1, die Modulus

Mehr