1 Beispiele für Graphen

Größe: px
Ab Seite anzeigen:

Download "1 Beispiele für Graphen"

Transkript

1 Beispiele für Graphen 1 Beispiele für Graphen 1. Kreuzungsproblem : 3 Häuser sollen mit einem Wasser-, Gas- und Elektroanschluß verbunden werden, wobei keine Kreuzung entstehen darf. Abbildung 1: Kreuzungsproblem 2. Schachaufgabe mit einem Pferd : Das Pferd soll alle 64 Schachfelder einmal besuchen und zum Start zurückkehren. Diese Aufgabe ist ein sogenanntes Rundreiseproblem. Der spezielle Fall ist lösbar. 3. Königsberger Brückenproblem 1 : Auf einem Rundweg soll jede Brücke genau einmal überquert werden. Dieser Fall ist nicht lösbar. Abbildung 2: Königsberger Brückenproblem formulierte Euler das Problem nach einem Spaziergang in Königsberg. 3

2 Beispiele für Graphen 4. Das Haus des Nikolaus : Das Haus soll in einem Zug gezeichnet werden, ohne dass eine Kante doppelt gezeichnet wird. Abbildung 3: Das Haus des Nikolaus 5. Kannibalen und Missionare : Zwei Missionare und 2 Kannibalen sollen über den Fluß gebracht werden. Ein Missionar ( M1 ) und ein Kannibale (K1)können rudern. Es gibt ein Boot, welches 2 Mann tragen kann. Sobald die Kannibalen in der Überzahl sind, fressen sie den Missionar. Wie gelangen alle über den Fluß bringen, ohne daß einer gefressen wird? In der Abbildung sind die Situationen am Ausgangsufer dargestellt. Abbildung 4: Kannibalen und Missionare 4

3 Beispiele für Graphen 6. Umfüllaufgabe : Es gibt drei Gefäße ohne Maßeinteilung : das erste mit 8l, das zweite mit 5l und das letzte mit 3l Fassungsvermögen. Am Anfang ist das 8l-Gefäß vollständig gefüllt. Ziel ist es, 2 mal 4 Liter in zwei Gefäßen zu erhalten. Abbildung 5: Umfüllaufgabe Startknoten ist der Knoten (8,0,0). Der Zielknoten ist der Knoten (4,4,0). 7. Labyrinth-Probleme : Abbildung 6: Wegfindung in einem Labyrinth 5

4 2 Definition : Ein Graph G besteht aus einer Menge X von Knoten ( Punkte, Graph Ecken ) und aus einer Menge K von Kanten ( Bögen ), d.h. G =(X, K). Generell werden endliche Graphen betrachtet, wobei X = n und K = m. 2.1 Gerichtete Graphen Es gibt 2 Projektionsfunktionen: p 1 : K X p 2 : K X wobei p 1 (k) Anfangsknoten der Kante k und p 2 (k) Endknoten der Kante k ist. Häufig : p(k) :={p 1 (k),p 2 (k)} (MengederKnotenderKantek ) Beispiel : Dabei ist z.b.: p 1 (k 1 )=x 3, p 2 (k 1 )=x 1, p(k 1 )={x 3,x 1 } 6

5 Definitionen : ein Knoten x und eine Kante k heißen inzident, falls x p(k) zwei Kanten k 1 und k 2 heißen adjazent, falls p(k 1 ) p(k 2 ) zwei Knoten x 1 und x 2 heißen adjazent, falls k, p(k) ={x 1,x 2 } neben Schlingen können auch parallele Kanten auftreten inzident adjazent adjazent Schlingen parallele Kanten x (a) Schlinge (b) Parallele Kanten häufig sind die betrachteten Graphen schlicht, d.h. sie besitzen keine Schlingen und keine parallelen Kanten schlicht Weiter Charakterisierung durch den sogenannten Grad: 1. äußerer Grad (positiv) d + (x) : Anzahl der Kanten k mit x = p 1 (k) äußerer Grad 2. innerer Grad (negativ) d (x) : Anzahl der Kanten k mit x = p 2 (k) innerer Grad 3. Grad d(x) =d + (x)+d (x) : Anzahl der mit x inzidenten Kanten Grad ein Punkt x mit d(x) =0heißtisolierter Knoten isolierter Knoten ein Graph heißt vollständig, wenn jedes Paar verschiedener Knoten vollständiger Graph durch eine Kante verbunden ist 7

6 Aussagen : 1. x X d+ (x) = x X d (x) = K 2. x X d(x) =2 K 3. Die Anzahl der Knoten mit einem ungeradem Grad ist gerade. Beweis zu Aussage 3 : 1) X u X, X u Menge der Knoten mit ungeraden Grad 2) 2 K = d(x)+ d(x) d(x) istgerade }{{} gerade x X u x X\X u x X u }{{} gerade 3) Für x X u : d(x) =2l x + 1 = ungerade 4) d(x) = (2l x +1) =2 l x + X u }{{} x X } u x X {{}} u x X {{}}{{ u } gerade! gerade gerade gerade Nachbarschaftsbeziehungen Passend zu den Grad-Definitionen sind die Nachbarschaftsbeziehungen eines Knoten x: die Menge der Nachfolger von x :Γ + (x) ={y X k K : p 1 (k) = x, p 2 (k) =y} die Menge der Vorgänger von x :Γ (x) ={y X k K : p 1 (k) = y, p 2 (k) =x} die Menge der Nachbarn von x :Γ(x) =Γ + (x) Γ (x) 8

7 2.2 Ungerichtete Graphen Beispiel : Dabei ist z.b.: p(5) = {2, 4} Eigenschaften : Beschreibung durch die Projektionsfunktion p(k) ={Knoten von k} Inzidenz, Adjazenz, Schlingen, Parallelkanten wie bisher Halbgrade, Vorgänger und Nachfolger entfallen jetzt Grad, Nachbarn wie bisher Definition : Ein Graph G heißt regulär vom Grade r, wenn regulärer Graph d(x) =r x X. Beispiel fürr=2:dreieck;r=3:pyramide,würfel; r = 4 : Oktaeder. (a) Dreieck (b) Pyramide (c) Oktaeder 9

8 2.3 Teilgraphen, Kantenzüge, Wege und Kreise Die Beschreibung der Kanten durch die beiden Knoten bringt die Möglichkeit K X X, d.h.k =(x 1,x 2 )isteingeordnetes Paar mit Anfangsknoten x 1 und Endknoten x 2. Für ungerichtete Graphen ist K X & X, d.h.k = {x 1,x 2 } wird als ungeordnetes Paar aufgefasst. Teilgraphen : Definition : Ein Graph G =(X,K )heißtteilgraph von G =(X, K), Teilgraph wenn X X und K K ist. Symbol : G G. Spezialfälle : 1. Gegeben ist Y X. EsistX = Y, K = {k K p(k) Y } ist die neue Kantenmenge. Der Teilgraph G Y := (X,K )heißtderdurch Y erzeugte (Knoten-)Teilgraph von G. 2. Gegeben ist H K. EsistK = H, X = p(k) ist die neue Knotenmenge. Der Teilgraph G H := (X,K )heißtderdurch H erzeugte k K (Kanten-)Teilgraph von G. Kantenzüge, Wege und Kreise : Sei G =(X, K) ein (un-)gerichteter Graph, H K X X X&X mit H = {k 1 = (x 0,x 1 ) {x 0,x 1 },k 2 = (x 1,x 2 ) {x 1,x 2 },...,k r = (x r 1,x r ) {x l 1,x l } } Diese Folge von aufeinanderfolgenden Kanten heißt Kantenzug der Länge r von x 0 nach x r,deroffen ist, fall x 0 x r ist, oder geschlossen ist, wenn x 0 = x r ist. Der Kantenzug H kann auch durch seine Spur s(h) =(x 0,x 1,x 2,...,x r ) charakterisiert werden. Kantenzug 10

9 Sonderfall 1 : Enthält ein Kantenzug H alle Kanten von G genau einmal, soheißtheulerscher Kantenzug. Gibt es in G sogar einen geschlossenen Eulerschen Kantenzug, dann ist G ein Eulerscher Graph. Sonderfall 2 : Sind in einem Kantenzug alle x i mit i =0, 1, 2,...,r verschieden, so heißt H auch Weg in G von x 0 nach x r der Länge r. Gilt zusätzlich x 0 = x r,soheißthauchkreis in G der Länge r. Eulerscher Kantenzug Eulerscher Graph Weg Kreis Sonderfall 2.1 : Enthält ein Weg ( Kreis ) H alle Knoten von G, so heißt Hamiltonscher Weg HauchHamiltonscher Weg ( Kreis ). Ein Graph, der einen Hamiltonschen Kreis enthält, heißt auch Hamiltonscher Graph. Hamiltonscher Graph Eigenschaften : 1. Schlingen sind Kreise der Länge 1. In schlichten Graphen haben Kreise die Länge r 3 bei ungerichteten Graphen bzw. r 2 bei gerichteten Graphen. 2. Jeder offene Kantenzug von x 0 nach x r enthält einen Weg von x 0 nach x r. Jeder geschlossene Kantenzug enthält einen Kreis. 3. Gerichtete Graphen mit d + (x) > 0 x X bzw. d (x) > 0 x X besitzen stets einen Kreis. 4. Sei ein Kreis H mit s(h) =(x 0,x 1,x 2,...,x r ) in einem Graphen G gegeben, dann existiert ebenfalls ein Kreis H mit wobei 1 i r 1. s(h )=(x i,x i+1,...,x r,x 1,x 2,...,x i ), 11

10 2.4 Zusammenhänge in Graphen, Baum, Distanz 1. Ein ungerichteter Graph kann stets in einen gerichteten Graphen umgewandelt werden, indem jede ungerichtete Kante durch zwei entgegengesetzt gerichtete Kanten ersetzt werden. 2. Ein gerichteter Graph enthält einen ungerichteten Graphen dadurch, daß die Richtungen der Kanten weggelassen werden. 3. Ein ungerichteter Graph heißt zusammenhängend, wenn jedes Paar zusammenhängend verschiedener Knoten durch mindestens einen Weg verbunden werden können. Ein gerichteter Graph heißt stark zusammenhängend, wenn jedes Paar stark zusammenhängend verschiedener Knoten durch mindestens einen Weg verbunden werden können. Ein gerichteter Graph heißt schwach zusammenhängend, wenn schwach zusammenhängend der zugehörige ungerichtete Graph zusammenhängend ist. 4. Die starken bzw. schwachen Zusammenhangskomponenten eines Gra- Zusammenhangskomponenten phen sind die maximalen stark bzw. schwach zusammenhängenden Teilgraphen. Beispiel : Abbildung 7: Zusammenhangskomponenten Der Graph ist an sich schwach zusammenhängend, besitzt aber 3 starke Zusammenhangskomponenten ( die in sich stark zusammenhängend sind ). 12

11 Definition : Ein zusammenhängender ungerichteter Graph, der kreisfrei ist, heißt Baum. Baum Beispiel : Abbildung 8: Baum Definition : DieDistanz D(x, y) zwischen zwei verschiedenen Knoten eines Distanz Graphen ist die Länge eines kürzesten Weges von x nach y, falls ein solcher existiert, sonst D(x, y) :=. Außerdem ist D(x, x) := 0. Es gilt D(x, y) <, wennx und y zur gleichen Zusammenhangskomponente ( bei gerichteten Graphen : zur gleichen starken Zusammenhangskomponente ) gehören. 13

12 2.5 Der Satz von Euler Satz : Ein gerichteter, schwach zusammenhängender Graph G =(X, K) ist genau dann ein Eulerscher Graph, wenn Satz von Euler d + (x) =d (x) x X. Bemerkung : Bei ungerichteten Graphen muß d(x) geradefür alle x X sein. Diese Eigenschaft ist beim Königsberger Brückenproblem verletzt. Beweis ( für gerichtete Graphen ) : 1. Es gibt einen geschlossenen Eulerschen Kantenzug G EK in G. DaG schwach zusammenhängend ist, muß G EK alle Knoten von X enthalten. 2. Durchläuft man G EK, so liefert jeder Durchgang durch einen Knoten x X +1 für d + (x) und +1 für d (x). Am Ende, wenn alle Kanten durchlaufen sind, muß d + (x) =d (x) x X sein. ( Induktionsbeweis über m = K ) Induktionsanfang und Induktionsvoraussetzung: 1. m = 1 : Schlinge 2. m>1 : Jeder schwach zusammenhängende Graph G mit K <m und d + (x) =d (x) x X besitze einen geschlossenen Eulerschen Kantenzug. Induktionsbehauptung : Sei nun G ein schwach zusammenhängender Graph mit K = m und d + (x) = d (x) x X. Induktionsbeweis : Es gilt : d + (x) > 0 x X. Dann besitzt G einen Kreis H = {k 1,k 2,...,k l }. 14

13 1. Fall : H = K. DannistG ein Eulerscher Graph. 2. Fall : H K.DannseiK = K \H und G =(X,K ) der durch K erzeugte Graph. In G gilt : d + (x) =d (x) x X. Mit Herausnahme von H wurde d + (x) und d (x) eventuell um 1 gleichzeitig reduziert. Seien Z 1,Z 2,...,Z p die schwachen Zusammenhangskomponenten von G. p =1:G ist schwach zusammenhängend. Nach der Induktionsvoraussetzung hat G einen geschlossenen Eulerschen Kantenzug H. Wegen des schwachen Zusammenhanges von G müssen H und H einen gemeinsamen Knoten haben, so daß H und H zu einem geschlossenen Eulerschen Kantenzug vereinigt werden können. p > 1 : Jetzt besitzt jede schwache Zusammenhangskomponente Z i nach der Induktionsvoraussetzung einen geschlossenen Eulerschen Kantenzug H i. Wegen des schwachen Zusammenhanges müssen H und H i mindestens einen gemeinsamen Knoten besitzen. Die H i werden der Reihe nach mit H vereinigt. Im unteren Beispiel erfolgt dies durch den Kantenzug : (x 0,H 1,x 0x 1 x 2,H 2,x 2x 3 x 4 x 5,H 3,x 5,x 6,H 4,x 6x 7 x 0 ). Abbildung 9: Beweis des Satzes von Euler 15

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

Folien zur Vorlesung Mathematik Plus: Graphentheorie

Folien zur Vorlesung Mathematik Plus: Graphentheorie Bachelor Informatik Mathematik Plus Titel Folien zur Vorlesung Mathematik Plus: Graphentheorie Hochschule Stralsund Fakultät Elektrotechnik und Informatik Prof. Dr. W. Kampowsky Beispiele für Graphen 1

Mehr

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert: KAPITEL 3 Graphen Man kann als Ursprung der Graphentheorie ein Problem sehen, welches Euler 1736 von Studenten aus Königsberg gestellt bekam. Der Fluss Pregel wird von 7 Brücken überquert, und die Frage

Mehr

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht 1. Einführung Kapitelübersicht 1. Einführung Grundbegriffe und Bezeichnungen Beispiele Bäume gerichtete Graphen Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 15 Das Königsberger Brückenproblem Beispiel

Mehr

8. Übung Algorithmen I

8. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen

Mehr

Einheit 11 - Graphen

Einheit 11 - Graphen Einheit - Graphen Bevor wir in medias res (eigentlich heißt es medias in res) gehen, eine Zusammenfassung der wichtigsten Definitionen und Notationen für Graphen. Graphen bestehen aus Knoten (vertex, vertices)

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S Minimale Formale Grundlagen Graphentheorie Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt Minimale

Mehr

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr

Übersicht. Bielefeld Hannover. Kamen Paderborn. Unna Wünnenberg Kassel. Ziffer wählen. abheben. auflegen. Gespräch führen

Übersicht. Bielefeld Hannover. Kamen Paderborn. Unna Wünnenberg Kassel. Ziffer wählen. abheben. auflegen. Gespräch führen Übersicht Graphen beschreiben Objekte und Beziehungen zwischen ihnen geeignet für Modellierung verschiedener Aufgaben betrachten endliche, ungerichtete und endliche, gerichtete Graphen Graphen bestehen

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Definition : Diechromatische Zahl eines Graphen G ist die kleinste Anzahl chromatische Zahl von Farben für eine zulässige Färbung.

Definition : Diechromatische Zahl eines Graphen G ist die kleinste Anzahl chromatische Zahl von Farben für eine zulässige Färbung. 4 Definition : Eine zulässige Färbung ist eine Färbung der Knoten des ( un- zulässige Färbung gerichteten ) Graphen, so daß je zwei adjazente Knoten verschiedene Farben haben. Trivial ist, daß n verschiedene

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

Graphen und Bäume. A.1 Graphen

Graphen und Bäume. A.1 Graphen Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2 1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)

Mehr

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt:

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: Der K 4 lässt sich auch kreuzungsfrei zeichnen: Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: ( ) n n (n 1) E

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Skript zur Vorlesung Graphentheorie

Skript zur Vorlesung Graphentheorie Master Informatik Graphentheorie Titel Skript zur Vorlesung Graphentheorie Hochschule Stralsund Fakultät Elektrotechnik und Informatik Prof. Dr. W. Kampowsky Beispiele für Graphen 1 Beispiele für Graphen

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Graphen. Leonhard Euler ( )

Graphen. Leonhard Euler ( ) Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),

Mehr

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Vorlesungstermin 2: Graphentheorie II Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Wiederholung: Vollständige Induktion Ziel: zeige n N. A(n) für eine Aussage

Mehr

4. Kreis- und Wegeprobleme

4. Kreis- und Wegeprobleme 4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

8: Bipartite Graphen. s 1. bei dem es eine Kante zwischen s i und k gibt, wenn der Schüler s i die Note k für seine Arbeit bekommen hat.

8: Bipartite Graphen. s 1. bei dem es eine Kante zwischen s i und k gibt, wenn der Schüler s i die Note k für seine Arbeit bekommen hat. Chr.Nelius: Graphentheorie (WS 2018/19) 8 Bipartite Graphen 26 8: Bipartite Graphen In einer Schulklasse mit 24 Schülern s 1,s 2,s 3,...,s 24 wurde eine Mathe Arbeit geschrieben. Um das Ergebnis bildlich

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton) WS 2015/16 Diskrete Strukturen Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Graphentheorie. Yichuan Shen. 10. Oktober 2013

Graphentheorie. Yichuan Shen. 10. Oktober 2013 Graphentheorie Yichuan Shen 0. Oktober 203 Was ist ein Graph? Ein Graph ist eine kombinatorische Struktur, die bei der Modellierung zahlreicher Probleme Verwendung findet. Er besteht ganz allgemein aus

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 02. Mai 2017 [Letzte Aktualisierung: 10/07/2018,

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Graphen. Im Rahmen dieser Vorlesung beschränken wir uns auf einfache ungerichtete Graphen, die wie folgt definiert werden können:

Graphen. Im Rahmen dieser Vorlesung beschränken wir uns auf einfache ungerichtete Graphen, die wie folgt definiert werden können: Graphen Wir geben zunächst die allgemeinste Definition für den Begriff Graph an: Definition: Ein Graph ist ein 4-Tupel (V, E,, ), wobei V und E Mengen sind, und : E! V und : E! V totale Abbildungen. Im

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Graphen. Definitionen

Graphen. Definitionen Graphen Graphen werden häufig als Modell für das Lösen eines Problems aus der Praxis verwendet, wie wir im Kapitel 1 gesehen haben. Der Schweizer Mathematiker Euler hat als erster Graphen verwendet, um

Mehr

Formale Grundlagen. bis , Lösungen. 1. Beweisen Sie, daß die Summe aller Grade der Knoten stets gerade ist.

Formale Grundlagen. bis , Lösungen. 1. Beweisen Sie, daß die Summe aller Grade der Knoten stets gerade ist. Formale Grundlagen 4. Übungsaufgaben bis 2011-06-03, Lösungen 1. Beweisen Sie, daß die Summe aller Grade der Knoten stets gerade ist. 2. Finden Sie einen Eulerschen Weg im Briefumschlag, d.h. in: { ((1,

Mehr

Grundbegriffe der Informatik Tutorium 8

Grundbegriffe der Informatik Tutorium 8 Grundbegriffe der Informatik Tutorium 8 Tutorium Nr. 16 Philipp Oppermann 22. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Diskrete Mathematik Graphentheorie (Übersicht)

Diskrete Mathematik Graphentheorie (Übersicht) Diskrete Mathematik Graphentheorie (Übersicht) Dr. C. Löh 2. Februar 2010 0 Graphentheorie Grundlagen Definition (Graph, gerichteter Graph). Ein Graph ist ein Paar G = (V, E), wobei V eine Menge ist (die

Mehr

Naiver Algorithmus für Hamiltonkreis

Naiver Algorithmus für Hamiltonkreis Naiver Algorithmus für Hamiltonkreis Algorithmus HAMILTON EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung 1 Für alle Permutationen π : [n] [n]. 1 Falls (π(1), π(2),..., π(n)) ein Kreis in G ist, AUSGABE

Mehr

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt Diskrete Mathematik Hamiltonsche Graphen Teil I Karina Arndt 21.06.2006 Übersicht Einleitung Hamiltonsch und eulersch Hamiltonsche Kreise Hamiltonsche Graphen neu zeichnen Kreise und Wege Reguläre Graphen

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Graphen. Graphen und ihre Darstellungen

Graphen. Graphen und ihre Darstellungen Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten

Mehr

Vorlesung 2: Graphentheorie

Vorlesung 2: Graphentheorie Vorlesung 2: Graphentheorie Markus Püschel David Steurer Peter Widmayer Algorithmen und Datenstrukturen, Herbstsemester 2017, ETH Zürich Funktionsgraph bekannt aus der Schule hat aber leider nichts mit

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Was bisher geschah. gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen

Was bisher geschah. gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen Was bisher geschah gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen Spezielle Graphen: I n, K n, P n, C n, K m,n, K 1,n, K n1,...,n m Beziehungen zwischen Graphen: Isomorphie, Teilgraph,

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 6: Kreis- und Wegeprobleme Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 27. März 2018 1/47 KREIS- UND WEGEPROBLEME 2/47

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Elementargeometrie. Prof. Dr. Andreas Meister SS digital von: Frank Lieberknecht

Elementargeometrie. Prof. Dr. Andreas Meister SS digital von: Frank Lieberknecht Prof. Dr. Andreas Meister SS 2004 digital von: Frank Lieberknecht Geplanter Vorlesungsverlauf...1 Graphentheorie...1 Beispiel 1.1: (Königsberger Brückenproblem)... 1 Beispiel 1.2: (GEW - Problem)... 2

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 08: Menger, König und Hall / Planare Graphen 1 / 30 Der Satz von Menger: s t trennende Kantenmenge

Mehr

Ferienkurs Propädeutikum Diskrete Mathematik

Ferienkurs Propädeutikum Diskrete Mathematik Ferienkurs Propädeutikum Diskrete Mathematik Teil 3: Grundlagen Graphentheorie Tina Janne Schmidt Technische Universität München April 2012 Tina Janne Schmidt (TU München) Ferienkurs Propädeutikum Diskrete

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Kapitel IV Minimale Spannbäume

Kapitel IV Minimale Spannbäume Kapitel IV Minimale Spannbäume. Grundlagen Ein Graph G = (V, E) besteht aus einer Menge V von Knoten und einer Menge E von Kanten. Wir werden nur endliche Knoten- (und damit auch Kanten-) Mengen betrachten.

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

5 Graphen und Polyeder

5 Graphen und Polyeder 5 Graphen und Polyeder 5.1 Graphen und Eulersche Polyederformel Ein Graph besteht aus einer Knotenmenge V (engl. vertex) und einer Kantenmenge E (engl. edge). Anschaulich verbindet eine Kante zwei Knoten,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

Zweiter Zirkelbrief: Graphentheorie

Zweiter Zirkelbrief: Graphentheorie Matheschülerzirkel Universität Augsburg Schuljahr 2014/2015 Zweiter Zirkelbrief: Graphentheorie Inhaltsverzeichnis 1 Grundbegriffe 1 2 Eulerkreise 4 3 Hamiltonkreise 7 4 Planare Graphen 9 5 Färbbarkeit

Mehr

1. Einige Begriffe aus der Graphentheorie

1. Einige Begriffe aus der Graphentheorie . Einige Begriffe aus der Graphentheorie Notation. Sei M eine Menge, n N 0. Dann bezeichnet P n (M) die Menge aller n- elementigen Teilmengen von M, und P(M) die Menge aller Teilmengen von M, d.h. die

Mehr

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen Bernd Döring Wege, Plätten, Färben Vom Problem zur Theorie der Graphen Bernd Döring, 2002-2005 Bernd Döring Johannes-Althusius-Gymnasium Früchteburger Weg 28 26721 Emden - 2 - Inhaltsverzeichnis 0. Einleitung

Mehr

Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten

Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten Graphentheorie Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten gerichteter Graph (DiGraph (directed graph) E: Teilmenge E

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 9 Graphen Version vom 13. Dezember 2016 1 / 1 Vorlesung Fortsetzung 13. Dezember

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 2: Einführung in die Graphentheorie - Teil 2 Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 2. März 2018 1/48 OPERATIONEN

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Kapitel 5: Graphen und Graphalgorithmen

Kapitel 5: Graphen und Graphalgorithmen LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Algorithmen und Datenstrukturen Kapitel 5: Graphen und Graphalgorithmen Skript zur Vorlesung Algorithmen und Datenstrukturen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 17. Vorlesung Graphen: Repräsentation und Durchlaufstrategien Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Vorlesungsumfrage Nutzen Sie

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt Prof. Dr. J. Csirik. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am. und.

Mehr

Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22

Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22 Graphalgorithmen II Werner Sembach 14.04.2014 Werner Sembach Graphalgorithmen II 14.04.2014 1 / 22 Übersicht Datenstrukturen Union-Find Fibonacci-Heap Werner Sembach Graphalgorithmen II 14.04.2014 2 /

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII

Mehr

Graphentheorie. Algebraic Graph Theory von Chris Godsil und Gordon Royle. Kapitel Seminararbeit. von. Katharina Mayr

Graphentheorie. Algebraic Graph Theory von Chris Godsil und Gordon Royle. Kapitel Seminararbeit. von. Katharina Mayr Graphentheorie Algebraic Graph Theory von Chris Godsil und Gordon Royle Kapitel 1.1 1.3 Seminararbeit von Katharina Mayr 01210559 Universität Graz Insitut für Mathematik und wissenschaftliches Rechnen

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie 1 Algorithmische Graphentheorie Sommersemester 2016 1. Vorlesung Rundreiseprobleme Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übersicht I) Eulerkreise III) Handlungsreisende II) Hamiltonkreise

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Def. 1.1: Graph, Knoten, Kanten, adjazent. Notwendige Bedingungen für Isomorphie. Das 3-Brunnen Problem, der vollständige bipartite Graph K 3,3

Def. 1.1: Graph, Knoten, Kanten, adjazent. Notwendige Bedingungen für Isomorphie. Das 3-Brunnen Problem, der vollständige bipartite Graph K 3,3 Stand: 27. Januar 2004 1. Kapitel: Was ist ein Graph? Beispiel: Mannschafts-Wettkämpfe Def. 1.1: Graph, Knoten, Kanten, adjazent Nullgraphen, vollständige Graphen K n, komplementäre Graphen Isomorphie

Mehr

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... 2/29 > Dauerwerbeveranstaltung für ein Studium der Informatik- aber mit mathematischem Inhalt! Hier: Ein Auszug aus

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 8

Mehr

Kantengraphen und Planare Graphen. Seminararbeit

Kantengraphen und Planare Graphen. Seminararbeit Kantengraphen und Planare Graphen Seminararbeit in Mathematisches Seminar für LAK 621.378 SS 2018 vorgelegt von Anna Maria Gärtner bei: Baur, Karin, Univ.-Prof. Dr.phil. Graz, 2018 Inhaltsverzeichnis 1

Mehr

Graphen: Rundwege, Kodierung von Bäumen

Graphen: Rundwege, Kodierung von Bäumen TH Mittelhessen, Wintersemester 2013/2014 Lösungen zu Übungsblatt 11 Fachbereich MNI, Diskrete Mathematik 4./5./6. Februar 2014 Prof. Dr. Hans-Rudolf Metz Graphen: Rundwege, Kodierung von Bäumen Aufgabe

Mehr

Einführung in die Graphentheorie. Monika König

Einführung in die Graphentheorie. Monika König Einführung in die Graphentheorie Monika König 8. 11. 2011 1 Vorwort Diese Seminararbeit basiert auf den Unterkapiteln 1.1-1.3 des Buches Algebraic Graph Theory von Chris Godsil und Gordon Royle (siehe

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Graphen für Einsteiger

Graphen für Einsteiger Manfred Nitzsche Graphen für Einsteiger Rund um das Haus vom Nikolaus 2., korrigierte Auflage vieweg 1 Erste Graphen 1 Das Haus vom Nikolaus 1 Was ist ein Graph? 2 Auch das ist bei Graphen möglich! 3 Der

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 3 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus

Mehr

Kapitel IV Minimale Spannbäume

Kapitel IV Minimale Spannbäume Kapitel IV Minimale Spannbäume 1. Grundlagen Ein Graph G = (V, E) besteht aus einer Menge V von Knoten und einer Menge E von Kanten. Wir werden nur endliche Knoten- (und damit auch Kanten-) Mengen betrachten.

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.

Mehr