Labor zur Optischen Messtechnik
|
|
|
- Roland Gerstle
- vor 7 Jahren
- Abrufe
Transkript
1 Labor zur Optischen Messtechnik OBV Blendowske/Englert Versuch: Mach-Zehnder-Interferometer (MZI) 1. Vorjustage (a) Dieser Schritt bereitet die Justage im nächsten Schritt vor. Höchste Präzession ist nicht erforderlich. (b) Bauen Sie den Strahlteiler 1 sowie die Lochblende und Linse 1 (Mikroskopobjektiv) aus. Hinter Spiegel 2 wird eine verstellbare Blende eingesetzt und ein kleiner Durchmesser (2-3 mm) der Blende eingestellt. Der Strahlteiler bleibt zunächst noch ausgebaut. Stellen Sie dann zunächst den Spiegel 3 senkrecht zum einfallenden Strahl, öffnen Sie die 2. Blende zunächst soweit, dass das Bündel passieren kann und beobachten Sie den Rückreflex des Spiegels auf der Blendenrückseite. Verstellen Sie nun den Spiegel 2 so, dass das Bündel die Öffnung auch auf dem Rückweg mittig trifft. Das ist nicht einfach zu beurteilen. Verkleinern Sie die Blendenöffnung schrittweise, um den Fortschritt zu kontrollieren. Der Rückreflex sollte auch am Laser selbst zu beobachten sein. Justieren Sie NICHT so gut, dass der Rückreflex exakt in den Laser zurück läuft! (c) Setzen Sie nun den Strahlteiler ein, und versetzen Sie die Blende weg von Spiegel 3 und vor den Spiegel 4. Wiederholen Sie die Prozedur der Zentrierung, indem Sie nun die Stellschrauben des Strahlteilers verwenden. (d) Bringen Sie nun alle Spiegel in die 45 Position und beobachten Sie, wie die Bündel das MZI verlassen. Linse 3 ist noch nicht eingesetzt! Im Idealfall liegen die Bündel am Strahlteiler 2 übereinander. Ist dies der Fall, dann nutzen Sie Strahlteiler 2, um die Strahlen parallel zu führen. 2. Strahlaufweitung. Entfernen Sie alle Blenden aus dem Aufbau. Der Laserstrahl wird mittels eines Kepler-Teleskops plus Raumfilter aufgeweitet. Linse 1 (f = 25 mm) fokussiert den Laserstrahl. In der Brenneben befindet sich das sogenannte Raumfilter; hier ist das ist ein Pinhole mit einem Durchmesser von 30µm. Suchen Sie mittels Änderung der Linsenposition (lateral wie axial) die Helligkeit des Beugungsmusters hinter dem Pinhole zu maximieren. Linse 2 (f = 300 mm) wird so zwischen Spiegel 1 und 2 eingesetzt, dass sie den Strahl kollimiert. Dies wird kontrolliert, indem der Bündeldurchmesser in einiger Entfernung beobachtet wird. Das Bündel soll möglichst wenig Divergenz oder Konvergenz zeigen. Kontrollieren Sie dies in den beiden Armen des MZIs. 3. Streifen suchen. (a) Setzen Sie nun Linse 3 mit möglichst großer Brennweite (beispielsweise 1 Dpt) ein und beobachten Sie die Positionen der beiden Bündel in der Brennebene. Verwenden Sie die Stellschrauben des Strahlteilers, um die beiden Punkte zum Überlapp zu bringen. (b) Betrachten Sie die Bündel in der Brennebene von Linse 3. Bringen Die die beiden Spots zum bestmöglichen Überlapp. Vor Linse 3 sollten nun Streifen nachweisbar sein. Durch feinfühliges Justieren der Stellschrauben am Strahlteiler sollten Sie den Streifenabstand vergrößern können. Kontrollieren Sie durch abwechselndes Abdecken des Strahls in den beiden Armen, dass die Interferenzstreifen verschwinden. Damit schließen Sie aus, dass Sie Interferenzen beobachten, die durch unerwünschte Reflexionen entstanden sind. 4. Kamera einbauen. Setzen Sie nun die Kamera (ohne Objektiv) an der Stelle von Linse 3 (genaue Positionierung nicht erforderlich) ein, so dass das Interferenzmuster am Monitor beobachtbar ist. 5. Vermessung eines Phasenobjektes (a) Kalibrierung. Da der Abbildungsmaßstab unbekannt ist, muss eine Kalibrierung vorgenommen werden. Verwenden Sie dazu ein Objekt bekannter Länge als Maßstab. Dieses Objekt wird auf den Sensor als Schattenwurf abgebildet. Das Kalibrierobjekt muss sich dabei am Ort der Linse befinden, die im nächsten Schritt vermessen wird. Die Vermessung des Kalibrierobjektes kann gleichzeitig in demselben Bild oder nacheinander mittels zwei getrennter Aufnahmen geschehen. (b) Linse Wenn Sie eine Linse in einen Arm des MZI einführen, dann erzeugen Sie ein Muster konzentrischer Ringe. Mittels der Kamera können Sie ein Bild des Ringsystems aufnehmen und abspeichern (siehe Kamera Anleitung). Bestimmen Sie im Bild die Anzahl der Ringe N (schwarz / rot) innerhalb eines festgelegten Durchmessers D. 1
2 Abbildung 1: Längenkalibrierung mit einem 7 mm langen Objekt. Anzahl der Ringe N = 15. Der dazugehörige Durchmesser D muss bestimmt werden. Wiederholen Sie die Messung einige Male und für unterschiedliche Linsen. Die Brennweite f 0 ergibt sich näherungsweise aus der Gleichung D2 = 8f 0 N λ (1) Hier ist D der Durchmesser des ausgezählten Ringsystems mit N schwarz-rot (bzw. hell-dunkel) Übergängen. Die Wellenlänge ist mit λ gekennzeichnet, und f 0 steht für die Brennweite. Schätzen Sie die Messunsicherheit Ihres Ergebnisses ab! 2
3 3
4 Stand: OM-Labor Autor: M. Englert Kurzanleitung zur Bildaufnahme mit der MatrixVison Kamera mvbluefox3-2024g Starten Sie das Programm wxpropview (liegt auf dem Desktop) 2. In der Auswahlliste sollte die Kamera F ( ) zu finden sein. Steht in der Auswahlliste No Device, ziehen Sie bitte vorsichtig den Stecker der Kamera ab, und verbinden die Kamera erneut. 3. Klicken Sie auf Action >> Update Device List, um die Geräteliste zu aktualisieren. Sollte keine Verbindung mit der Kamera möglich sein, wenden Sie sich bitte an einen Betreuer. 4. Klicken Sie auf Use, um ein Livebild zu erzeugen. 1
5 Stand: OM-Labor Autor: M. Englert 5. Es öffnet sich ein Fenster Quick Setup, über das Sie diverse Einstellungen vornehmen können. Erzeugen Sie, auch durch Verschieben der Linse/Kamera, ein zur späteren Auswertung geeignetes Bild. Klicken Sie auf Ok. 6. Klicken Sie auf Acquire um das Bild aufzunehmen. 7. Unter Action >> Save Image können Sie das Bild abspeichern. 8. Beispielbild: Interferenzringen, erzeugt durch eine Linse mit D = 0,25dpt. Zu sehen sind auch die beiden horizontal liegenden Abstandsmarkierungen. 2
Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln
Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln Praktikumsanleitung: Holografie Versuch 1: Die ebene Welle 1 Versuchsziel Ziel des
Übungsaufgaben zu Interferenz
Übungsaufgaben zu Interferenz ˆ Aufgabe 1: Interferenzmaxima Natrium der Wellenlänge λ = 589 nm falle senkrecht auf ein quadratisches Beugungsgitter mit der Seitenlänge cm mit 4000 Linien pro Zentimeter.
Lloydscher Spiegelversuch
Lloydscher Spiegelversuch Lichtwellen können sich gegenseitig auslöschen, nämlich dann, wenn ein Berg der Welle auf ein Tal derselben trifft. Um das zu zeigen, benötigt man zwei im gleichen Takt und mit
Lichtgeschwindigkeit n. Foucault Best.- Nr. CL07010 CL07011
Lichtgeschwindigkeit n. Foucault Best.- Nr. CL07010 CL07011 Bitte verwenden Sie zur Justierung und für die Versuchsdurchführung diese Anleitung, nicht die englische. In dieser Kurzanleitung wird der Aufbau
1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter
1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen
Versuch Nr. 18 BEUGUNG
Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der
Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.
Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um
Michelson-Interferometer
D02b Sie werden ein (MI) kennen lernen und justieren. Mit einem MI lassen sich Wegdifferenzen mit einer Genauigkeit im nm-bereich (Lichtwellenla nge λ) messen. Schriftliche VORbereitung: Erkla ren Sie
O9a Interferenzen gleicher Dicke
Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O9a Interferenzen gleicher Dicke Aufgaben 1. Bestimmen Sie den Krümmungsradius einer konvexen Linsenfläche durch Ausmessen Newtonscher
Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert
Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O07 Michelson-Interferometer (Pr_PhII_O07_Michelson_7, 5.10.015) 1.. Name Matr. Nr. Gruppe
HS D. V 504 : Michelson Interferometer. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf Fachbereich EI
Gruppe : Namen, Matrikel Nr.: HS D Hochschule Düsseldorf Versuchstag: Vorgelegt: Testat : V 504 : Michelson Interferometer Zusammenfassung: 31.03.16 Versuch: Michelson Interferometer Seite 1 von 12 Gruppe
Mach-Zehnder Interferometer
Mach-Zehnder Interferometer 1891/2 von Ludwig Mach und Ludwig Zehnder entwickelt Sehr ähnlich Michelson-Interferometer Aber: Messobjekt nur einmal durchlaufen 1 Anwendung: Mach-Zehnder Interferometer Dichteschwankungen
Versuch 3: Beugung am Spalt und Kreisblende
Versuch 3: Beugung am Spalt und Kreisblende Dieser Versuch soll der Einführung der allgemeinen Beugungstheorie dienen. Beugungsphänomene werden in verschiedenen Erscheinungsformen zunächst nur beobachtet.
An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?
An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? 4 Hautstrahlen für Siegel + = i f f = r 2 4 Hautstrahlen Doelbrechung, λ/4-platte und λ/2-platte Shärische brechende Flächen
Labor für Technische Akustik
Labor für Technische Akustik Kraus Abbildung 1: Experimenteller Aufbau zur optischen Ermittlung der Schallgeschwindigkeit. 1. Versuchsziel In einer mit einer Flüssigkeit gefüllten Küvette ist eine stehende
O10 PhysikalischesGrundpraktikum
O10 PhysikalischesGrundpraktikum Abteilung Optik Michelson-Interferometer 1 Lernziele Aufbau und Funktionsweise von Interferometern, Räumliche und zeitliche Kohärenz, Kohärenzeigenschaften verschiedener
Gebrauchsanweisung Martin Henschke, Fresnel-Spiegel Art.-Nr.:
Gerätebau - Physikalische Lehrmittel Dr. Martin Henschke Gerätebau Dieselstr. 8, D-50374 Erftstadt www.henschke-geraetebau.de Gebrauchsanweisung Martin Henschke, 2006-05-16 Fresnel-Spiegel Art.-Nr.: 650272
Quantenradierer Analogie Experiment mit dem Mach-Zehnder-Interferometer
Physik Schülerlabor Initiative (PSI) Karlsruher Institut für Technologie (KIT) http://psi.physik.kit.edu Quantenradierer Analogie Experiment mit dem Mach-Zehnder-Interferometer Inhalt: 1.1 Kurze Beschreibung
Physik 4, Übung 4, Prof. Förster
Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls
Optische Systeme (5. Vorlesung)
5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop
Linsen und Linsenfehler
Linsen und Linsenfehler Abb. 1: Abbildung des Glühfadens einer Halogenlampe durch ein Pinhole Geräteliste: Pinhole (
Labor Optische Messtechnik
Fachbereich MN Fachhochschule Darmstadt Studiengang Optotechnik und Bildverarbeitung Labor Optische Messtechnik Versuch: Michelson Interferometer durchgeführt am: 30. April 003 Gruppe: Tobias Crößmann,
Beugung und Laserspeckles
Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik Praktikum Wahlfach Technische Optik Beugung und Laserspeckles Gliederung Seite 1. Versuchsziel... 1
Überlagerung monochromatischer Wellen/Interferenz
Überlagerung monochromatischer Wellen/Interferenz Zwei ebene monochromatische Wellen mit gleicher Frequenz, gleicher Polarisation, überlagern sich mit einem sehr kleinen Relativwinkel ε auf einem Schirm
Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes
PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.
Welle-Teilchen-Dualismus und Quantenradierer
Technische Universität Kaiserslautern Fachbereich Physik Fortgeschrittenenpraktikum Welle-Teilchen-Dualismus und Quantenradierer Versuchsanleitung V. 1.1.2 - Juni 2015-1 Vorbemerkung: Dies ist eine der
Optische Bank für Schüler, Komplettset
Optische Bank für Schüler, Komplettset Übersicht Mit der optischen Bank als Komplettset können Schüler selbständig Grundlagenversuche zur Strahlenoptik durchführen. Alle Komponenten, inklusive der dreigeteilten
Konfokale Mikroskopie
Konfokale Mikroskopie Seminar Laserphysik SoSe 2007 Christine Derks Universität Osnabrück Gliederung 1 Einleitung 2 Konfokales Laser-Scanning-Mikroskop 3 Auflösungsvermögen 4 andere Konfokale Mikroskope
Ferienkurs Experimentalphysik III
Ferienkurs Experimentalphysik III Musterlösung Dienstag - Spiegel, Linsen und optische Geräte Monika Beil, Michael Schreier 28. Juli 2009 Aufgabe Bestimmen Sie das Verhältnis der Brennweiten des Auges
Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073)
Aufgaben 13 Optische Instrumente Mikroskop, Teleskop Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt
Einfache Experimente zu Koronen
KORONEN PHYSIKDIDAKTIK Einfache Experimente zu Koronen LES COWLEY PHILIP LAVEN MICHAEL VOLLMER Dieses Dokument ist eine Ergänzung zum Artikel Farbige Ringe um Sonne und Mond über Koronen in Physik in unserer
Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres
Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Historisches und Grundlagen: Generell wird zwischen zwei unterschiedlichen Typen von Fernrohren unterschieden. Auf der einen Seite gibt es das
Versuch C: Auflösungsvermögen Einleitung
Versuch C: svermögen Einleitung Das AV wird üblicherweise in Linienpaaren pro mm (Lp/mm) angegeben und ist diejenige Anzahl von Linienpaaren, bei der ein normalsichtiges Auge keinen Kontrastunterschied
Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016
Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer
HTW Chur Photonics, Optik 1, T. Borer Aufgaben /19
Aufgaben 13 Optische Instrumente Mikroskop, Teleskop Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt
Physikalisches Praktikum
Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.6: Beugung am Gitter Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1 Bestimmung des Gitters mit der kleinsten Gitterkonstanten
7.7 Auflösungsvermögen optischer Geräte und des Auges
7.7 Auflösungsvermögen optischer Geräte und des Auges Beim morgendlichen Zeitung lesen kann ein gesundes menschliche Auge die Buchstaben des Textes einer Zeitung in 50cm Entfernung klar und deutlich wahrnehmen
Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2
Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am 01.12.2011 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll
Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009
Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite
Physikklausur Nr.4 Stufe
Physikklausur Nr.4 Stufe 12 08.05.2009 Aufgabe 1 6/3/5/4 Punkte Licht einer Kaliumlampe mit den Spektrallinien 588nm und 766nm wird auf einen Doppelspalt des Spaltmittenabstands 0,1mm gerichtet. a.) Geben
Versuch O02: Fernrohr, Mikroskop und Teleobjektiv
Versuch O02: Fernrohr, Mikroskop und Teleobjektiv 5. März 2014 I Lernziele Strahlengang beim Refraktor ( Linsenfernrohr ) Strahlengang beim Mikroskop Strahlengang beim Teleobjektiv sowie Einblick in dessen
Kollimation eines Alluna Ritchey Chrétien Teleskops
Kollimation eines Alluna Ritchey Chrétien Teleskops Diese Anleitung beschreibt wie Sie ihr Alluna Ritchey-Chrétien Teleskop in wenigen Schritten und innerhalb weniger Minuten perfekt justieren. Die Kollimation
Versuch of : Optisches Filtern
UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum B Versuch of : Optisches Filtern 5. Auflage 2009 Dr. Stephan Giglberger Prof. Dr. Joe Zweck Inhaltsverzeichnis
Handbuch zu SpyderLENSCAL
Handbuch zu SpyderLENSCAL Der Spyder-Effekt Herzlichen Glückwunsch! Sie haben jetzt ein überlegenes Tool zum Messen und Anpassen der Fokussierungsleistung Ihrer Ka-mera-Objektiv-Kombinationen. Datacolor
Lasertechnik Praktikum: Versuch Gaußsche Strahlen, Prof. Rateike
Lasertechnik Praktikum: Versuch Gaußsche Strahlen, Prof. Rateike Christoph Hansen, Niklas Schäfer, Felix Adam [email protected] Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.
a 1 a = 1 f HAUPTEBENEN BEI OBJEKTIVEN (Versuch D) f = f 1 f 2 f 1 H 2 H 1 H =e f H = e f f 2 Grundlagen:
HAUPTEBENEN BEI OBJEKTIVEN (Versuch D) Grundlagen: Stellt man aus einzelnen Linsen ein mehrstufiges System zusammen, so kann man seine Gesamtwirkung wieder durch seine Brennweite und die Lage der Hauptpunkte
Geschwindigkeitsmessung mit Lasern
Geschwindigkeitsmessung mit Lasern Andreas Buschermöhle Universität Osnabrück 3. Juli 2007 1 2 3 4 berührungslose Messung berührungslose Messung sehr präzise Messung berührungslose Messung sehr präzise
Labor für Technische Akustik
Labor für Technische Akustik Abbildung 1: Experimenteller Aufbau zur Untersuchung von stehenden Wellen 1. Versuchsziel Bringt man zwei ebene Wellen gleicher Amplitude und Frequenz, aber entgegengesetzter
Physikalisches Praktikum 3. Semester
Torsten Leddig 30.November 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Newtonsche Ringe - 1 1 Newtonsche Ringe: Aufgaben: Bestimmen Sie den Krümmungsradius R sowie den
31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek).
31-1 MICHELSON-INTERFEROMETER Vorbereitung Michelson-Interferometer, Michelson-Experiment zur Äthertheorie und Konsequenzen, Wechselwirkung von sichtbarem Licht mit Materie (qualitativ: spontane und stimulierte
Auflösung optischer Instrumente
Aufgaben 12 Beugung Auflösung optischer Instrumente Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt
Wellenwanne für Projektion DW401-2W. Versuchsanleitung
Wellenwanne für Projektion DW401-2W Versuchsanleitung INHALTSVERZEICHNIS AKD 7.09 AKD 7.07 AKD 7.08 AKD 7.02 AKD 7.01 AKD 7.03 AKD 7.05 AKD 7.06 AKD 7.04 Dopplereffekt Reflexion Spiegel hohl Brechung
Unternehmen Sie unter keinen Umständen einen eigenen Reinigungsversuch!
FACHHOCHSCHULE BINGEN PHYSIKLABOR Energie- und Prozesstechnik/Biotechnik Gruppennummer Anwesenheit Name / Datum V 2.4 Wellenoptik / LASER Version 17.9.2012 Testat WICHTIG: Vor der Versuchsdurchführung
V6: Quantenradierer. Licht als Welle und Teilchen. HaSP Halles Schülerlabor für Physik Institut für Physik Martin-Luther-Universität Halle-Wittenberg
V6: Quantenradierer Licht als Welle und Teilchen HaSP Halles Schülerlabor für Physik Institut für Physik Martin-Luther-Universität Halle-Wittenberg Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 Aufgabe 1 2
Praktikum MI Mikroskop
Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen
Diffraktive Optik (O9)
5. Juni 08 Diffraktive Optik (O9) Ziel des Versuches Das Prinzip der diffraktiven Optik, die Beugung und Interferenz von Licht ausnutzt, soll an einer fresnelschen Zonenplatte kennen gelernt werden. Bestimmte
Versuch PMS 12 Lichtwellenleiter. 1 Aufgabenstellung
Versuch PMS 12 Lichtwellenleiter 1 Aufgabenstellung 1.1. Die Laserstrahlung eines He-Ne-Lasers soll mit möglichst hohem Wirkungsgrad in Multimode- und Monomode-Lichtwellenleiter (LWL) eingekoppelt werden.
Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert
Ebener Spiegel Spiegelsymmetrie Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert Konstruktion des Bildes beim ebenen Spiegel Reelles Bild: Alle Strahlen schneiden sich Virtuelles
Interferenz und Kohärenz
Ziele Interferenz und Kohärenz In diesem Versuch messen Sie die Kohärenzlänge unterschiedlicher Lichtquellen und beobachten die Schwebung zweier Lichtfelder sehr ähnlicher Wellenlänge. Fragen zur Vorbereitung
Laborheft Grundlagen der Quantenoptik
Laborheft Grundlagen der Quantenoptik Name: Datum: Partner: Stationsreihenfolge: Schule: Betreuer der Uni: Sicherheitshinweise zum Laborbesuch: Im Labor arbeitest Du mit Lasern (
Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Sommersemester 2009
Name: Gruppennummer: Nummer: Aufgabe 1 2 3 4 5 6 7 8 9 10 insgesamt erreichte Punkte erreichte Punkte Aufgabe 11 12 13 14 erreichte Punkte Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner
Atom- und Kernphysik. Beobachtung der Aufspaltung der Balmerlinien an deuteriertem Wasserstoff (Isotopieaufspaltung) LD Handblätter Physik
Ato- und Kernphysik Atohülle Baler-Serie des Wasserstoff LD Handblätter Physik P6.2.1.3 Beobachtung der Aufspaltung der Balerlinien an deuterierte Wasserstoff (Isotopieaufspaltung) P6.2.1.3 (a) P6.2.1.3
Protokoll zum Physikalischen Praktikum Versuch 9 - Newtonsche Ringe
Protokoll zum Physikalischen Praktikum Versuch 9 - Newtonsche Ringe Experimentator: Sebastian Knitter Betreuer: Dr Enenkel Rostock, den 02.11.2004 Inhaltsverzeichnis 1 Ziel des Versuches 1 2 Vorbetrachtungen
Grundlagen der Lichtmikroskopie
Lehrerfortbildung Nanobiotechnologie Grundlagen der Lichtmikroskopie Juliane Ißle 03.04.03 Universität des Saarlandes Fachrichtung Experimentalphysik Inhalt Prinzipieller Mikroskopaufbau Köhler sche Beleuchtung
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #22 01/12/2010 Vladimir Dyakonov [email protected] Sammellinse Hauptstrahlen durch einen Sammellinse: Achsenparallele Strahlen verlaufen nach der
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Optik II: Reflexion und Brechung des Lichts
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Optik II: Reflexion und Brechung des Lichts Das komplette Material finden Sie hier: School-Scout.de Schriftliche Übung Name: Reflexion
MS Michelson-Interferometer
MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................
Laserstrahlung und vergrößernde optische Instrumente
Laserstrahlung und vergrößernde optische Instrumente Vor der Gefährlichkeit von Laserstrahlung bei Betrachtung durch vergrößernde optische Instrumenten wird vielfach gewarnt. Aber ist die Exposition bei
Lloydscher Spiegelversuch
1 Lloydscher Spiegelversuch 1.1 Fertige eine ausführliche gegliederte Versuchsbeschreibung an. 1.2. Erkläre das Zustandekommen von Interferenzen a) beim Doppelspalt, b) beim Fresnelschen Doppelspiegel,
Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.
Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)
Camera obscura und Dunkelkammer Lehrerinformation
Lehrerinformation 1/6 Arbeitsauftrag Die SuS lesen den Text über die Funktionsweise der Camera obscura konzentriert durch. Sie legen das Blatt auf die Seite und erzählen dem Banknachbarn mit eigenen Worten
Institut für Angewandte Physik der Technischen Universität Braunschweig. Physikalisches Praktikum für Fortgeschrittene.
Institut für Angewandte Physik der Technischen Universität Braunschweig Physikalisches Praktikum für Fortgeschrittene Helium-Neon-Laser Stand: Oktober 2016 Inhaltsverzeichnis 1 Einleitung 5 1.1 Ziel des
Vorbereitung zur geometrischen Optik
Vorbereitung zur geometrischen Optik Armin Burgmeier (347488) Gruppe 5 9. November 2007 Brennweitenbestimmungen. Kontrollieren der Brennweite Die angegebene Brennweite einer Sammellinse lässt sich überprüfen,
22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)
22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche
Interferenz makroskopischer Objekte. Vortragender: Johannes Haupt
Interferenz makroskopischer Objekte Vortragender: Johannes Haupt 508385 1 Inhalt 1. Motivation 2. Geschichtliche Einführung 3. Experiment 3.1. Aufbau 3.2. Resultate 4. Thermische Strahlung 4.1. Grundidee
V 501 : Optische Abbildung
Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 501 : Optische Abbildung Zusammenfassung: 1 von 13 Gruppe : Korrigiert am: Hochschule Düsseldorf 1. Korrektur 2. Korrektur
Interferometer OPL 29
Interferometer OPL 29 Material: 1 Interferometer nach Michelson DL408-2I 1 Rundfuß mit Klemmsäule DS100-1R Theoretische Grundlagen: Beim Interferometer nach Michelson wird das von der Lichtquelle L kommende
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 10. Übungsblatt - 10. Januar 2011 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (6 Punkte) a)
Dispersion von Prismen (O2)
Dispersion von Prismen (O) Ziel des Versuches Für drei Prismen aus verschiedenen Glassorten soll durch die Methode der Minimalablenkung die Dispersion, d. h. die Abhängigkeit der Brechungsindizes von der
Auflösungsvermögen bei dunkelen Objekten
Version: 27. Juli 2004 Auflösungsvermögen bei dunkelen Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie
HOLOGRAPHIE I : VOM GITTER ZUM 3D- HOLOGRAMM
27-1 HOLOGRAPHIE I : VOM GITTER ZUM 3D- HOLOGRAMM Vorbereitung: Interferenz, Sinusgitter und Zonenplatte, Kohärenz, Laser, Prinzip der Holographie (Aufnahme und Rekonstruktion), Amplituden- und Phasenholographie,
Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer
Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer Inhalt 1. Grundlagen 1.1 Interferenz 1.2 Das Mach-Zehnder- und das Michelson-Interferometer 1.3 Lichtgeschwindigkeit und Brechzahl
PROTOKOLL ZUM VERSUCH: NEWTONSCHE RINGE
PROTOKOLL ZUM VERSUCH: NEWTONSCHE RINGE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel: 1 1.2. Aufgabe: 1 1.3. Verwendete Geräte: 1 2. Versuchsdurchführung 1
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen
Versuch 4.1b: Interferenzrefraktor von Jamin
PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE Technische Universität Darmstadt Abteilung A: Institut für Angewandte Physik Versuch 4.1b: Interferenzrefraktor von Jamin Vorbereitung: Interferenzen gleicher
SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Optik (Physik)
SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Optik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1. Mai
1. ZIELE 2. ZUR VORBEREITUNG. D03 Beugung D03
Beugung 1. ZIELE Licht breitet sich gradlinig aus, meistens. Es geht aber auch um die Ecke. Lässt man z. B. ein Lichtbündel durch eine kleine Blende fallen, so beobachtet man auf dem Schirm abwechselnd
Versuch 005 / Versuch 403
38 Versuch 005 / Versuch 403 Dünne Linsen und Spiegel In diesem Versuch werden die Brennweiten von verschiedenen Sammel- und Zerstreuungslinsen sowie von einem Hohlspiegel bestimmt. Dies geschieht mit
Staatsexamen Physik (Unterrichtsfach) / Fachdidaktik
Referentin: Silke Maurer Dozent: Dr. Thomas Wilhelm Datum: 07.11.07 Staatsexamen Physik (Unterrichtsfach) / Fachdidaktik Prüfungstermin H 2005 Thema 3 1. Technische Geräte lassen sich besonders gut in
PN 2 Einführung in die Experimentalphysik für Chemiker
PN 2 Einführung in die Experimentalphysik für Chemiker. Vorlesung 27.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität
