Komplexitätstheorie Kap. 4: Grundlegende Ergebnisse...

Größe: px
Ab Seite anzeigen:

Download "Komplexitätstheorie Kap. 4: Grundlegende Ergebnisse..."

Transkript

1 Gliederung der Vorlesung 1. Analyse von Algorithmen 1.1 Motivation 1.2 Laufzeit von Algorithmen 1.3 Asymptotische Notationen 2. Entwurf von Algorithmen 2.1 Divide & Conquer 2.2 Dynamisches Programmieren 2.3 Probabilistische Algorithmen 3. Berechnungstheorie 3.1 Turing-Maschinen (TM) 3.2 RAM 3.3 Churchsche These 3.4 Unentscheidbarkeit 4. Grundlegende Ergebnisse aus der Komplexitätstheorie 4.1 Komplexitätsmaße/-klassen 4.2 Speed-up und Bandkompression Nichtdeterministische TM 5. P = NP? Problem 5.1 Alternative Definition der Klasse NP 5.2 NP-vollständige Probleme 6. NP-vollständig Was nun? 6.1 Heuristiken 6.2 Approximationsalgorithmen 1

2 zur Erinnerung DTIME(t(n)) Klasse aller Sprachen, die mit O(t(n))-zeitbeschränkten Turing-Maschinen erkannt werden können DTAPE(s(n)) Klasse aller Sprachen, die mit O(s(n))-platzbeschränkten Turing-Maschinen erkannt werden können relevanter Aspekt Kann man weitere Sprachen erkennen, wenn mehr Ressourcen (/* Rechenzeit bzw. Speicherplatz */) zur Verfügung stehen? Hinweis: die betrachteten Turing-Maschinen können beliebig viele Bänder haben 2

3 die Antwort ist nicht ganz trivial, da mehr Ressourcen nicht immer mit mehr Leistungsfähigkeit einhergehen... Zu jeder vollständig definierten, berechenbaren Funktion r: N N gibt es monoton steigende, vollständig definierte berechenbare Funktionen s,t: N N, so daß gilt: DTAPE(s(n)) = DTAPE(r(n) s(n))) DTIME(t(n)) = DTIME(r(n) t(n)))... es gibt Funktionen, die als Zeit- bzw. Platzschranken nicht taugen!!! 3

4 für sinnvolle Zeit- bzw. Platzschranken gilt, was man erwartet, d.h. mehr Ressourcen implizieren mehr Leistungsfähigkeit Es seien s, S: N N vollständig definierte, berechenbare Funktionen mit s(n) o(s(n)). Ferner sei S eine sinnvolle Platzschranke. Dann gibt es eine Sprache L mit folgenden Eigenschaften: L DTAPE(S(n)) L DTAPE(s(n))) Es seien t, T: N N vollständig definierte, berechenbare Funktionen mit t(n) 2 o(t(n)). Ferner sei T eine sinnvolle Zeitschranke. Dann gibt es eine Sprache L mit folgenden Eigenschaften: L DTIME(T(n)) L DTIME(t(n))) 4

5 Begriff sinnvolle Platzschranke Es sei S: N N eine vollständig definierte, berechenbare Funktion. S heißt bandkonstruierbar, falls es eine Turing-Maschine M gibt, so daß für jedes n und jede Eingabe x mit x = n gilt: S M (x) = S(n). man kann M benutzen, um bei Eingabe von x auf einem Band einen Speicherbereich der Größe S( x ) zu markieren wenn man überprüfen will, ob eine Turing-Maschine M bei Eingabe von x mehr Speicherplatz... als S( x ) benötigt, genügt es zu überprüfen, ob M den markierten Bandbereich verläßt 5

6 Beispiele für bandkonstruierbare Funktionen S(n) = log(n) S(n) = n S(n) = n 3 S(n) = 2 n S(n) = 2 n2... 6

7 Hierarchiesatz für Platzkomplexitätsklassen Es seien s, S: N N vollständig definierte, berechenbare Funktionen mit s(n) o(s(n)). Ferner sei S bandkonstruierbar. Dann gibt es eine Sprache L mit folgenden Eigenschaften: L DTAPE(S(n)) L DTAPE(s(n)))... das wird mittels Diagonalisierung bewiesen 7

8 Hierarchiesatz für Platzkomplexitätsklassen der Beweis ist technisch einfach, da folgender Zusammenhang gilt DTAPE(s(n)) = DTAPE 1 (s(n))... man muß sich bei der Konstruktion der separierenden Sprache L nur mit 1-Band-Turing-Maschinen rumschlagen Effekt: man erhält eine sehr feine Hierarchie 8

9 Grundidee: man definiert eine Sprache L, so daß für jede 1-Band-TM M gilt: wenn M O(s(n))-bandbeschränkt ist, so ist L(M) L das geht wie üblich, d.h. für jede 1-Band-TM M sucht man nach einem x M mit einer der folgenden Eigenschaften: 1) M benötigt bei Eingabe von x M mehr Speicherplatz als erlaubt (/* Schranke: S( x M ) */) 2) M benötigt nicht mehr Speicherplatz als erlaubt und geht 2a) in den Endzustand q a oder 2b) in den Endzustand q r oder 2c) in keinen Endzustand Ansatz: falls 2a) eintritt, soll x M L gelten; sonst x M L 9

10 Problem wie bekommt man mit, daß 2c) eintritt... dieser Aspekt ist wichtig, weil nachzuweisen ist, daß es eine O(S(n))-platzbeschränkte TM gibt, die L entscheidet Es sei S: N N eine vollständig definierte, berechenbare Funktion. Dann ist die folgende Menge E entscheidbar: E = { cp(e,x) e ist Gödelnummer einer S(n)-bandbeschränkten TM M für die gilt: f M (x) ist definiert }... das Halteproblem für S(n)-bandbeschränkte Turing-Maschinen ist entscheidbar 10

11 das Halteproblem für S(n)-bandbeschränkte Turing-Maschinen ist entscheidbar, weil... Fakt 1: Fakt 2: Anzahl der bei Eingabe von x erreichbaren Konfigurationen einer solchen TM M ist beschränkt, sagen wir durch m falls M mehr als m Schritte rechnet, so muß M in eine Endlosschleife geraten sein (/* es tritt 2c) ein */) Realisierung: berechne m und laß M maximal m Schritte laufen 11

12 der Rest ist Technik und ein wenig Hintergrundwissen in Abhängigkeit von der TM M, von der Eingabe x und der Platzschranke S( x ) kann die Zeitschranke m berechnet werden... und zwar mit einer O(S(n))-platzbeschränkten TM die Arbeit von M bei Eingabe von x kann unter Verwendung einer geeignet gewählten universellen TM U simuliert werden (/* die universelle TM U bekommt als Eingabe die Gödelnummer e von M und x */)... eine geeignet gewählte universelle TM U benötigt nicht zu viele Ressourcen Hinweis: hier wird s(n) o(s(n)) gebraucht, da M O(s(n))-platzbeschränkt ist 12

13 Es gibt eine universelle Turing-Maschine U, die für alle e, x N folgendes leistet: wenn e Gödelnummer einer Turing-Maschine M ist, so gilt: f U (e,x) = f M (x) S U (bin(e)bbin(x)) c * S M (bin(x)) für ein c > 0 T U (bin(e)bbin(x)) c * T M (bin(x)) für ein c > 0... das leistet bereits unsere universelle 3-Band-TM Hinweis: c und c stören nicht (/* Bandkompressions- bzw. Speed-up-Theorem */) 13

14 Begriff sinnvolle Zeitschranke Es sei T: N N eine vollständig definierte, berechenbare Funktion. T heißt zeitkonstruierbar, falls es eine Turing-Maschine M gibt, so daß für jedes n und jede Eingabe x mit x = n gilt: T M (x) = T(n). man kann M benutzen, um bei Eingabe von x auf einem einem Speicherbereich T( x ) viele Zellen zu markieren wenn man überprüfen will, ob eine Turing-Maschine M bei Eingabe von x mehr Rechenzeit... als T( x ) benötigt, genügt es in jedem Schritt eine Markierung zu löschen; falls alle Markierungen gelöscht sind, ist klar, daß M die Zeitschranke überschritten hat 14

15 Beispiele für zeitkonstruierbare Funktionen T(n) = n T(n) = n 3 T(n) = 2 n T(n) = 2 n die Zeitschranke T(n) = log(n) ist offenbar nicht konstruierbar 15

16 Hierarchiesatz für Zeitkomplexitätsklassen Es seien t, T: N N vollständig definierte, berechenbare Funktionen mit t(n) 2 o(t(n)). Ferner sei T zeitkonstruierbar. Dann gibt es eine Sprache L mit folgenden Eigenschaften: L DTIME(T(n)) L DTIME(t(n)))... das wird mittels Diagonalisierung bewiesen 16

17 Hierarchiesatz für Zeitkomplexitätsklassen hier wird es technisch schwieriger, da man sich bei der Konstruktion der separierenden Sprache L mit allen k-band-turing-maschinen rumschlagen muß... und das bekommt man nicht so richtig gut in den Griff man kann aber folgenden Zusammenhang ausnutzen DTIME(t(n)) DTIME 1 (t(n) 2 ) und sich wieder auf 1-Band-Turing-Maschinen konzentrieren Effekt: man erhält eine nicht so feine Hierarchie 17

19. Nichtdeterministische Turingmaschinen und ihre Komplexität

19. Nichtdeterministische Turingmaschinen und ihre Komplexität 19. Nichtdeterministische Turingmaschinen und ihre Komplexität Bei einem Turingmaschinenprogramm P aus bedingten Anweisungen wird durch die Forderung i a b B j i a b B j i a sichergestellt, dass zu jeder

Mehr

Bemerkungen: Ist der Wert von S(n) (und damit auch τ) unbekannt, so führt man das Verfahren nacheinander mit den Werten

Bemerkungen: Ist der Wert von S(n) (und damit auch τ) unbekannt, so führt man das Verfahren nacheinander mit den Werten Bemerkungen: Ist der Wert von S(n) (und damit auch τ) unbekannt, so führt man das Verfahren nacheinander mit den Werten log n, 2 log n,... als Platzschranke aus. Dabei überprüft man für jeden dieser Werte,

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V5, 21.11.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Zeitkomplexität von Turingmaschinen Die Laufzeit einer NTM M bei Eingabe x ist die maximale Anzahl

Mehr

Einfache Zusammenhänge

Einfache Zusammenhänge Einfache Zusammenhänge Eine TM, die t(n) Zeit (d.h. Schritte) zur Verfügung hat, kann nicht mehr als t(n) Bandzellen besuchen. Umgekehrt gilt dies nicht! Platz kann wiederverwendet werden, Zeit nicht!

Mehr

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik

Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Oktober 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

13. Nichtdeterministische Turingmaschinen und ihre Komplexität

13. Nichtdeterministische Turingmaschinen und ihre Komplexität 13. Nichtdeterministische Turingmaschinen und ihre Komplexität DETERMINISMUS VS. NICHTDETERMINISMUS DETERMINISMUS: Bei einer k-band-turingmaschine M wurde durch die colorblue Überführungsfunktion δ : Z

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 18. Vorlesung 22.12.2006 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse Die Komplexitätsklassen

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 20.12.2005 18. Vorlesung 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 14. NICHTDETERMINISTISCHE TURINGMASCHINEN UND DEREN KOMPLEXITÄT Theoretische Informatik (SoSe 2011) 14. Nichtdeterministische

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17.November 2011 INSTITUT FÜR THEORETISCHE 0 KIT 17.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 16.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V8, 12.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Kapitel II : Zeit- und platzbeschränkte Berechnungen

Kapitel II : Zeit- und platzbeschränkte Berechnungen Kapitel II : Zeit- und platzbeschränkte Berechnungen Prof. Dr. F. Otto (Universität Kassel) Komplexitätstheorie 41 / 286 Rechenzeit- und Speicherplatzbedarf bei Turingmaschinen Komplexitätsklassen Grundlegende

Mehr

Theoretische Informatik Kap 2: Berechnungstheorie

Theoretische Informatik Kap 2: Berechnungstheorie Gliederung der Vorlesung 0. Grundbegriffe 1. Formale Sprachen/Automatentheorie 1.1. Grammatiken 1.2. Reguläre Sprachen 1.3. Kontextfreie Sprachen 2. Berechnungstheorie 2.1. Berechenbarkeitsmodelle 2.2.

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Technische Universität Berlin, Berlin, 28.07.2016 Name:... Matr.-Nr.:... Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Einlesezeit: Bearbeitungszeit: Max.

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

Reduktionen. Formalisierung von Sprache A ist nicht schwerer als Sprache B.

Reduktionen. Formalisierung von Sprache A ist nicht schwerer als Sprache B. Reduktionen Formalisierung von Sprache A ist nicht schwerer als Sprache B. Idee: Algorithmus/DTM für B kann genutzt werden, um A zu entscheiden/akzeptieren. WS 2018/19 Reduktionen 1 Zwei einfache Sprachen

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Beispiel einer nicht berechenbaren Funktion: Busy Beaver

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Beispiel einer nicht berechenbaren Funktion: Busy Beaver Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Diskrete Mathematik II

Diskrete Mathematik II Diskrete Mathematik II Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2011 DiMa II - Vorlesung 01-04.04.2011 1 / 252 Organisatorisches Vorlesung: Mo 12-14 in HZO 70, Di 09-10

Mehr

Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik

Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Oktober 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Vorlesungsskript. Komplexitätstheorie. Wintersemester 2004/2005

Vorlesungsskript. Komplexitätstheorie. Wintersemester 2004/2005 Vorlesungsskript Komplexitätstheorie Wintersemester 2004/2005 Prof. Dr. Johannes Köbler Humboldt-Universität zu Berlin Lehrstuhl Komplexität und Kryptografie 21. Februar 2005 Inhaltsverzeichnis 1 Einführung

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Platzkomplexität David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 22.04.2016 Platzkomplexität Platzkomplexitätsklassen Zeit vs. Platzbedarf

Mehr

Kapitel 4: Komplexitätstheorie Gliederung

Kapitel 4: Komplexitätstheorie Gliederung Gliederung 0. Einleitung und Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 4.1. Motivation und Grundbegriffe 4.2. Die Komplexitätsklassen P und NP

Mehr

2. Schriftliche Leistungskontrolle (EK)

2. Schriftliche Leistungskontrolle (EK) TheGI 2: Berechenbarkeit und Komplexität Prof. Dr.-Ing. Uwe Nestmann - 13. Juli 2010 2. Schriftliche Leistungskontrolle EK Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte erreichbar.

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 7.07.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Formale Grundlagen der Informatik 1 Kapitel 20

Formale Grundlagen der Informatik 1 Kapitel 20 Formale Grundlagen der Informatik 1 Kapitel 20 Zeit- und Platzkomplexität Frank Heitmann heitmann@informatik.uni-hamburg.de 27. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/52 Motivation

Mehr

7. Übung TGI. Lorenz Hübschle-Schneider, Tobias Maier INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS. 1 Lorenz Hübschle-Schneider, Tobias Maier

7. Übung TGI. Lorenz Hübschle-Schneider, Tobias Maier INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS. 1 Lorenz Hübschle-Schneider, Tobias Maier 7. Übung TGI Lorenz Hübschle-Schneider, Tobias Maier INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 Lorenz Hübschle-Schneider, Tobias Maier KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Unentscheidbarkeit des Halteproblems, Unterprogrammtechnik

Unentscheidbarkeit des Halteproblems, Unterprogrammtechnik Unentscheidbarkeit des Halteproblems, Unterprogrammtechnik Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. Oktober 2009 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Mehrband-Turingmaschinen und die universelle Turingmaschine

Mehrband-Turingmaschinen und die universelle Turingmaschine Mehrband-Turingmaschinen und die universelle Turingmaschine Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 15 Turingmaschinen mit mehreren Bändern k-band

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

13. ZEIT- UND PLATZKOMPLEXITÄT

13. ZEIT- UND PLATZKOMPLEXITÄT EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 13. ZEIT- UND PLATZKOMPLEXITÄT VON MEHRBAND-TURINGMASCHINEN Theoretische Informatik (SoSe 2011) 13. Zeit- und Platzkomplexität

Mehr

Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung

Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung Gliederung 1. Berechenbarkeitstheorie 2. Grundlagen 3. Grundlegende Ergebnisse aus der Komplexitätstheorie 4. Die Komplexitätsklassen P und NP 5. Die Komplexitätsklassen RP und BPP 3.1. Ressourcenkompression

Mehr

Dank. Theoretische Informatik II. Komplexitätstheorie. Teil VI. Komplexitätstheorie. Vorlesung

Dank. Theoretische Informatik II. Komplexitätstheorie. Teil VI. Komplexitätstheorie. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

Entscheidungsprobleme

Entscheidungsprobleme Entscheidungsprobleme übliche Formulierung gegeben: Eingabe x aus einer Grundmenge U Frage: Hat x eine bestimmte Eigenschaft P? Beispiel: gegeben: Frage: n N Ist n eine Primzahl? Formalisierung: Grundmenge

Mehr

VL-06: Unentscheidbarkeit II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-06: Unentscheidbarkeit II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-06: Unentscheidbarkeit II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-06: Unentscheidbarkeit II 1/37 Organisatorisches Nächste Vorlesung: Mittwoch, November

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme

Mehr

Johannes Blömer. Skript zur Vorlesung. Komplexitätstheorie. Universität Paderborn

Johannes Blömer. Skript zur Vorlesung. Komplexitätstheorie. Universität Paderborn Johannes Blömer Skript zur Vorlesung Komplexitätstheorie Universität Paderborn Sommersemester 2010 Inhaltsverzeichnis 1 Einleitung 2 2 Turingmaschinen, Zeit- und Platzkomplexität 5 2.1 Turingmaschinen.........................

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Das Halteproblem für Turingmaschinen

Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.

Mehr

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie Gliederung der Vorlesung. Grundbegriffe. Formale Sprachen/Automatentheorie.. Grammatiken.2..3. Kontext-freie Sprachen 2. Berechnungstheorie 2.. Berechenbarkeitsmodelle 2.2. Die Churchsche These 2.3. Unentscheidbarkeit

Mehr

Kapitel 4: Komplexitätstheorie Gliederung

Kapitel 4: Komplexitätstheorie Gliederung Gliederung 0. Motivation und Einordnung 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 4.1. Motivation und Grundbegriffe 4.2. Die Komplexitätsklassen P und NP 4.3.

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 26. November 2007 Semi-Entscheidbarkeit

Mehr

Beispiel: NTM. M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) q 2

Beispiel: NTM. M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) q 2 Beispiel: NTM M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) 0,1,R 0,0,R q0 1,0,R q1 #,#,R q2 0,0,L Zustand 0 1 # q 0 {(1, R, q 0 )} {(0, R, q 1 )} q 1 {(0, R, q 1 ),(0, L, q 0 )} {(1, R, q

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 7. Dezember 2006 Rekursiv vs. rekursiv

Mehr

Kapitel 3: Berechnungstheorie Algorithmisch unlösbare Probleme. Einordnung

Kapitel 3: Berechnungstheorie Algorithmisch unlösbare Probleme. Einordnung Einordnung es gibt algorithmische Probleme, die algorithmisch unlösbar sind (/ * d.h. unter der Annahme, das die Churchsche These richtig ist, kann es nachweislich kein Computerprogramm geben, welches

Mehr

VL-03: Turing Maschinen II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-03: Turing Maschinen II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-03: Turing Maschinen II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-03: Turing Maschinen II 1/27 Organisatorisches Nächste Vorlesung: Mittwoch, Oktober

Mehr

Turing Maschinen II Wiederholung

Turing Maschinen II Wiederholung Organisatorisches VL-03: Turing Maschinen II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch, Oktober 25, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

Churchsche These. Die Menge der Turing-berechenbaren Funktionen ist genau die Menge der im intuitiven Sinne berechenbaren Funktionen.

Churchsche These. Die Menge der Turing-berechenbaren Funktionen ist genau die Menge der im intuitiven Sinne berechenbaren Funktionen. 1 Churchsche These Die Menge der Turing-berechenbaren Funktionen ist genau die Menge der im intuitiven Sinne berechenbaren Funktionen. Varianten von Turing-Maschinen 2 Varianten von Turing-Maschinen Turing-Maschinen

Mehr

Das Halteproblem. H = { M w M hält auf w}.

Das Halteproblem. H = { M w M hält auf w}. Das Halteproblem Beim Halteproblem geht es darum, zu entscheiden, ob ein Programm auf einer bestimmten Eingabe terminiert. In der Notation der TM ergibt sich die folgende formale Problemdefinition. H =

Mehr

Theoretische Informatik. Probabilistische Turingmaschinen PTM PTM. Rainer Schrader. 10. Juni 2009

Theoretische Informatik. Probabilistische Turingmaschinen PTM PTM. Rainer Schrader. 10. Juni 2009 Theoretische Informatik Rainer Schrader Probabilistische Turingmaschinen Institut für Informatik 10. Juni 009 1 / 30 / 30 Gliederung probabilistische Turingmaschinen Beziehungen zwischen und NDTM es stellt

Mehr

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung Informatik III Arne Vater Wintersemester 2006/07 11. Vorlesung 30.11.2006 1 Beziehungen zwischen den Sprachen Jede reguläre Sprache ist eine kontextfreie Sprache. Jede kontextfreie Sprache ist eine entscheidbare

Mehr

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Einflussgrößen bei der Bildung von Komplexitätsklassen Das zugrunde liegende Berechnungsmodell (Turingmaschine, Registermaschine

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM

Mehr

Unentscheidbare Probleme: Existenz, Diagonalsprache, Halteproblem

Unentscheidbare Probleme: Existenz, Diagonalsprache, Halteproblem Unentscheidbare Probleme: Existenz, Diagonalsprache, Halteproblem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 25. Oktober 2010 Berthold Vöcking, Informatik

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 0. ORGANISATORISCHES UND ÜBERBLICK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 0. ORGANISATORISCHES UND ÜBERBLICK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2014 0. ORGANISATORISCHES UND ÜBERBLICK Theoretische Informatik (SoSe 2014) 0. Organisatorisches und Überblick 1 / 16

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 0. ORGANISATORISCHES UND ÜBERBLICK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 0. ORGANISATORISCHES UND ÜBERBLICK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2017 0. ORGANISATORISCHES UND ÜBERBLICK Theoretische Informatik (SoSe 2017) 0. Organisatorisches und Überblick 1 / 16

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Akzeptierbarkeit und Entscheidbarkeit. Teil V.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Akzeptierbarkeit und Entscheidbarkeit. Teil V. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Die oben aufgelisteten Sprachfamilien werden von oben nach unten echt mächtiger, d.h. die Familie der regulären Sprachen ist eine echte Teilfamilie

Die oben aufgelisteten Sprachfamilien werden von oben nach unten echt mächtiger, d.h. die Familie der regulären Sprachen ist eine echte Teilfamilie Zusammenfassung Im Automatenteil der FGI1 Vorlesung haben wir uns mit der Charakterisierung von Sprachfamilien durch immer mächtigere Automatenmodelle und Grammatiken beschäftigt. Folgende Familien haben

Mehr

Berechnungsmodelle. Mathias Hecht. April 29, 2010

Berechnungsmodelle. Mathias Hecht. April 29, 2010 Berechnungsmodelle Mathias Hecht April 29, 2010 1 Die Turingmaschine 1.1 Definition Eine Turingmaschine wird durch ein Tupel (Γ, Q, δ) beschrieben. Γ ein endliches Alphabet Q : eine endliche Menge an Zuständen

Mehr

Theoretische Informatik für Wirtschaftsinformatik und Lehramt

Theoretische Informatik für Wirtschaftsinformatik und Lehramt Theoretische Informatik für Wirtschaftsinformatik und Lehramt Entscheidungsprobleme Priv.-Doz. Dr. Stefan Milius stefan.milius@fau.de Theoretische Informatik Friedrich-Alexander Universität Erlangen-Nürnberg

Mehr

Halteproblem/Kodierung von Turing-Maschinen

Halteproblem/Kodierung von Turing-Maschinen Halteproblem/Kodierung von Turing-Maschinen Unser Ziel ist es nun zu zeigen, dass das sogenannte Halteproblem unentscheidbar ist. Halteproblem (informell) Eingabe: Turing-Maschine M mit Eingabe w. Frage:

Mehr

Turingmaschinen. Sabine Kuske: Turingmaschinen; 23.Juni 2008

Turingmaschinen. Sabine Kuske: Turingmaschinen; 23.Juni 2008 1 Turingmaschinen Von Alan Turing in den 30er Jahren dieses Jahrhunderts eingeführt Eines der ältesten Berechenbarkeitsmodelle Idee: den mechanischen Anteil des Rechnens mit Bleistift und Radiergummi auf

Mehr

Herzlich willkommen!!!

Herzlich willkommen!!! Komplexitätstheorie Sommersemester 2013 Prof. Dr. Georg Schnitger AG Theoretische Informatik Johann Wolfgang Goethe-Universität Frankfurt am Main Herzlich willkommen!!! Einführung 1 / 30 Kapitel 1: Einführung

Mehr

5. Universelle Maschinen und uniform rekursive Klassen

5. Universelle Maschinen und uniform rekursive Klassen 5. Universelle Maschinen und uniform rekursive Klassen Die Existenz universeller Maschinen erlaubt effektive Aufzählungen der Klasse der r.a. Mengen, der Klasse der partiell rekursiven Funktionen und der

Mehr

Präsenzübung Berechenbarkeit und Komplexität

Präsenzübung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 2013/14 Prof. Dr. Berthold Vöcking 28.01.2014 Kamal Al-Bawani Benjamin Ries Präsenzübung Berechenbarkeit und Komplexität Musterlösung Name:...................................

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V7, 3.11.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick

Mehr

Unentscheidbare Probleme: Diagonalisierung

Unentscheidbare Probleme: Diagonalisierung Unentscheidbare Probleme: Diagonalisierung Prof Dr Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Oktober 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

1 Grundlagen. 1.1 Mathematische Grundlagen. : für fast alle n. : es gibt unendlich viele n. f g genau dann, wenn n N. f ae g genau dann, wenn ae

1 Grundlagen. 1.1 Mathematische Grundlagen. : für fast alle n. : es gibt unendlich viele n. f g genau dann, wenn n N. f ae g genau dann, wenn ae Komplexitätstheorie 1 1 Grundlagen 1.1 Mathematische Grundlagen Quantoren: ae n : für fast alle n io n : es gibt unendlich viele n f g genau dann, wenn n N (f(n) g(n)) f ae g genau dann, wenn ae n N (f(n)

Mehr

Entscheidungsprobleme

Entscheidungsprobleme Entscheidungsprobleme übliche Formulierung gegeben: Eingabe x aus einer Grundmenge M Frage: Hat x eine bestimmte Eigenschaft P? Beispiel: gegeben: Frage: n N Ist n eine Primzahl? Formalisierung: Grundmenge

Mehr

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Probeklausur 25.01.2013 Probeklausur zur Vorlesung Berechenbarkeit und Komplexität Aufgabe 1 (1+2+6+3 Punkte)

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Lerneinheit 5: Die Klasse NP Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2015/2016 26.9.2015 Einleitung Thema dieser Lerneinheit

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 11 15. Juli 2010 Einführung in die Theoretische

Mehr

Rekursions- und Lerntheorie WiSe 2010/11; Univ. Trier

Rekursions- und Lerntheorie WiSe 2010/11; Univ. Trier Rekursions- und Lerntheorie WiSe 2010/11; Univ. Trier Henning Fernau Universität Trier fernau@uni-trier.de Rekursions- und Lerntheorie, Fernau, Universität Trier, WiSe 2010 1/17 Rekursions- und Lerntheorie

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 13. Vorlesung 07.12.2006 1 Überblick: Die Church- Turing-These Turing-Maschinen 1-Band Turing-Maschine Mehrband-Turing-Maschinen Nichtdeterministische

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

Unentscheidbarkeitssätze der Logik

Unentscheidbarkeitssätze der Logik Unentscheidbarkeitssätze der Logik Elmar Eder () Unentscheidbarkeitssätze der Logik 1 / 30 Die Zahlentheorie ist nicht formalisierbar Satz (Kurt Gödel) Zu jedem korrekten formalen System der Zahlentheorie

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 15.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Ein formales Berechnungsmodell: Turingmaschinen. Turingmaschinen 26 / 62

Ein formales Berechnungsmodell: Turingmaschinen. Turingmaschinen 26 / 62 Ein formales Berechnungsmodell: Turingmaschinen Turingmaschinen 26 / 62 Ein formales Rechnermodell Bisher haben wir abstrakt von Algorithmen bzw. Programmen gesprochen und uns dabei JAVA- oder C++-Programme

Mehr

Turingautomaten Jörg Roth Turingautomaten

Turingautomaten Jörg Roth Turingautomaten Turingautomaten Jörg Roth 331 5 Turingautomaten Wir führen nochmals ein neues Automatenmodell ein und erweitern die Fähigkeit, Sprachen zu erkennen: Problem vom Kellerautomaten: wir können zwar beliebig

Mehr

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 2 Gesamtübersicht Organisatorisches; Einführung Ersetzungsverfahren:

Mehr

subexponentielle Algorithmen (d.h. Laufzeiten wie z. B. 2 n oder

subexponentielle Algorithmen (d.h. Laufzeiten wie z. B. 2 n oder Wie schwer ist SAT? Ziel: Nachweis, dass SAT eines der schwersten Probleme in NP ist: SAT ist das erste bekannte Beispiel eines NP-vollständigen Problems. Demnach kann SAT mit bisher bekannten Techniken

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V11, 16.1.2012 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine

Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine Prof. Dr. Berthold Vöcking Lehrstuhl Informatik Algorithmen und Komplexität 24. Oktober 26 Programmierung der TM am Beispiel Beispiel:

Mehr

Übungsblatt 3. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 3. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 3 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 21. November 2017 Abgabe 5. Dezember 2017, 11:00 Uhr

Mehr

Asymptotische Komplexität

Asymptotische Komplexität Asymptotische Komplexität f B n hängt wesentlich von der Variablen x i ab,, 1 i n, wenn es Werte a j für 1 j n, j i, derart gibt, dass f(a 1,..., a i 1, 0, a i+1,..., a n ) f(a 1,..., a i 1, 1, a i+1,...,

Mehr

Rekursive Aufzählbarkeit Die Reduktion

Rekursive Aufzählbarkeit Die Reduktion Rekursive Aufzählbarkeit Die Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 1-13. Sitzung Dennis Felsing dennis.felsing@student.kit.edu http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-01-31 Turingmaschinen 1 Turingmaschinen Wiederholung

Mehr