Redoxreaktionen. Aufgabenstellung. Grundlagen. Versuchsdurchführung. Chemisches Grundpraktikum Beispiel 5 / 2012

Größe: px
Ab Seite anzeigen:

Download "Redoxreaktionen. Aufgabenstellung. Grundlagen. Versuchsdurchführung. Chemisches Grundpraktikum Beispiel 5 / 2012"

Transkript

1 Institut für Anorganische Chemie / Materialchemie der Universität Wien Chemisches Grundpraktikum Beispiel 5 / 2012 Redoxreaktionen Aufgabenstellung Als Beispiele für Redoxreaktionen sollen a) die Abscheidung von Metallen aus ihren Lösungen durch andere Metalle, und b) Reaktionen, bei denen alle teilnehmenden Stoffe (Reaktanden und Reaktionsprodukte) in gelöster Form vorliegen, untersucht werden. Zum Nachweis reagierender bzw. gebildeter Stoffe in Lösung soll vor allem die Farbe der Stoffe oder eine weitere Reaktion unter Bildung farbiger Produkte herangezogen werden. Grundlagen Oxidation, Reduktion, Oxidationszahlen, Elektronegativität, Redoxreaktionen, elektrochemische Spannungsreihe, Metallabscheidung, Redoxpotentiale, Oxidationsmittel, Reduktionsmittel, Halbgleichungen, Aufstellung von Redoxgleichungen, (s. Mortimer/Müller, 10. Auflage, : Kap. 15.2, 15.3, 22.1 bis 22.8) Versuchsdurchführung In mehreren Vorversuchen soll zunächst a ) die Wirkungsweise von metallischem Kupfer und Zink als Reduktionsmittel bzw. b) die Reaktion verschiedener Oxidationsmittel in wässriger Lösung in Erfahrung gebracht werden. Anschließend c) werden zwei von den Diensthabenden ausgegebene Proben mit unbekanntem Inhalt untersucht. a) Abscheidung von Metallen und von Wasserstoff Es soll geprüft werden, ob die Metalle Cu und Zn (als Reduktionsmittel) mit den Kationen H +, Sn 2+, Sb 3+, Cu 2+, Ag +, Zn 2+, Hg 2+ reagieren, d.h. ob die betreffenden Metalle bzw. elementarer Wasserstoff abgeschieden werden. Das ausgegebene Kupferblech ist zur Entfernung von Oxiden mit 2 M HCl zu ätzen und anschließend gut mit Wasser abzuspülen. Je ein Streifen ist in ca. 2 ml Probelösung einzutauchen. Das Zink muss vor der Verwendung nicht geätzt werden. Je ein Stück Zinkblech ist in ca. 2 ml Probelösung einzutauchen. Als Reaktionspartner sind folgende bereitgestellte Lösungen einzusetzen: 2,0 M HCl 0,50 M SnCl 2 0,05 M SbCl 3 (in 3,5 M HCl) *) 0,50 M Cu(NO 3 ) 2 0,50 M AgNO 3 0,50 M Zn(NO 3 ) 2 0,50M Hg(NO 3 ) 2 *) Die verhältnismäßig hohe Säurekonzentration ist hier erforderlich, um Ausfallen von Sb(OH) 3 bzw. von basischen Salzen zu verhindern. Es sind sowohl die sofort sichtbar werdenden Reaktionen wie auch die erst nach längerer Zeit auftretenden Veränderungen (Abscheidung von Kristallen der Metalle) zu beobachten, zu notieren und in Form eines übersichtlichen Schemas zu protokollieren (siehe Hinweise zur Protokollführung). Die abgeschiedenen Metalle lassen sich auf folgende Art unterscheiden: Ag-Metall ist je nach Korngröße silbrig oder schwarz, kann aber bei Abscheidung aus Lösung auch schöne Kristalle oder Nadeln bilden. Hg-Metall ist silbrig glänzend und bildet mit vielen Metallen Amalgame (d.h. eine feste oder flüssige Legierung eines Metalls mit Quecksilber). Cu-Metall ist rötlich, bildet aber auf Zn einen dunklen Überzug. Verwendet man Fe zur Reduktion, so ist die rote Farbe des Cu besser zu sehen.

2 Chemisches Grundpraktikum Beispiel 5 / 2012 Sb-Metall wird in schwarzer Form abgeschieden. Da meist mit Lösungen gearbeitet wird, die stark sauer sind, kommt es bei Einsatz unedler Metalle wie Zn zusätzlich auch zur Freisetzung von H 2. Sn-Metall ist bei Abscheidung auf Zn zuerst schwarz, bildet aber dann meistens schöne Kristalle. b) Reaktionen in Lösung Neben anderen Oxidations- bzw. Reduktionsvorgängen soll vorwiegend die auffällige Wirkung von H 2 O 2 und KMnO 4 (in saurer wässriger Lösung) als Oxidationsmittel untersucht werden. Als Reaktionspartner stehen folgende Lösungen zur Verfügung: H 2 O 2 (1,0 M, ca. 3%ig) FeSO 4 (0,10 M) *) KI (0,10 M bzw. 0,50 M) Na 2 SO 3 (0,50 M) *) Bemerkung zu FeSO 4 -Lösung als Reagens: Da Fe 2+ auch durch Luftsauerstoff leicht zu Fe 3+ oxidiert wird, muss der Fe 2+ -Lösung ein Reduktionsmittel zugesetzt werden, das gebildetes Fe 3+ wieder zu Fe 2+ reduziert, die folgenden Reaktionen aber nicht stört. Dafür ist metallisches Fe gut geeignet. Den mit einigen Tropfen 1 M H 2 SO 4 (10 Vol%) angesäuerten FeSO 4 -Lösungen wird ein Büschel dünnen Eisendrahtes zugefügt und die Oxidation dadurch weitgehend verhindert. Trotzdem wird empfohlen, die Lösung vor Beginn der Versuche auf Fe 3+ zu prüfen. H 2 O 2 als Oxidationsmittel: Es soll die Reaktion mit FeSO 4 - und KI-Lösung (0,10 M) untersucht werden. Dazu werden je ca. 2 ml dieser Lösungen vor Verwendung mit einigen Tropfen 1 M H 2 SO 4 angesäuert. Dann gibt man tropfenweise 3 %iges H 2 O 2 zu und beobachtet, ob eine Oxidation stattfindet. MnO 4 - als Oxidationsmittel: Als MnO 4 - -Reagens ist eine Lösung 0,01 M KMnO 4 in 0,5 M H 2 SO 4 einzusetzen. Sie ist durch Vermischen gleicher Volumina 0,02 M KMnO 4 und 1 M H 2 SO 4 von den Studierenden selbst herzustellen. Zu je ca. 2 ml dieser KMnO 4 -Lösung sind alle oben genannten Lösungen (KI als 0,50 M Lösung!) zuzugeben - gegebenenfalls bis zur vollständigen Entfärbung des Permanganats. Falls dunkel-braune Niederschläge auftreten (MnO 2, MnO(OH) 2 ) war die Lösung nicht sauer genug. Nachweisreaktionen: Als Oxidationsprodukte von H 2 O 2, FeSO 4, KI, Na 2 SO 3 sind bei gleicher Reihenfolge O 2 (nur in Reaktion mit MnO 4 -, in Reaktion mit FeSO 4 und KI wirkt H 2 O 2 als Oxidationsmittel unter Bildung von H 2 O als Reaktionsprodukt), Fe 3+, I 2 und SO 4 2- zu erwarten. O 2 lässt sich als Gasentwicklung erkennen. Fe 3+ als mögliches Oxidationsprodukt kann mit KSCN durch Bildung einer roten Komplexverbindung [Fe(SCN) 3 ] nachgewiesen werden. I 2 kann durch seine braune Farbe in wässriger Lösung erkannt und durch Ausschütteln mit einem organischen Lösungsmittel, z.b. mit ca. 1 ml Chloroform (CHCl 3 ), nachgewiesen werden (I 2 in CHCl 3 gelöst ist violett). Zusatzversuche: Die Nachweisreaktionen für Fe 3+ und I 2 können durch Zugabe eines geeigneten Reduktionsmittels, wie etwa SO 3 2-, wieder rückgängig gemacht werden. In diesem Falle sind Fe 3+ und I 2 gegnüber SO 3 2- als Oxidationsmittel zu verstehen.

3 Chemisches Grundpraktikum Beispiel 5 / 2012 Diese Versuche sind mit den Reaktionsgemischen durchzuführen, in denen Fe 3+ bzw. I 2 durch Oxidation mit KMnO 4 gebildet und anschließend nachgewiesen wurden. Man setzt zu den entsprechenden Lösungen 0,1 M Na 2 SO 3 zu. Ein Redoxprozess bewirkt das Verschwinden der charakteristischen Färbungen, durch die Fe 3+ bzw. I 2 nachgewiesen wurden. c) Untersuchung unbekannter Proben Es ist eine Probe mit den in Abschnitt a) beschriebenen Abscheidungsreaktionen zu untersuchen. Folgende Ionen können vorliegen: H +, Sn 2+, Sb 3+, Cu 2+ Ag +, Zn 2+, Hg 2+. Eine zweite Probe ist mit den in Abschnitt b) beschriebenen Reaktionen in Lösung zu untersuchen. Es können folgende Substanzen bzw. Ionen vorliegen: Protokoll H 2 O 2, Fe 2+, I -, SO Die in den Abschnitten a) und b) beobachteten Reaktionen (Verfärbungen, Abscheidungen, Niederschlagsbildungen, Gasentwicklungen usw.) sind in Form eines übersichtlichen Schemas (eventuell in Tabellenform) zu dokumentieren. Durch Vergleich mit den aus a) und b) bekannten Reaktionen soll auf den Inhalt der ausgegebenen Probe geschlossen werden (siehe Musterprotokoll). Für die zu identifizierenden Proben sind sämtliche Reaktionsgleichungen (gegebenenfalls auch die Nachweisreaktionen und Zusatzversuche) anzuschreiben. Zu diesem Zweck sind in der Tabelle für die elektrochemische Spannungsreihe neben den Standardpotentialen die zugehörigen Teilgleichungen (Halbgleichungen) in Reduktionsschreibweise angegeben, die dann durch geeignete Kombination zur Aufstellung von Summengleichungen für die beobachteten Redoxreaktionen herangezogen werden können. (Fertige Redoxgleichungen ohne Zuhilfenahme der Halbgleichungen werden nicht akzeptiert.) Beispiele für die tabellarische Wiedergabe der Beobachtungen: a) Abscheidung von Metallen Cu-Blech Zn-Blech HCl (2,0 M) SnCl 2 (0,5 M) SbCl 3 (0,05 M) Cu(NO 3 ) 2 (0,5 M) AgNO 3 (0,5 M) Zn(NO 3 ) 2 (0,5 M) Hg(NO 3 ) 2 (0,5 M)

4 Chemisches Grundpraktikum Beispiel 5 / 2012 b) Reaktionen in Lösung FeSO 4 (0,1 M) KI (0,1 M) H 2 O 2 H 2 O 2 als Oxidationsmittel Nachweis mit KSCN Ausschütteln mit CHCl 3 H 2 O 2 (3 %ig) KMnO 4 in 0,5 M H 2 SO 4 MnO 4 als Oxidationsmittel Nachweis mit a)kscn b)chcl 3 Reaktion mit Na 2 SO 3 FeSO 4 (0,1 M) a) KI (0,5 M) b) Na 2 SO 3 (0,1 M) Hinweise zur Formulierung der stattfindenden Reaktionen: Beim Aufstellen der Reaktionsgleichungen von Redoxprozessen muss man - so wie bei der Behandlung anderer Arten von Reaktionen - die Ausgangsstoffe und die Produkte der Reaktion, d.h. die chemischen Formeln dieser Stoffe kennen. Aus diesen Formeln kann man die Oxidationszahlen der Elemente ableiten, bei denen durch den Redoxprozess eine Änderung der Oxidationszahl eintritt. Die Änderung der Oxidationszahl ergibt bei jedem der beiden an der Reaktion beteiligten Redoxpaare die Anzahl der übertragenen Elektronen. Man stellt dann am besten für jedes der beiden Redoxpaare getrennt eine Halbgleichung auf, d.h. eine Gleichung, in der die Zahl der abgegebenen oder aufgenommenen Elektronen angeführt ist (vgl. Teilgleichungen in der Tabelle der Standardpotentiale). Dabei wird (zur richtigen Wiedergabe der Reaktionsrichtung) die Halbreaktion des Redoxpaares mit dem höheren Potential als Reduktion angeschrieben, jene des Redoxpaares mit niedrigerem Potential als Oxidation. Die Zahl der übertragenen Elektronen in der zu ermittelnden Reaktionsgleichung ist dann das kleinste gemeinsame Vielfache dieser beiden Elektronenzahlen. Durch Multiplizieren der beiden Halbgleichungen mit den entsprechenden Koeffizienten wird die Zahl der übertragenen Elektronen auf das kleinste gemeinsame Vielfache gebracht. Durch Addition der beiden Halbgleichungen erhält man dann die gesuchte Reaktionsgleichung. Beispiel: Auflösen von Aluminium in Salzsäure unter Entwicklung von (elementarem) Wasserstoffgas. (Diese Reaktion läuft in der Wärme leicht ab.) Redoxpaare: H + / H 2, Reduktionspotentiale: 0 V Al 3+ / Al -1,66 V Die zugehörigen Halbgleichungen: Reduktion: 2 H e - H 2 Oxidation: Al Al e -

5 Chemisches Grundpraktikum Beispiel 5 / 2012 Kleinstes gemeinsames Vielfaches für 2 e - und 3 e - ist 6 e -, d.h. die Reduktionshalbgleichung ist mit 3 zu multiplizieren, die Oxidationshalbgleichung mit 2. Die Addition ergibt dann als vollständige Redoxgleichung: 2 Al + 6 H + 2 Al H 2 Anmerkung: Schwierigkeiten treten auf wenn in einem Reagens mehrere verschiedene Oxidationsstufen auftreten, wie etwa im Fall H 2 O 2. Je nach Reaktionspartner kann dabei entweder H 2 O (Oxidationszahl von Sauerstoff -II) oder O 2 (Oxidationszahl von Sauerstoff 0) gebildet werden. H 2 O 2 als Oxidationsmittel: H 2 O 2 als Reduktionsmittel: (-I) (-II) (-I) (0) H 2 O H e - 2 H 2 O H 2 O 2 O H e - Dementsprechend sind die beiden Redoxpotentiale H 2 O 2 / H 2 O und O 2 / H 2 O 2 auch an zwei verschiedenen Stellen in der elektrochemischen Spannungsreihe zu finden. Elektrochemische Spannungsreihe Standardpotentiale (Normalpotentiale, E ) einiger Redoxpaare bei 25 C oxidierte Form / reduzierte Form E o (V) Halbgleichung F 2 / F - 2,87 F e F H 2 O 2 / H 2 O 1,77 H 2 O H e - 2H 2 O - MnO 4 / Mn 2+ 1,51 - MnO H e - Mn H 2 O Au 3+ / Au 1,42 Au e - Au Cl 2 / Cl - 1,36 Cl e - 2 Cl - O 2 / H 2 O 1,23 O H e - 2 H 2 O Br 2 / Br - 1,07 Br e - 2 Br - Hg 2+ / Hg 0,85 Hg e - Hg Ag + / Ag 0,80 Ag + + e - Ag Fe 3+ / Fe 2+ 0,77 Fe 3+ + e - Fe 2+ O 2 / H 2 O 2 0,68 O H + +2 e - H 2 O 2 I 2 / I - 0,54 I e - 2 I - Cu 2+ / Cu 0,34 Cu e - Cu SbO + (Sb 3+ ) / Sb 0,21 Sb e - Sb SO 4 2- / H 2 SO 3 (SO ) 0,20 SO H e - H 2 SO 3 + H 2 O H + / H 2 0,00 2 H + + 2e - H 2 Sn 2+ / Sn -0,14 Sn e - Sn Fe 2+ / Fe -0,44 Fe e - Fe Zn 2+ / Zn -0,76 Zn e - Zn Al 3+ / Al -1,66 Al e - Al Na + / Na -2,71 Na + + e - Na

+ O. Die Valenzelektronen der Natriumatome werden an das Sauerstoffatom abgegeben.

+ O. Die Valenzelektronen der Natriumatome werden an das Sauerstoffatom abgegeben. A Oxidation und Reduktion UrsprÄngliche Bedeutung der Begriffe UrsprÅnglich wurden Reaktionen, bei denen sich Stoffe mit Sauerstoff verbinden, als Oxidationen bezeichnet. Entsprechend waren Reaktionen,

Mehr

Redoxgleichungen. 1. Einrichten von Reaktionsgleichungen

Redoxgleichungen. 1. Einrichten von Reaktionsgleichungen Redoxgleichungen 1. Einrichten von Reaktionsgleichungen Reaktionsgleichungen in der Chemie beschreiben den Verlauf einer Reaktion. Ebenso, wie bei einer Reaktion keine Masse verloren gehen kann von einem

Mehr

Magnesium + Sauerstoff + Aktivierungsenergie 2 Mg + O 2 + E A. Oxidation = Reaktion mit Sauerstoff. Magnesiumoxid + Energie 2 MgO + E

Magnesium + Sauerstoff + Aktivierungsenergie 2 Mg + O 2 + E A. Oxidation = Reaktion mit Sauerstoff. Magnesiumoxid + Energie 2 MgO + E Chemie. Redoxreaktionen 1. Redoxreaktionen 1. Definition der Redoxbegriffe Versuch: Verbrennung eines Stücks Magnesiumband Es entsteht ein weißes Pulver mit Namen Magnesiumoxid Magnesium Sauerstoff Aktivierungsenergie

Mehr

7. Chemische Reaktionen

7. Chemische Reaktionen 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen 7.2 Säure Base Gleichgewichte 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen 7.2 Säure Base Gleichgewichte 7.3 Redox - Reaktionen

Mehr

7. Woche. Gesamtanalyse (Vollanalyse) einfacher Salze. Qualitative Analyse anorganischer Verbindungen

7. Woche. Gesamtanalyse (Vollanalyse) einfacher Salze. Qualitative Analyse anorganischer Verbindungen 7. Woche Gesamtanalyse (Vollanalyse) einfacher Salze Qualitative Analyse anorganischer Verbindungen Die qualitative Analyse ist ein Teil der analytischen Chemie, der sich mit der qualitativen Zusammensetzung

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie ntegriertes Praktikum: Versuch 1-6 (ROG) Redoxgleichgewicht Versuchs-Datum: 9. Mai 212 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael Schmid

Mehr

Redox- Titrationen PAC I - QUANTITATIVE ANALYSE ANALYTIK I IAAC, TU-BS, 2004. Manganometrie. Bestimmung von Eisen(III) in salzsaurer Lösung

Redox- Titrationen PAC I - QUANTITATIVE ANALYSE ANALYTIK I IAAC, TU-BS, 2004. Manganometrie. Bestimmung von Eisen(III) in salzsaurer Lösung Redox Titrationen ANALYTK AAC, TUBS, 2004 Dr. Andreas Martens a.mvs@tubs.de nstitut f. Anorg.u. Analyt. Chemie, Technische Universität Braunschweig, Braunschweig, Germany PAC QUANTTATVE ANALYSE Manganometrie

Mehr

REDOXPROZESSE. Die Redoxreaktion setzt sich aus einer Oxidation und einer Reduktion zusammen. [1, 2]

REDOXPROZESSE. Die Redoxreaktion setzt sich aus einer Oxidation und einer Reduktion zusammen. [1, 2] Universität Regensburg Institut für Anorganische Chemie: Lehrstuhl Prof. Dr. A. Pfitzner Demonstrationsvorträge im Wintersemester 2012/13 23.11.2012 Dozentin: Dr. M. Andratschke Referentinnen: Stefanie

Mehr

Grundlagen der Chemie Elektrochemie

Grundlagen der Chemie Elektrochemie Elektrochemie Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektrischer Strom Ein elektrischer Strom ist ein

Mehr

Redox- und Fällungstitration P 3

Redox- und Fällungstitration P 3 Hochschule für Technik, Wirtschaft und Kultur Leipzig Fakultät Informatik, Mathematik und Naturwissenschaften Chemisches Praktikum Energie- und Umwelttechnik Redox- und Fällungstitration P 3 1 Aufgabenstellung

Mehr

Oxidation und Reduktion

Oxidation und Reduktion I. Definitionen Alte Definition nach Lavoisier: Oxidation: Aufnahme von Sauerstoff Reduktion: Abgabe von Sauerstoff Moderne, elektronische Deutung: 2 Mg(f) + O 2 (g) 2 MgO(f) Teilschritte: a) Mg(f) b)

Mehr

a.) Wie groß ist die Reaktionsenthalpie für die Diamantbildung aus Graphit? b.) Welche Kohlenstoffform ist unter Standardbedingungen die stabilere?

a.) Wie groß ist die Reaktionsenthalpie für die Diamantbildung aus Graphit? b.) Welche Kohlenstoffform ist unter Standardbedingungen die stabilere? Chemie Prüfungsvorbereitung 1. Aufgabe Folgende Reaktionen sind mit ihrer Enthalpie vorgegeben C (Graphit) + O 2 CO 2 R = 393,43 KJ C (Diamant) + O 2 CO 2 R = 395,33 KJ CO 2 O 2 + C (Diamant) R = +395,33

Mehr

0.3 Formeln, Gleichungen, Reaktionen

0.3 Formeln, Gleichungen, Reaktionen 0.3 Formeln, Gleichungen, Reaktionen Aussage von chemischen Formeln Formeln von ionischen Verbindungen - Metallkation, ein- oder mehratomiges Anion - Formel entsteht durch Ausgleich der Ladungen - Bildung

Mehr

REDOX. Aufstellen von Redox Gleichungen. Eine einfache und zuverlässige Methode. Andreas Martens a.mvs@tu-bs.de

REDOX. Aufstellen von Redox Gleichungen. Eine einfache und zuverlässige Methode. Andreas Martens a.mvs@tu-bs.de REDOX Andreas Martens a.mvs@tubs.de Institut f. Anorg.u. Analyt. Chemie, Technische Universität Braunschweig, Braunschweig, Germany Aufstellen von Redox Gleichungen Eine einfache und zuverlässige Methode

Mehr

DAS RICHTIGSTELLEN VON GLEICHUNGEN

DAS RICHTIGSTELLEN VON GLEICHUNGEN DAS RICHTIGSTELLEN VON GLEICHUNGEN Chemische Vorgänge beschreibt man durch chemische Reaktionsgleichungen. Dabei verwendet man die international gebräuchlichen chemischen Zeichen. Der Reaktionspfeil symbolisiert

Mehr

Analytische Chemie. B. Sc. Chemieingenieurwesen. 03. Februar 2010. Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum:

Analytische Chemie. B. Sc. Chemieingenieurwesen. 03. Februar 2010. Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum: Analytische Chemie B. Sc. Chemieingenieurwesen 03. Februar 2010 Prof. Dr. T. Jüstel Name: Matrikelnummer: Geburtsdatum: Denken Sie an eine korrekte Angabe des Lösungsweges und der Endergebnisse. Versehen

Mehr

Anorganisch-chemisches Praktikum für Human- und Molekularbiologen

Anorganisch-chemisches Praktikum für Human- und Molekularbiologen Anorganisch-chemisches Praktikum für Human- und Molekularbiologen 4. Praktikumstag Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: a.rammo@mx.uni-saarland.de Flammenfärbung

Mehr

Fällungsreaktion. Flammenfärbung. Fällungsreaktion:

Fällungsreaktion. Flammenfärbung. Fällungsreaktion: 2 Fällungsreaktion: 2 Fällungsreaktion Entsteht beim Zusammengießen zweier Salzlösungen ein Niederschlag eines schwer löslichen Salzes, so spricht man von einer Fällungsreaktion. Bsp: Na + (aq) + Cl -

Mehr

Examensfragen zur Elektrochemie

Examensfragen zur Elektrochemie 1 Examensfragen zur Elektrochemie 1. Standardpotentiale a. Was versteht man unter Standardpotential? Standardpotential E 0 ist die Spannung eines Redoxpaars in Bezug auf die Standardwasserstoffelektrode

Mehr

4. Quantitative Bestimmung von Eisen(II) durch Redoxtitration mit Kaliumpermanganat

4. Quantitative Bestimmung von Eisen(II) durch Redoxtitration mit Kaliumpermanganat Redoxtitration 29. Quantitative Bestimmung von Eisen(II) durch Redoxtitration mit Kaliumpermanganat Einleitung Eisen ist das mit Abstand wichtigste Gebrauchsmetall. Aufgrund seines elektrochemisch sehr

Mehr

Rost und Rostschutz. Chemikalien: Rost, verdünnte Salzsäure HCl, Kaliumhexacyanoferrat(II)-Lösung K 4 [Fe(CN) 6 ]

Rost und Rostschutz. Chemikalien: Rost, verdünnte Salzsäure HCl, Kaliumhexacyanoferrat(II)-Lösung K 4 [Fe(CN) 6 ] Universität Regensburg Institut für Anorganische Chemie Lehrstuhl Prof. Dr. A. Pfitzner Demonstrationsversuche im Sommersemester 2009 24.06.2009 Dozentin: Dr. M. Andratschke Referenten: Mühlbauer, Manuel

Mehr

Die Einheit der Atommasse m ist u. Das ist der 12. Teil der Masse eines Kohlenstoffatoms. 1 u = 1,6608 * 10-27 kg m(h) = 1 u

Die Einheit der Atommasse m ist u. Das ist der 12. Teil der Masse eines Kohlenstoffatoms. 1 u = 1,6608 * 10-27 kg m(h) = 1 u Analytische Chemie Stöchiometrie Absolute Atommasse Die Einheit der Atommasse m ist u. Das ist der 12. Teil der Masse eines Kohlenstoffatoms. 1 u = 1,6608 * 10-27 kg m() = 1 u Stoffmenge n Die Stoffmenge

Mehr

Redoxreaktionen. Redoxreaktionen: Reaktionen bei denen Elektronen zwischen den Komponenten übertragen werden

Redoxreaktionen. Redoxreaktionen: Reaktionen bei denen Elektronen zwischen den Komponenten übertragen werden Nach Lavoisier: : Redoxreaktionen Redoxreaktionen: Reaktionen bei denen Elektronen zwischen den Komponenten übertragen werden Aufnahme von Sauerstoff zb.: Verbrennen von Magnesium : Abgabe von Sauerstoff

Mehr

Grundwissen 9. Klasse NTG

Grundwissen 9. Klasse NTG Grundwissen 9. Klasse NTG 9.1 Qualitative Analysemethoden gibt Antwort auf Fragen nach der stofflichen Zusammensetzung Sauerstoff: Glimmspanprobe Wasserstoff: Knallgasprobe: 2 2 + O 2 2 2 O AlkalimetallKationen:

Mehr

Film der Einheit Metalle

Film der Einheit Metalle Film der Einheit Metalle Edle und unedle Metalle Produktionszahlen Metalle im Periodensystem der Elemente Herstellung einiger Metalle (Eisen, Aluminium, Kupfer) Kristallgitter und Bindungen in Metallen

Mehr

Elektrodenpotenziale im Gleichgewicht

Elektrodenpotenziale im Gleichgewicht Elektrodenpotenziale im Gleichgewicht Zn e - e - e - Cu e - e - Zn 2+ e - Zn 2+ e - Cu 2+ Zn 2+ Zn 2+ Cu 2+ Wenn ein Metallstab in die Lösung seiner Ionen taucht, stellt sich definiertes Gleichgewichtspotential

Mehr

Redoxprozesse. 1. Hinführung Versuch 1: Redoxreaktion zwischen Kaliumpermanganat (KMnO 4 ) und Natriumsulfit (Na 2 SO 3 ) in saurem Milieu [1]

Redoxprozesse. 1. Hinführung Versuch 1: Redoxreaktion zwischen Kaliumpermanganat (KMnO 4 ) und Natriumsulfit (Na 2 SO 3 ) in saurem Milieu [1] Universität Regensburg Institut für Anorganische Chemie: Lehrstuhl Prof. Dr. A. Pfitzner Demonstrationsvortrag im Wintersemester 2009/2010 06.11.2009 Betreuung: Dr. M. Andratschke Referentinnen: Barbara

Mehr

Hinweise für den Schüler. Von den 2 Prüfungsblöcken A und B ist einer auszuwählen.

Hinweise für den Schüler. Von den 2 Prüfungsblöcken A und B ist einer auszuwählen. Abitur 2001 Chemie Gk Seite 1 Hinweise für den Schüler Aufgabenauswahl: Von den 2 Prüfungsblöcken A und B ist einer auszuwählen. Bearbeitungszeit: Die Arbeitszeit beträgt 210 Minuten, zusätzlich stehen

Mehr

Lerninhalte CHEMIE 12 - MuG erstellt von der Fachschaft Chemie

Lerninhalte CHEMIE 12 - MuG erstellt von der Fachschaft Chemie Christian-Ernst-Gymnasium Am Langemarckplatz 2 91054 ERLANGEN Lerninhalte CHEMIE 12 - MuG erstellt von der Fachschaft Chemie C 12.1 Chemisches Gleichgewicht Umkehrbare / Reversible Reaktionen Bei einer

Mehr

Bestimmung der Stoffmenge eines gelösten Stoffes mit Hilfe einer Lösung bekannter Konzentration (Titer, Maßlösung).

Bestimmung der Stoffmenge eines gelösten Stoffes mit Hilfe einer Lösung bekannter Konzentration (Titer, Maßlösung). Zusammenfassung: Titration, Maßanalyse, Volumetrie: Bestimmung der Stoffmenge eines gelösten Stoffes mit Hilfe einer Lösung bekannter Konzentration (Titer, Maßlösung). Bei der Titration lässt man so lange

Mehr

Oxidationszahlen. Bei Elementen ist die Oxidationszahl stets = 0: Bei einfachen Ionen entspricht die Oxidationszahl der Ladung des Ions:

Oxidationszahlen. Bei Elementen ist die Oxidationszahl stets = 0: Bei einfachen Ionen entspricht die Oxidationszahl der Ladung des Ions: 32 Oxidation und Reduktion (Redox-Reaktion) Redox-Reaktionen bilden die Grundlage für die chemische Energiespeicherung und -umwandlung: In der Technik, bei Batterien, Brennstoffzellen und der Verbrennung,

Mehr

Technische Universität Chemnitz Chemisches Grundpraktikum

Technische Universität Chemnitz Chemisches Grundpraktikum Technische Universität Chemnitz Chemisches Grundpraktikum Protokoll «CfP5 - Massanalytische Bestimmungsverfahren (Volumetrie)» Martin Wolf Betreuerin: Frau Sachse Datum:

Mehr

Seminar zum Grundpraktikum Anorganische Chemie

Seminar zum Grundpraktikum Anorganische Chemie Seminar zum Grundpraktikum Anorganische Chemie Sommersemester 2015 Christoph Wölper Universität DuisburgEssen Seminar zum Grundpraktikum Anorganische Chemie Sommersemester 2015 Christoph Wölper http://www.unidue.de/~adb297b

Mehr

Rupprecht-Gymnasium München Fachschaft Chemie. Grundwissen der 9. Klasse NTG

Rupprecht-Gymnasium München Fachschaft Chemie. Grundwissen der 9. Klasse NTG Rupprecht-Gymnasium München Fachschaft Chemie Grundwissen der 9. Klasse NTG 1. Quantitative Aspekte chemischer Reaktionen 1.1 Die Atommasse m a Da die Masse eines Atoms unvorstellbar klein ist (ein H-Atom

Mehr

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie Musterklausur 1 zur Allgemeinen und Anorganischen Chemie Achtung: Taschenrechner ist nicht zugelassen. Aufgaben sind so, dass sie ohne Rechner lösbar sind. Weitere Hilfsmittel: Periodensystem der Elemente

Mehr

Einführung. KLASSE: 9TE NAME: Vorname: Datum: LTAM Naturwissenschaften 9e Chemische Gleichungen 1 -

Einführung. KLASSE: 9TE NAME: Vorname: Datum: LTAM Naturwissenschaften 9e Chemische Gleichungen 1 - Einführung Ein Gärtner bestellt beim Großhändler Blumen. Dort werden Tulpen in Dreier-Sträußen und Vergissmeinnichtchen in Zweier-Sträußen angeboten. Für Valentinstag, möchte der Gärtner ein Sonderangebot

Mehr

Rost und Rostschutz. Oxidation: Fe Fe 2+ + 2 e - Reduktion: ½ O 2 + H 2 O + 2 e - 2 OH - Redoxgleichung: Fe + ½ O 2 + H 2 O Fe 2+ + 2 OH -

Rost und Rostschutz. Oxidation: Fe Fe 2+ + 2 e - Reduktion: ½ O 2 + H 2 O + 2 e - 2 OH - Redoxgleichung: Fe + ½ O 2 + H 2 O Fe 2+ + 2 OH - Universität Regensburg Institut für Anorganische Chemie - Lehrstuhl Prof. Dr. A. Pfitzner Demonstrationsvortrag im Sommersemester 2010 23.06.2010 Dozentin: Dr. M. Andratschke Referenten: Schlichting, Matthias/Will,

Mehr

Regeln für selbstständiges Arbeiten

Regeln für selbstständiges Arbeiten Zum Beitrag UC 66 (2001), S. 1721 Regeln für selbstständiges Arbeiten 1. Überzeugt euch bei der Auswahl des Arbeitskastens, ob alle Gruppen ein neues Thema bekommen haben. Ansonsten tauscht nochmals die

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai 2002. Chemie (Grundkurs) Thema 1 Wasserstoff

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai 2002. Chemie (Grundkurs) Thema 1 Wasserstoff KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 2002 Chemie (Grundkurs) Einlesezeit: Bearbeitungszeit: 30 Minuten 210 Minuten Thema 1 Wasserstoff Thema 2 Organische Verbindungen und ihr Reaktionsverhalten

Mehr

Aufgaben aus der Chemie und Lösungsstrategien

Aufgaben aus der Chemie und Lösungsstrategien Aufgaben aus der Chemie und Lösungsstrategien Einfache Reproduktion Abfrage von gelerntem Wissen, also wird die Wiedergabe von Definitionen, Aussagen oder Tatsachen gefordert. Kennzeichen: Keine Einleitung

Mehr

Oxidation und Reduktion Redoxreaktionen Blatt 1/5

Oxidation und Reduktion Redoxreaktionen Blatt 1/5 Oxidation und Reduktion Redoxreaktionen Blatt 1/5 1 Elektronenübertragung, Oxidation und Reduktion Gibt Natrium sein einziges Außenelektron an ein Chloratom (7 Außenelektronen) ab, so entsteht durch diese

Mehr

Stöchiometrie. (Chemisches Rechnen)

Stöchiometrie. (Chemisches Rechnen) Ausgabe 2007-10 Stöchiometrie (Chemisches Rechnen) ist die Lehre von der mengenmäßigen Zusammensetzung chemischer Verbindungen sowie der Mengenverhältnisse der beteiligten Stoffe bei chemischen Reaktionen

Mehr

Chemie. Grundkurs. Beispielaufgabe A 4. Auswahlverfahren: Hessisches Kultusministerium. Landesabitur 2007 Beispielaufgaben

Chemie. Grundkurs. Beispielaufgabe A 4. Auswahlverfahren: Hessisches Kultusministerium. Landesabitur 2007 Beispielaufgaben Hessisches Kultusministerium Landesabitur 2007 Beispielaufgaben Chemie Grundkurs Beispielaufgabe A 4 Auswahlverfahren: Von vier Teilaufgaben (A1 A4) müssen drei Teilaufgaben bearbeitet werden. Einlese-

Mehr

REDOX-REAKTIONEN Donator-Akzeptor-Konzept! So geht s: schrittweises Aufstellen von Redoxgleichungen Chemie heute

REDOX-REAKTIONEN Donator-Akzeptor-Konzept! So geht s: schrittweises Aufstellen von Redoxgleichungen Chemie heute REDOXREAKTIONEN In den letzten Wochen haben wir uns mit SäureBaseReaktionen und Redoxreaktionen beschäftigt. Viele Phänomene in uns und um uns herum sind solche Redoxreaktionen. Nun müssen wir unseren

Mehr

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 3, 02.05.11/03.05.11

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 3, 02.05.11/03.05.11 Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 3, 02.05.11/03.05.11 1. Sie haben Silberbesteck geerbt. Um Ihren neuen Reichtum ordentlich zur Schau zu stellen, haben

Mehr

1 Elektronendruckreihe (= Spannungsreihe)

1 Elektronendruckreihe (= Spannungsreihe) Lernprogramms Elektrochemer 1/12 Vorher sollten die Übungsaufgaben Nr. 1 bis 4 zum Lernprogramm Oxidaser bearbeitet und möglichst auch verstanden worden sein! 1 Elektronendruckreihe (= Spannungsreihe)

Mehr

FRAGEN ZUR ANALYTISCHEN GRUNDVORLESUNG 2: TEIL 1: ELEKTROCHEMISCHE ANALYSENVERFAHREN

FRAGEN ZUR ANALYTISCHEN GRUNDVORLESUNG 2: TEIL 1: ELEKTROCHEMISCHE ANALYSENVERFAHREN FRAGEN ZUR ANALYTISCHEN GRUNDVORLESUNG 2: TEIL 1: ELEKTROCHEMISCHE ANALYSENVERFAHREN 1 GRUNDLAGEN 1. Beschreibe den Aufbau einer elektrochemischen Zelle. Welche Zelltypen gibt es? 2. Was versteht man unter

Mehr

Vergleich Protochemische und Elektrochemische Spannungsreihe. Protochemische Spannungsreihe. Korrespondierende Säure-Base-Paare

Vergleich Protochemische und Elektrochemische Spannungsreihe. Protochemische Spannungsreihe. Korrespondierende Säure-Base-Paare 165 19 Redoxgleichgewichte (Elektronenübertragungsreaktionen) Vergleich Protochemische und Elektrochemische Spannungsreihe Protochemische Spannungsreihe Korrespondierende SäureBasePaare Säure korrespondierende

Mehr

Fragen zum Analytischen Grundpraktikum für Chemiker/LAK

Fragen zum Analytischen Grundpraktikum für Chemiker/LAK 1 Fragen zum Analytischen Grundpraktikum für Chemiker/LAK Allgemeine Arbeitsoperationen 1. Was versteht man unter der Empfindlichkeit einer Waage? 2. Welche Empfindlichkeit besitzt die Waage, mit welcher

Mehr

Übungsklausur zum chemischen Praktikum für Studierende mit Chemie als Nebenfach

Übungsklausur zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übungsklausur zum chemischen Praktikum für Studierende mit Chemie als Nebenfach 1. (10P) Was ist richtig (mehrere Richtige sind möglich)? a) Fructose besitzt 5 Kohlenstoffatome. FALSCH, Fructose besitzt

Mehr

Anorganisch-chemisches Praktikum für Studierende der Lebensmittelchemie,

Anorganisch-chemisches Praktikum für Studierende der Lebensmittelchemie, Anorganisch-chemisches Praktikum für Studierende der Lebensmittelchemie, Praktikumsbuch: Jander / Blasius, Anorganische Chemie I, Einführung & Qualitative Analyse, Hirzel Verlag, 17. Auflage, 2012 Die

Mehr

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn

Mehr

[Co(NH 3 ) 2 (H 2 O) 2 ] 3+

[Co(NH 3 ) 2 (H 2 O) 2 ] 3+ Kap. 7.3 Das Massenwirkungsgesetz Frage 121 Kap. 7.3 Das Massenwirkungsgesetz Antwort 121 Schreiben Sie das Massenwirkungsgesetz (MWG) für die folgende Reaktion auf: Fe 3+ (aq) + 3 SCN - (aq) Fe(SCN) 3

Mehr

Aluminium. 1. Historisches [1]

Aluminium. 1. Historisches [1] Universität Regensburg Institut für Anorganische Chemie Lehrstuhl Prof. Dr. A. Pfitzner Demonstrationsversuche im Sommersemester 2008 04.06.2008 Dozentin: Frau Dr. M. Andratschke Referenten: Tim Drechsler,

Mehr

Chemisches Grundpraktikum für Ingenieure. 2. Praktikumstag. Andreas Rammo

Chemisches Grundpraktikum für Ingenieure. 2. Praktikumstag. Andreas Rammo Chemisches Grundpraktikum für Ingenieure. Praktikumstag Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: a.rammo@mx.uni-saarland.de Das chemische Gleichgewicht Säure-Base-Reaktionen

Mehr

Kapitel 13: Laugen und Neutralisation

Kapitel 13: Laugen und Neutralisation Kapitel 13: Laugen und Neutralisation Alkalimetalle sind Natrium, Kalium, Lithium (und Rubidium, Caesium und Francium). - Welche besonderen Eigenschaften haben die Elemente Natrium, Kalium und Lithium?

Mehr

Wasserstoffperoxid, Peroxide

Wasserstoffperoxid, Peroxide Universität Regensburg Institut für Anorganische Chemie Lehrstuhl Prof. Dr. A. Pfitzner Übungen im Vortragen mit Demonstrationen im Wintersemester 2012/2013 Dozentin: Dr. M. Andratschke Wasserstoffperoxid,

Mehr

Grundwissen 8. Klasse Chemie

Grundwissen 8. Klasse Chemie Grundwissen 8. Klasse Chemie 1. Gefahrstoffkennzeichnung 2. Wie werden naturwissenschaftliche Erkenntnisse gewonnen? 1. Beobachtung von Umwelterscheinungen => Problem => Hypothese (Vermutung) zur Problemlösung

Mehr

Wasser Kaffeefilter ein Streifen Filterpapier als Docht Schere Tasse

Wasser Kaffeefilter ein Streifen Filterpapier als Docht Schere Tasse Trennen von Farben Was Du brauchst: schwarzfarbige Filzstifte Wasser Kaffeefilter ein Streifen Filterpapier als Docht Schere Tasse Wie Du vorgehst: Schneide einen Kreis aus dem Kaffeefilter. Steche mit

Mehr

Brennstoffzellen. Proton-Exchange-Membran-Fuel-Cell (PEM-Brennstoffzellen) Zellspannung: 0,5 bis 1 V (durch Spannungsverluste)

Brennstoffzellen. Proton-Exchange-Membran-Fuel-Cell (PEM-Brennstoffzellen) Zellspannung: 0,5 bis 1 V (durch Spannungsverluste) Brennstoffzellen Kennzeichen: Im Gegensatz zu Akkumulatoren, wo Substanzen während des Entladens aufgebraucht werden, werden bei der Stromentnahme aus Brennstoffzellen die Edukte laufend zugeführt. Brennstoffzellen

Mehr

Erkläre die Bedeutung der negativen Blindprobe. Erkläre die Bedeutung der positiven Blindprobe. Erkläre das Prinzip der Flammenfärbung.

Erkläre die Bedeutung der negativen Blindprobe. Erkläre die Bedeutung der positiven Blindprobe. Erkläre das Prinzip der Flammenfärbung. Erkläre die Bedeutung der negativen Blindprobe. Durchführung einer Nachweisreaktion ohne Beteiligung der zu analysierenden Substanz. Ziel: Überprüfen der Reinheit der verwendeten Nachweisreagenzien. Erkläre

Mehr

Kapitel 15: Redoxreaktionen als Elektronenübergänge

Kapitel 15: Redoxreaktionen als Elektronenübergänge 1 Kapitel 15: Redoxreaktionen als Elektronenübergänge Verbrennungen sind Redoxreaktionen! Wir führen sie in der Regel wegen der freiwerdenden Energie durch Inhalt 2 Kapitel 15: Redoxreaktionen als Elektronenübergänge...

Mehr

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie.

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie. ELEKTROCHEMIE Elektrischer Strom: Fluß von elektrischer Ladung Elektrische Leitung: metallische (Elektronen) elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie Galvanische Zellen Elektrolyse Die

Mehr

2. Chemische Bindungen 2.1

2. Chemische Bindungen 2.1 2. Chemische Bindungen 2.1 Chemische Bindungen Deutung von Mischungsversuchen Benzin und Wasser mischen sich nicht. Benzin ist somit eine hydrophobe Flüssigkeit. Auch die Siedepunkte der beiden Substanzen

Mehr

Grundwissen 9. Klasse Chemie

Grundwissen 9. Klasse Chemie Grundwissen 9. Klasse Chemie 1. Formelzeichen und Einheiten 2. Was versteht man unter der Stoffmenge und der Avogadro- Konstante N A? Eine Stoffportion hat die Stoffmenge n = 1 mol, wenn sie 6 * 10 23

Mehr

Redoxreaktionen. chemische Reaktion von Kupfer(II)-oxid mit Kohlenstoff es entstehen Kupfer und Kohlenstoffdioxid [exotherm]

Redoxreaktionen. chemische Reaktion von Kupfer(II)-oxid mit Kohlenstoff es entstehen Kupfer und Kohlenstoffdioxid [exotherm] eqiooki.de Redoxreaktionen [Realschule] Seite 1 von 9 Redoxreaktionen Ob bei der Herstellung von Roheisen und Stahl, bei der Erzeugung von Aluminium und anderer Metalle aus entsprechenden Erzen, bei elektrochemischen

Mehr

Allgemeine Chemie für r Studierende der Zahnmedizin

Allgemeine Chemie für r Studierende der Zahnmedizin Allgemeine Chemie für r Studierende der Zahnmedizin Allgemeine und Anorganische Chemie Teil 6 Dr. Ulrich Schatzschneider Institut für Anorganische und Angewandte Chemie, Universität Hamburg Lehrstuhl für

Mehr

Grundwissenskatalog Chemie G8 8. Klasse nt

Grundwissenskatalog Chemie G8 8. Klasse nt Grundwissenskatalog Chemie G8 8. Klasse nt 1. Wissenschaft Chemie: Chemie ist die Lehre von den Stoffen. Chemischer Vorgang: Stoffänderung Physikalischer Vorgang: Zustandsänderung 2. Unterteilung Stoffe:

Mehr

Anorganisches Praktikum 1. Semester. FB Chemieingenieurwesen. Labor für Anorg. Chemie Angew. Materialwiss. Versuchsvorschriften

Anorganisches Praktikum 1. Semester. FB Chemieingenieurwesen. Labor für Anorg. Chemie Angew. Materialwiss. Versuchsvorschriften Anorganisches Praktikum 1. Semester FB Chemieingenieurwesen Labor für Anorg. Chemie Angew. Materialwiss. Versuchsvorschriften 1 Gravimetrie Bestimmung von Nickel Sie erhalten eine Lösung, die 0.1-0.2g

Mehr

Welcher Unterschied besteht zwischen schwefliger Säure und Schwefelsäure?

Welcher Unterschied besteht zwischen schwefliger Säure und Schwefelsäure? Naturwissenschaften - Chemie - Säuren, Basen, Salze - Säuren (P75800).2 Oxidation von schwefliger Säure Experiment von: Phywe Gedruckt: 5.0.203 :47:54 intertess (Version 3.06 B200, Export 2000) Aufgabe

Mehr

Grundwissen Chemie 8I

Grundwissen Chemie 8I 1) Stoffe, Experimente Chemie ist die Lehre von den Stoffen, ihren Eigenschaften, ihrem Aufbau, ihren Veränderungen und ihrer Herstellung. Einfache Möglichkeiten der Stofferkennung (Farbe, Glanz, Kristallform,

Mehr

3. Seminar zum Quantitativen Anorganischen Praktikum WS 2013/14

3. Seminar zum Quantitativen Anorganischen Praktikum WS 2013/14 3. Seminar zum Quantitativen Anorganischen Praktikum WS 2013/14 Teil des Moduls MN-C-AlC S. Sahler, M. Wolberg 20.01.14 Titrimetrie (Volumetrie) Prinzip: Messung des Volumenverbrauchs einer Reagenslösung

Mehr

6. Reaktionsgleichungen 6.1 Chemisches Reaktionsschema Wortschema Reaktionsschema Beispiel 1: Kupfer und Schwefel Vorzahlen

6. Reaktionsgleichungen 6.1 Chemisches Reaktionsschema Wortschema Reaktionsschema Beispiel 1: Kupfer und Schwefel Vorzahlen 6. Reaktionsgleichungen 6.1 Chemisches Reaktionsschema Das Wortschema benennt die Ausgangsstoffe und die Reaktionsprodukte einer chemischen Reaktion. Das Reaktionsschema sagt zusätzlich etwas über das

Mehr

7. Tag: Säuren und Basen

7. Tag: Säuren und Basen 7. Tag: Säuren und Basen 1 7. Tag: Säuren und Basen 1. Definitionen für Säuren und Basen In früheren Zeiten wußte man nicht genau, was eine Säure und was eine Base ist. Damals wurde eine Säure als ein

Mehr

Einführungskurs 7. Seminar

Einführungskurs 7. Seminar ABERT-UDWIGS- UNIVERSITÄT FREIBURG Einführungskurs 7. Seminar Prof. Dr. Christoph Janiak iteratur: Riedel, Anorganische Chemie,. Aufl., 00 Kapitel.8.0 und Jander,Blasius, ehrb. d. analyt. u. präp. anorg.

Mehr

Empfohlene Hilfsmittel zum Lösen der Arbeitsaufträge: Arbeitsblätter, Theorieblätter, Fachbuch, Tabellenbuch und Ihr Wissen aus dem Praxisalltag

Empfohlene Hilfsmittel zum Lösen der Arbeitsaufträge: Arbeitsblätter, Theorieblätter, Fachbuch, Tabellenbuch und Ihr Wissen aus dem Praxisalltag 2.1.1 Aufbau der Materie (Arbeitsaufträge) Empfohlene Hilfsmittel zum Lösen der Arbeitsaufträge: Arbeitsblätter, Theorieblätter, Fachbuch, Tabellenbuch und Ihr Wissen aus dem Praxisalltag 1. Beim Bearbeiten

Mehr

Gegeben sind die folgenden Werte kovalenter Bindungsenthalpien:

Gegeben sind die folgenden Werte kovalenter Bindungsenthalpien: Literatur: Housecroft Chemistry, Kap. 22.1011 1. Vervollständigen Sie folgende, stöchiometrisch nicht ausgeglichene Reaktions gleichungen von Sauerstoffverbindungen. Die korrekten stöchiometrischen Faktoren

Mehr

Die chemische Reaktion

Die chemische Reaktion Die chemische Reaktion 1. Versuch In eine mit Sauerstoff gefüllte Flasche halten wir ein Stück brennenden Schwefel. Beobachtung : Der gelbe Schwefel verbrennt mit blauer Flamme. Dabei wird Wärme frei und

Mehr

Reaktionsgleichungen und was dahinter steckt

Reaktionsgleichungen und was dahinter steckt Reaktionsgleichungen und was dahinter steckt Prinzipien Bestehende Formeln dürfen nicht verändert werden. Bei Redoxreaktionen kann H, OH oder H 2 O ergänzt werden. Links und rechts vom Reaktionspfeil muss

Mehr

Chemiefragen 9.Klasse:

Chemiefragen 9.Klasse: Hausaufgaben bitte entweder: - auf Papier schriftlich erledigen oder - per email an Herrn Apelt senden: Reinhard.Apelt@web.de Chemiefragen 9.Klasse: A) Stoffe und ihre Erkennung B) Anwendung des Teilchenmodells

Mehr

CHEMISCHE REAKTIONEN (SEKP)

CHEMISCHE REAKTIONEN (SEKP) KSO CHEMISCHE REAKTIONEN (SEKP) Skript Chemische Reaktionen (SekP) V1.0 01/15 Bor 2 INHALTSVERZEICHNIS "CHEMISCHE REAKTIONEN" 1. Einleitung...03 2. Stoffe wandeln sich um... 04 2.1 Kupfer reagiert mit

Mehr

Unterrichtsvorhaben II Elektrochemie Q1

Unterrichtsvorhaben II Elektrochemie Q1 Unterrichtsvorhaben II Elektrochemie Umfang: Jgst.: Q1 Schwerpunkte / Inhalt / Basiskonzepte Elektrochemische Gewinnung von Stoffen Mobile Energiequellen [Quantitative Aspekte elektrochemischer Prozesse]

Mehr

Schulinterne Lehrpläne Naturwissenschaften 7.1 Veränderungen von Stoffen/Chem. Reaktionen (Lehrwerk Prisma Naturwissenschaften 7/8)

Schulinterne Lehrpläne Naturwissenschaften 7.1 Veränderungen von Stoffen/Chem. Reaktionen (Lehrwerk Prisma Naturwissenschaften 7/8) Schulinterne Lehrpläne Naturwissenschaften 7.1 Veränderungen von Stoffen/Chem. Reaktionen (Lehrwerk Prisma Naturwissenschaften 7/8) Unterrichtsvorhaben Kompetenz 1 Kompetenz 2 Methodische VERHALTEN IM

Mehr

Rost und Rostschutz. Beobachtung: Nach wenigen Momenten steigt das Wasser im Glasröhrchen an.

Rost und Rostschutz. Beobachtung: Nach wenigen Momenten steigt das Wasser im Glasröhrchen an. Universität Regensburg Institut für Anorganische Chemie Lehrstuhl Prof. Dr. A. Pfitzner Demonstrationsvortrag im Wintersemester 2010/2011 26.11.2010 Dozentin: Dr. M. Andratschke Referenten: Forster, Robert

Mehr

Schulcurriculum des Faches Chemie. für die Klassenstufen 8 10

Schulcurriculum des Faches Chemie. für die Klassenstufen 8 10 Schulcurriculum des Faches Chemie für die Klassenstufen 8 10 Chemie - Klasse 8 Was ist Chemie? Richtig experimentieren und Entsorgen Naturwissenschaftliche Arbeitsweise Rotkraut oder Blaukraut? Richtig

Mehr

Übungsaufgaben Chemie Nr. 2

Übungsaufgaben Chemie Nr. 2 Übungsaufgaben Chemie Nr. 2 11) Welche Elektronenkonfiguration haben Si, Cr, Gd, Au? 12) Zeichnen Sie das Orbitalschema für Sauerstoff (O 2 ) auf. 13) Zeichnen Sie die Lewis-Formeln für folgende Moleküle:

Mehr

Chemisches Praktikum für Physiker. Universität Regensburg Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick

Chemisches Praktikum für Physiker. Universität Regensburg Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick Chemisches Praktikum für Physiker Universität Regensburg Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick SS 2011 Inhaltsverzeichnis 1 Gemisch und Verbindungen, Säuren und Basen 1

Mehr

Laborbericht. Elektrochemie Galvanik. Bianca Theus Anna Senn

Laborbericht. Elektrochemie Galvanik. Bianca Theus Anna Senn Laborbericht Elektrochemie Galvanik Bianca Theus Anna Senn August/September 2004 Inhaltsverzeichnis 1. Ziel... 1 2. Theorie... 1 2.1 Der Schaltkreis... 1 2.1.1 Spannungsquellen:... 1 2.2 Allgemeines...

Mehr

Organische Chemie. 1. Formuliere die Startreaktion und die Reaktionskette bei der Umsetzung von Ethan mit Chlor. Wie heisst dieser Reaktionstyp?

Organische Chemie. 1. Formuliere die Startreaktion und die Reaktionskette bei der Umsetzung von Ethan mit Chlor. Wie heisst dieser Reaktionstyp? Organische Chemie 1. Formuliere die Startreaktion und die Reaktionskette bei der Umsetzung von Ethan mit Chlor. Wie heisst dieser Reaktionstyp? 2. Chlorwasserstoff reagiert mit 1-Buten. Formuliere den

Mehr

Intermetallische Systeme, ( Legierungen ) Metalle

Intermetallische Systeme, ( Legierungen ) Metalle Eigenschaften Metalle plastisch verformbar meist hohe Dichte ( Ausnahme: Leichtmetalle ) gute elektrische Leitfähigkeit gute Wärmeleitung optisch nicht transparent metallischer Glanz Intermetallische Systeme,

Mehr

Boden Versauerung Dynamik-Gefährdung

Boden Versauerung Dynamik-Gefährdung Rochuspark I Erdbergstraße 10/33 I 1020 Wien T (+43 1) 236 10 30 33 I M (+43 0) 676 364 10 30 E office@bodenoekologie.com I www.bodenoekologie.com Boden Versauerung Dynamik-Gefährdung Univ. Lek. DI Hans

Mehr

Grundlagen Chemischer Gleichungen

Grundlagen Chemischer Gleichungen Grundlagen Chemischer Gleichungen Lehrprogramm zum Erlernen der Grundlagen zum Aufstellen und verstehen Chemischer Gleichungen und Formeln. Björn Schulz, Berlin 2004 www.lernmaus.de www.polarographie.de

Mehr

Anorganisch-Chemisches Praktikum für Physiker und Geoökologen: Quantitative Analyse (Teil 2)

Anorganisch-Chemisches Praktikum für Physiker und Geoökologen: Quantitative Analyse (Teil 2) Anorganisch-Chemisches Praktikum für Physiker und Geoökologen: Quantitative Analyse (Teil 2) Dr. Christopher Anson INSTITUT FÜR ANRGANISCHE CHEMIE KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Praktikum Quantitative Analysen

Praktikum Quantitative Analysen Praktikum Quantitative Analysen Wintersemester 2010/11 A: klassische Methoden vorwiegend chemische Arbeitsmethoden Bestimmung der Bestandteile durch eine chemische Reaktion Gravimetrie Die zu bestimmende

Mehr

Chemische Bindung. Wie halten Atome zusammen? Welche Atome können sich verbinden? Febr 02

Chemische Bindung. Wie halten Atome zusammen? Welche Atome können sich verbinden? Febr 02 Chemische Bindung locker bleiben Wie halten Atome zusammen? positiv Welche Atome können sich verbinden? power keep smiling Chemische Bindung Die chemischen Reaktionen spielen sich zwischen den Hüllen der

Mehr

Fit beim Aufstellen von Reaktionsgleichungen eine Trainingseinheit. Karin Keller, Bad Salzulen VORSCHAU VORANSICHT

Fit beim Aufstellen von Reaktionsgleichungen eine Trainingseinheit. Karin Keller, Bad Salzulen VORSCHAU VORANSICHT 1 von 22 Fit beim Aufstellen von Reaktionsgleichungen eine Trainingseinheit Karin Keller, Bad Salzulen Reaktionsgleichungen sind ein für die Lehrkraft oft frustrierendes Thema. Häuig steigen die Lernenden

Mehr

Zusatzveranstaltung 1: Sauer macht lustig!

Zusatzveranstaltung 1: Sauer macht lustig! Zusatzveranstaltung 1: Sauer macht lustig! Station 1: Sauer - was ist das? E1 Manche Stoffe reagieren ziemlich sauer! E2 Säuren lassen sich besänftigen! Station 2: Säuren im täglichen Leben E3 Eine Zitronenbatterie???

Mehr

Komplexometrie. = Elektronenpaar- Akzeptor = Elektronenpaar- Donator. Koordinationsverbindung. stöchiometrischer Komplex. praktisch undissoziiert

Komplexometrie. = Elektronenpaar- Akzeptor = Elektronenpaar- Donator. Koordinationsverbindung. stöchiometrischer Komplex. praktisch undissoziiert Komplexometrie mehrwertige Kationen organ. Chelatbildner = Zentralion + = mehrzähniger Ligand = Elektronenpaar- Akzeptor = Elektronenpaar- Donator z.b.: Ca, Mg, Fe 3+, Zn, Hg, Bi, Cd... z.b.: EDTA Nitrilotriessigsäure

Mehr