Elementare Geometrie
|
|
|
- Heidi Egger
- vor 6 Jahren
- Abrufe
Transkript
1 Elementare Geometrie Prof. Dr. M. Rost Übungen Blatt 1 (SS 019) 1 Abgabetermin: Donnerstag, 11. April Vorbemerkung: Dies ist eine erste Nachbereitung der ersten Vorlesung vom 4. April. Manche Dinge fehlen oder sind nur angedeutet, andere Dinge sind hier etwas ausführlicher beschrieben. Wichtig war mir, daß sie die Aufgaben bearbeiten können. Anmerkungen und Hinweise sind ausdrücklich erwünscht (per oder in der Vorlesung). Vorbemerkungen Notation. Die Länge einer Strecke PQ wird mit PQ bezeichnet. Dies ist auch der Abstand der Punkte P, Q. Der Mittelpunkt einer Strecke Der Mittelpunkt M einer Strecke P Q wird mit Zirkel und Lineal folgendermaßen konstruiert: Man zeichnet um die beiden Punkte P und Q jeweils einen Kreis vom gleichen Radius r. Die beiden Schnittpunkte der Kreise verbindet man durch eine Gerade g. Der Schnittpunkt von g mit der Geraden PQ ist der Mittelpunkt M. Bemerkung (Korrigierte Fassung). Der gemeinsame Radius r der beiden Kreise kann dabei nach eigenem Gutdünken gewählt werden, aber groß genug, damit die beiden Kreise sich treffen. Genauer: r muß mindestens halb so groß wie die Strecke PQ sein (ist r kleiner, so schneiden sich die Kreise nicht). In Formeln: 1 Fassung vom 6. April, 00:00 r PQ
2 Man kann den Mittelpunkt M algebraisch durch eine einfache Formel beschreiben: M = P +Q oder (1) M = P +Q Bemerkung. Bei der Formel (1) handelt es sich um eine sogenannte affine Gleichung zwischen Punkten der Ebene. Der Begriff affin wurde in der Vorlesung bisher nicht erklärt. Es reicht aber völlig aus, die Gleichung (1) als eine Gleichung zwischen Vektoren anzusehen. Dazu wählt man sich einen Ursprungspunkt O und betrachtet einen Punkt A als Vektor OA (der Vektor von O nach A). In Vektorschreibweise lautet die Gleichung (1) dann () OM = OP + OQ Zur Herleitung der Formel: Man erhält den Mittelpunkt M in dem man von P die halbe Strecke PQ anlegt, also OM = OP + 1 PQ Damit ergibt sich OM = OP + 1 ( ) OQ OP = 1 OP + 1 OQ Nach Multiplikation mit erhält man die Gleichung (). Natürlich kann man Gleichung () auch direkt interpretieren: Man zeichne das Parallelogramm mit den Punkten O, P, Q und mit dem Endpunkt von OP + OQ als vierten Punkt. Dann ist OM die Hälfte dieses Vektors. Noch konkreter wird es, wenn man ein Koordinatensystem wählt. Wie üblich spreche ich meist von einem (x, y) -Koordinatensystem mit x-achse, y-achse etc. Ist dann P = (a,b) Q = (c,d)
3 so hat der Mittelpunkt M die Koordinaten ( a+c M =, b+d ) Anders formuliert: Die gesuchten Koordinaten von M sind gegeben durch Zusammengefaßt hat man M = (e,f) e = a+c f = b+d (3) (e,f) = (a,b)+(c,d) (Hier verwendet man komponentenweise Multiplikation bzw. Addition, was man auch als konkrete Vektorrechung in Koordinaten bezeichnen könnte). Bemerkung. Vielleicht wird nun klar, warum mir die affine Gleichung (1) viel sympathischer ist als die Gleichungen () und(3). Die Beziehung zwischen M und P, Q ist ja unabhängig von der Wahl eines Vektoren-Bezugspunktes O oder von der Wahl eines(x, y)-koordinatensystems. Der Punkt M ist eben der Mittelpunkt der Strecke P Q und diese rein geometrische Aussage braucht keinen weiteren Punkt O oder ein Koordinaten-System. Das Seitenmittendreieck 3 Notation. Für ein Dreieck mit den Punkten A, B, C schreibe ich oft kurz = ABC Das Seitenmittendreieck von = ABC ist das Dreieck = A B C dessen Punkte dieseitenmitten desdreiecks sind. Dabeibezeichnet A dieseitenmitte der dem Punkt A gegenüberliegenden Seite BC. Entsprechend sind B, C zu verstehen. Man mache eine Zeichnung! In algebraischen Formeln: A = B +C B = C +A C = A+B...(Hier fehlen einige Ergänzungen, insbesondere zum Schwerpunkt.)
4 4 Die Eulersche Gerade Dies wurde in der Vorlesung bisher nur kurz erwähnt. Zum Aufwärmen können Sie sich schon einmal externe Quellen anschauen. Es gilt die Euler-Gleichung 3S = U +H wobei S der Schwerpunkt, U der Umkreis-Mittelpunkt und H der Schnittpunkt der Höhen eines Dreiecks sind. Übrigens, in der englischsprachigen Literatur sind folgende Bezeichnungen üblich: G = S (center of gravity, centroid), O = U (circumcenter), H (gleicher Buchstabe, orthocenter). Die Euler-Gleichung lautet damit 3G = O+H Wenn wir schon dabei sind: Der Inkreismittelpunkt I heißt auf Englisch incenter.
5 Aufgabe 1. Es sei = ABC ein Dreieck und H der Schnittpunkt der Höhen in. Was ist der Schnittpunkt der Höhen im Dreieck BCH? Hinweis. Die Antwort wurde bereits in der Vorlesung gegeben. Sie sollen hier eine ausführliche Begründung geben. Etwa so: Der Schnittpunkt der Höhen von Dreieck BCH ist..., denn...und...sind zwei Höhen in BCH... Machen Sie eine Zeichnung zur Erläuterung. 5 Aufgabe. (a) Begründen Sie, warum sich die Mittelsenkrechten in einem Dreieck in einem Punkt schneiden. (Dieser Punkt ist der Umkreismittelpunkt U.) (b) Begründen Sie, warum sich die Winkelhalbierenden in einem Dreieck in einem Punkt schneiden. (Dieser Punkt ist der Inkreismittelpunkt I.) Hinweis. Diese Dinge wurden bisher nicht näher besprochen, sind aber hoffentlich Schulstoff gewesen. Sie können in jedem Fall gerne externe Quellen aufsuchen. Wichtig ist, daß Sie eine Begründung verstanden haben und diese verständlich formulieren. Wir können gerne am Montag darüber sprechen. Aufgabe 3. Begründen Sie: Die Mittelsenkrechten in einem Dreieck sind die Höhen im Seitenmittendreieck. Hinweis. Machen Sie eine Zeichnung. Benutzen Sie, daß die Seiten des Seitenmittendreiecks parallel zu den Seiten des ursprünglichen Dreiecks sind. Dies folgt aus einer algebraischen Rechnung (B C = 1/(C B)) oder einem Strahlensatz. Zu den Strahlensätzen: Irgendwann werde ich diese formulieren müssen. Sie können aber jetzt schon alle Strahlensätze verwenden. Auch hierüber können wir gerne am Montag darüber sprechen. Anmerkung. Mit Aufgabe (a) erhält man daraus, daß sich die Höhen in einem Dreieck in einem Punkt schneiden (dem Schnittpunkt der Höhen H). Denn jedes Dreieck ist Seitenmittendreieck eines anderen Dreiecks (von welchem?).
Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.
Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)
Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke
Geraden in R 2 Lösungsblatt Aufgabe 17.16
Aufgabenstellung: Berechne den Umkreismittelpunkt und den Umkreisradius des Dreiecks ABC. a. A 2 1, B 8 3, C 5 6 b. A 1 3, B 9 3, C 11 19 c. A 2 3, B 3 3, C 4 5 d. A 5 3, B 7 9, C 1 15 Lösung der Aufgabe:
Definition, Grundbegriffe, Grundoperationen
Aufgaben 1 Vektoren Definition, Grundbegriffe, Grundoperationen Lernziele - einen Vektor korrekt kennzeichnen bzw. schreiben können. - wissen, was ein Gegenvektor ist. - wissen, wie die Addition zweier
Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1
Achtung: Die Aufgabenkarten werden nacheinander ausgegeben! 1 Aufgabe 1 Zeichne in Geogebra ein beliebiges Dreieck und konstruiere den Umkreismittelpunkt U, den Schwerpunkt S und den Höhenschnittpunkt
Elementare Geometrie Vorlesung 16
Elementare Geometrie Vorlesung 16 Thomas Zink 19.6.2017 1.Homothetien Definition Es sei E eine Ebene. Eine Homothetie h : E E ist eine bijektive Abbildung, so dass (1) Wenn a E eine Gerade ist, so ist
Zum Einstieg. Mittelsenkrechte
Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch
Elementare Geometrie Wiederholung 3
Elementare Geometrie Wiederholung 3 Thomas Zink 10.7.2017 1.Schwerpunkt und Teilverhältnis, V13, Es seien A, B, C, D Punkte, die auf einer Geraden liegen, und so dass A B und C D. AB = λ CD λ = AB CD.
1.12 Einführung in die Vektorrechung
. Einführung in die Vektorrechung Inhaltsverzeichnis Definition des Vektors Skalare Multiplikation und Kehrvektor 3 3 Addition und Subtraktion von Vektoren 3 3. Addition von zwei Vektoren..................................
Konstruktionen am Dreieck
Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln
Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.
Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende
Qualiaufgaben Konstruktionen
Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der
Elementare Geometrie Vorlesung 12
Elementare Geometrie Vorlesung 12 Thomas Zink 31.5.2017 1.Die Winkelhalbierende Es seien s und t zwei Strahlen, die sich in einem Punkt O schneiden. Es sei (s, t) < 180 o. Die Winkelfläche besteht aus
3.6 Einführung in die Vektorrechnung
3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................
2.5. Aufgaben zu Dreieckskonstruktionen
2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,
Übungen. Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt aus den folgenden. Angaben. Angaben.
Übungen A1 Konstruiere ein Dreieck ABC und dessen Umkreismittelpunkt aus den folgenden Angaben. a) A( 4 2), B(2 2), C(2 4) b) a = 5cm, b = 4cm und c = 8cm A2 Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt
Abitur 2010 Mathematik LK Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte
GEOMETRIE (4a) Kurzskript
GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.
Lineare Algebra und analytische Geometrie II
Prof. Dr. H. Brenner Osnabrück SS 016 Lineare Algebra und analytische Geometrie II Vorlesung 37 Neben den drei Eckpunkten eines Dreieckes gibt es noch weitere charakteristische Punkte eines Dreieckes wie
Aufgaben zu Anwendungen zur Vektorrechnung
Aufgaben zu Anwendungen zur Vektorrechnung 1. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(11/-1) sind gegenüberliegende Ecken eines
Elementare Geometrie Vorlesung 19
Elementare Geometrie Vorlesung 19 Thomas Zink 28.6.2017 1.Gleichungen von Kreisen Es sei OAB ein kartesisches Koordinatensystem der Ebene E. Für einen Punkt P mit den Koordinaten (x, y) schreiben wir auch
Analytische Geometrie
Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u
Aufgaben zu Anwendungen zur Vektorrechnung
Aufgaben zu Anwendungen zur Vektorrechnung. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(/-) sind gegenüberliegende Ecken eines
Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene
Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 24 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung
Klausurenkurs zum Staatsexamen (WS 2012/13): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS /3): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 a)
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass
Analytische Geometrie
Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),
Die Eulergerade. Begrie. Spezialfälle. Konstruktion der Euler-Gerade
Die Eulergerade Begrie In einem Dreieck liegen der Schwerpunkt S, der Höhenschnittpunkt H und der Umkreismittelpunkt U auf einer gemeinsamen Geraden, der Euler-Geraden (Bezeichnung: e). Zur Erinnerung:
} Symmetrieachse von A und B.
5 Symmetrieachsen Seite 1 von 6 5 Symmetrieachsen Gleicher Abstand von zwei Punkten Betrachtet man zwei fest vorgegebene Punkte A und B, drängt sich im Zusammenhang mit dem Abstandsbegriff eine Frage auf,
6. Analytische Geometrie : Geraden in der Ebene
M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters
Elemente der Algebra
Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 25 Auch Albrecht Dürer hatte Spaß an der Quadratur des Kreises Unter den drei klassischen Problemen der antiken Mathematik versteht
Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.
Jgst. 11/I 2.Klausur
Jgst. 11/I 2.Klausur 10.12.2010 A1. Gegeben sind die vier Punkte A(2/2), B(3/6), C(7/5) und D(6/1). Berechne die Gleichung des größten Kreises, den man in das Viereck, das aus diesen Punkten gebildet wird,
Elementare Geometrie Wiederholung 1
Elementare Geometrie Wiederholung 1 Thomas Zink 3.7.2017 Parallelverschiebung, Aufgabe 1 Es seien g und h zwei Geraden. Es sei AB eine Strecke. Man zeichne eine Strecke A 1 B 1, die die beiden Geraden
Aufgaben Geometrie Lager
Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig
Abitur 2010 Mathematik GK Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.
Demo für
Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die
Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung
Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise!
Aufgabe 2 Lagebeziehungen von Geraden im Raum Gegeben sind zwei Geraden g und h in 3. =( 3 Die Gerade g ist durch eine Parameterdarstellung X 4 2 Die Gerade h verläuft durch die Punkte A = (0 8 0 und B
Schulmathematik Geometrie und Vektorrechnung Blatt 1
Hans HUMENBERGER WS 05/6 Blatt Aufg.. a) Finden Sie eine Aufgabe aus einem Schulbuch der 5. Klasse, in der es um das Aufstellen, Interpretieren, Berechnen von Vektortermen (Addition, Subtraktion, Multiplikation
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.
Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.
Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Algebra 4.
Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 DIE MERKWÜRDIGEN PUNKTE DES DREIECKS
REITSLTT 14 1) Der Höhenschnittpunkt DIE MERKWÜRDIGEN PUNKTE DES DREIECKS Definition: Unter einer Höhe versteht man eine Normale auf eine Seite zum gegenüberliegenden Eckpunkt. Die Höhe h c steht also
Koordinatengeometrie:
Koordinatengeometrie: Gib jeweils den Vektor AB und seine Länge an! (a A( B(6 5 (b A( B( 4 (c A( B( (d A( B(4 (e A( B( (f A( B( Ermittle (i die Koordinaten des Endpunktes E der Wanderung (ii die Koordinaten
Abitur 2016 Mathematik Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen
Zweidimensionale Vektorrechnung:
Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a
Abiturprüfung Mathematik 200 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, 2 Gegeben sind der Punkt A(,/6/,) sowie die Gerade g: x = 0 + t. a) Bestimmen Sie den Schnittpunkt
2.2A. Das allgemeine Dreieck
.A. Das allgemeine Dreieck Koordinatentransformation eines Dreiecks Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = (
Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U
1.1 Geradenspiegelungen
1.1 Geradenspiegelungen 1.1.1 Eigenschaften Definition 1.1 Eine Abbildung der Ebene ist eine Vorschrift, die jedem Punkt P der Ebene einen Bildpunkt P zuordnet. Beispiel 1.1 Zentrische Streckung mit Zentrum
1 Rund um die Kugel. a) Mathematische Beschreibung
Rund um die Kugel a) Mathematische Beschreibung Die Punkte der Oberfläche haben vom Mittelpunkt M alle die Entfernung r. Oder, mit den Mitteln der analytischen Geometrie: Für alle Punkte der Kugeloberfläche
Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale
Algebra 1 www.schulmathe.npage.de Aufgaben 1. Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Lösung? x + y + mz = 0 mx y + z = 0 x + y + z = 0. Welche Punkte P z der z-achse
2.4 Besondere Punkte und Teilverhältnisse von Strecken in geometrischen Figuren
72 KOORDINATENGEOMETRIE 2.4 Besondere Punkte und Teilverhältnisse von Strecken in geometrischen Figuren Aufgabe Lösung Subtraktionsverfahren verwenden Durch die Punkte A (9j2), B (2 j 8) und C ( j 6) ist
12 Übungen zu Gauß-Algorithmus
Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4
Grundwissen 7 Bereich 1: Terme
Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen
20. Landeswettbewerb Mathematik Bayern
20. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 2. Runde 2017/2018 Aufgabe 1 Eine Folge a0,a1,... natürlicher Zahlen ist durch einen Startwert a 0 1 und die folgende Vorschrift
Begründen in der Geometrie
Nr.6 9.6.2016 Begründen in der Geometrie Didaktische Grundsätze Zuerst die geometrischen Phänomene erkunden und kennenlernen. Viel zeichnen! Vierecke, Kreise, Dreiecke, Winkel, Strecken,... In dieser ersten
Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $
$Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in
1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $
$Id: dreieck.tex,v 1.60 2019/05/03 14:05:29 hk Exp $ 1 Dreiecke 1.6 Ähnliche Dreiecke Wir hatten zwei Dreiecke kongruent genannt wenn in ihnen entsprechende Seiten jeweils dieselbe Länge haben und dann
7.6. Prüfungsaufgaben zu Normalenformen
7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen
1 Einleitung 3. 2 Notation 3
Inhaltsverzeichnis 1 Einleitung 3 2 Notation 3 3 Wiederholung 09.05 3 3.1 Definition: Höhenfußpunktdreieck....................... 4 3.2 Definition: Mittendreieck............................ 4 3.3 Definition:
30. Mathematik Olympiade 4. Stufe (Bundesrunde) Klasse 10 Saison 1990/1991 Aufgaben und Lösungen
30 Mathematik Olympiade 4 Stufe (Bundesrunde) Klasse 10 Saison 1990/1991 Aufgaben und Lösungen 1 OJM 30 Mathematik-Olympiade 4 Stufe (Bundesrunde) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
Das Skalarprodukt und seine Anwendungen
Das Skalarprodukt und seine Anwendungen Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:[email protected] Schmalzgrube, März 999 Das Skalarprodukt Das Skalarprodukt von Vektoren
Aufgabe 5: Analytische Geometrie (WTR)
Abitur Mathematik: Nordrhein-Westfalen 203 Aufgabe 5 a) () PARALLELOGRAMMEIGENSCHAFTEN NACHWEISEN Zu zeigen ist, dass die gegenüberliegenden Seiten parallel sind, d. h. und. Zunächst ist 0 0 2 0, 3 2 0
Einführung in das Mathematikstudium und dessen Umfeld
Einführung in das Mathematikstudium und dessen Umfeld (Unterrichtsfach LVA 457 C Fuchs, K Fuchs, C Karolus Wiederholung Schulstoff III WS 5/6 5 Vektorrechnung In diesem Kapitel sollen einige Grundlagen
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 23 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung
Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten
Sehnenvierecke mit Inkreismittenquadrat Eckart Schmidt 1. Vorbemerkung Betrachtet werden konvexe Sehnenvierecke ABCD mit den Inkreismitten I 1, I, I 3, I 4 der Teildreiecke ABC, BCD, CDA, DAB. Es ist bekannt,
Lektionen zur Vektorrechnung
Die Homepage von Joachim Mohr Start Mathematik Lektionen zur Vektorrechnung in Aufgaben Diese Datei kann auch als PDF-Datei heruntergeladen werden. Download... Es handelt sich um " Basisaufgaben " der
Aufgabe E 1 (8 Punkte)
Aufgabe E (8 Punkte) Auf einem Billardtisch (bei dem die Koordinatenachsen x = 0 und y = 0 als Banden dienen) liegen zwei Kugeln P( ) und Q(3 ) Die Kugel P soll so angestoßen werden, dass sie nach Reflexion
Klausur zur Vorlesung Elementargeometrie
Klausur zur Vorlesung Elementargeometrie 08.08.2012 Prof. Klaus Mohnke und Mitarbeiter Nachname, Vorname: Matrikelnummer: Bitte unterschreiben Sie hier bei der Abgabe: Zum Bearbeiten der Klausur haben
Bernhard Storch. Spar-Paket VORSCHAU
Fit mit Bernhard Storch VielfachTests für Mathematik 11 50 Tests mit Lösungsstreifen und Notenschlüssel Spar-Paket Konstruktionen Kongruenz Konstruktion von Dreiecken 1 Konstruktion von Dreiecken 2 Linien
Übungsblatt
Übungsblatt 6..7 ) Zeigen Sie die Gültigkeit der folgenden Sätze durch Verwendung abstrakter Vektoren (ohne Bezug auf konkrete Komponenten), deren Addition bzw. Subtraktion und Multiplikation mit Skalaren:
Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)
Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig
Vektorgeometrie - Teil 1
Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der
Hilfsmittel bei Geometrieaufgaben. Ein Kompendium für Klasse 8
Hilfsmittel bei Geometrieaufgaben. Ein Kompendium für Klasse 8 Lisa Sauermann März 2013 Geometrie ist ein wichtiges Gebiet bei der Olympiade, das neben viel Kreativität und einem geübtem Auge auch einige
Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.
Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur
BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel
ELEMENTE DER MATHEMATIK BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel Vektoren Geraden im Raum. Kartesisches Koordinatensystem
Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene
Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene. Im sind die Punkte A(/-4/7), B(-/4/-), die Ebene E:x x +x 5 sowie die Geradenschar (Abitur BI) gegeben.. Die Gerade h AB schneidet die Ebene E
Übungen. Löse folgende Aufgaben mit GeoGebra
Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden
Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U
Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung
Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Niedersachsen Übungsbuch für den Grundkurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der Gleichung zur Kurve... 9 Aufstellen
Aufgaben zur Übung der Anwendung von GeoGebra
Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,
20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
9. Geometrische Konstruktionen und Geometrische Zahlen.
9. Geometrische Konstruktionen und Geometrische Zahlen. Die Dreiteilungsgleichnung. Das Problem der Dreiteilung des Winkels wurde von Descartes vollständig gelöst. Dies ist in der Geometrie von Descartes
Mathematik verstehen 7 Lösungsblatt Aufgabe 6.67
Aufgabenstellung: Berechne die Schnittpunkte der e k1 und k mit den Mittelpunkten M1 bzw. M und den Radien r1 bzw. r a. k1: M1 3, 4, P 5, 3 k 1, k geht durch A 0 und B 4 0 r 5 M liegt im 1. Quadranten
Ortslinien und Konstruktionen
Ortslinien und Konstruktionen Dr. Elke Warmuth Sommersemester 2018 1 / 17 Ortslinien Konstruktionen Dreieckskonstruktionen 2 / 17 Wo liegen alle Punkte P, die von einem Punkt M den gleichen Abstand r haben?
Klausur zur Einführung in die Geometrie im SS 2002
Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt
